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Understanding rogue waves:  Are new physics really necessary? 
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Abstract.  The standard model of ocean waves describes them as the superposi-
tion of many wavelets with different frequencies and directions of travel.  
Nonlinearities are assumed to be small enough that they can be handled by a 
perturbation expansion.  This model has served us well, leading to accurate pre-
dictions of directional wave spectra, wave statistics, and wave kinematics.  Yet 
there remain some observations which are difficult to explain with the standard 
model.  Strongly nonlinear physical processes have been invoked to explain the 
existence of very large, or rogue waves.  Are these new models really necessary 
to explain the observations?  There are several reasons why we may not need to 
invoke new physics.  First, measuring rare events in extreme conditions in the 
ocean is very difficult.  There  is a significant possibility of substantial instru-
ment error.  There are well- documented cases where carefully calibrated wave 
recorders on the same platform gave very different readings.  The most striking 
examples of rogue waves in the recent literature are unusually asymmetrical 
with high crests compared to the depth of their troughs.  Second order perturba-
tion theory produces crests in steep waves that are at least 10% higher than those 
given by the Rayleigh distribution, and higher order approximations show fur-
ther increases.  If only the short record in which a large wave occurs is consid-
ered, then it will stand out as an outlier.  When more data is considered, these 
very large waves seem less aberrant.  Sometimes waves are measured over an 
area, as by remote sensing, or estimated over an area, as by damage observed on 
the deck of a platform.  In such cases, statistical theory shows that we should 
expect higher maximum wave crests than those measured at a point measure-
ment since more waves are effectively sampled.    

 

Introduction 

A rogue wave can be defined as one that is surpris-
ingly large compared to the usual run of waves in a 
seaway.  It stands outside the rest of the population.  If 
we use this definition, most people who have spent time 
at sea have observed rogue waves. 

Because waves are a random process, there is a wide 
variation in height from one wave to another.  The stan-
dard model of ocean waves describes them as the su-
perposition of many wavelets with different frequencies 
and directions of travel.  In the simplest version of that 
model, the wave phases are uniformly distributed.  As a 
result, wave heights have a Rayleigh distribution.  That 
distribution predicts that one wave out of about 3000 

will even exceed twice the significant wave height.  Is 
this amount of variability enough to explain observa-
tions of rogue waves, or are there phenomena which are 
not described by the standard model? 

One very famous observation is the New Years wave 
measured at the Draupner platform in 1995 (Haver, this 
volume).  The probability of a wave with this crest 
height arising in a sea described by a second order 
model is 6 x 10-7.  While this is not impossible, such a 
low probability naturally raises suspicions that some 
physical process other than a low order perturbation 
expansion is responsible for the wave. 

One possibility is that nonlinear self focusing similar 
to the Benjamin-Feir instability is responsible for some 
rogue waves.  Osborne (this volume) conducted ex-
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periments in a long towing tank in Trondheim with a 
narrow spectrum input at the paddle.  Instabilities pro-
duced a strong modulation in the wave envelope.  The 
highest waves were much higher than those predicted 
by the Rayleigh distribution. 

Similar instability processes are not necessarily im-
portant in the ocean where the waves are directionally 
spread.  Dysthe et al. (2005) have simulated the devel-
opment of waves over an area using a high order 
nonlinear Schrödinger equation.  The observed distribu-
tion of crest heights was very similar to that expected 
from second order theory. 

The purpose of this paper is to take a critical look at 
whether high order nonlinearities are actually needed to 
explain observations of rogue waves in the ocean.  First 
we examine the ability of measurements to accurately 
observe extreme waves.  Then we investigate the statis-
tical evidence for rogue waves.  Are the observed high 
waves really less probable than predicted by standard 
statistics?  Finally, we study the statistics of waves over 
an area. 

Measuring high waves is difficult 

The sea surface in a storm is violent and complicated.  
Accurate measurements in these conditions is very dif-
ficult.  The problem comes not only from the difficulty 
of devising an instrument to measure the position of the 
sea surface but also from distortion of the waves by the 
structures supporting the instruments.  Analysis of 
waves measured at the Tern platform in two storms in 
the North Sea illustrates this problem. 

 

 
Figure 1. Outline plan of the Tern platform with loca-
tions of the wave height sensors and the mean wave 
directions for the storms. 

Figure 1 shows the locations of the two wave sensors. 
A Marex wave radar was mounted under the southeast 
corner of the platform deck and an EMI laser wave sen-

sor was mounted under the deck on the southwest cor-
ner. Both of these sensors measure the distance from the 
instrument to the instantaneous water surface. 

Figures 2 and 3 show the probability distributions of 
the wave crest heights for two storms at Tern. The crest 
heights are normalized by the significant wave height 
during the hour the crest was measured.   For both 
storms, the significant wave height remained over 10 m 
for over 8 hours.  The solid lines in the figures show the 
Rayleigh distribution that the crest height would follow 
if the surface elevation had a Gaussian distribution. As 
expected, the sample distributions from the measure-
ments have higher crests because of the nonlinearity of 
steep waves. 
 

 
Figure 2. Probability distribution of normalized crest 
heights measured at Tern during the storm on 4 Jan 
1993. The crest heights are normalized by the signifi-
cant wave height during each hour of measurements. 
 

The sample distributions also show significant dis-
agreement between the results from the two wave sen-
sors. In Figure 2, the crests measured by the EMI laser 
are 10-20% higher than those measured by the Marex 
radar. In Figure 3, however, the situation is reversed. It 
seems quite likely that the difference between the 
storms can be explained by the difference in wave di-
rections shown in Figure 2. 

Figure 2 shows wave in storm 93a when the waves 
were propagating to the north, so that their crests passed 
the Marex radar before encountering any structural ele-
ments on the platform. On the other hand, the leg on the 
southwest corner of the platform is up-wave from the 
EMI sensor, and it is quite likely that  spray caused by a 
wave crest hitting that leg would sometimes pass under 
the EMI laser. Figure 3 shows waves from storm 92 that 
were propagating to the east, so that the EMI laser was 
on the windward side of the platform while the Marex 
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radar was in the lee of structural members. Apparently, 
both of the sensors measured crests higher than the am-
bient waves due to spray from structural members, al-
though there is no obvious evidence of spray in the 
measured time series. The location of a wave sensor 
with respect to the platform it is mounted is at least as 
important as the response characteristics of the sensor 
itself. 
 

 
Figure 3. Probability distribution of normalized crest 
heights measured at Tern during the storm on 1 Jan 
1992. 
  

Different sensors do give different results, particu-
larly for wave crests. There is a definite need to under-
stand which sensors are most reliable.  In response to 
this need, the Wave Crest Sensor Intercomparison Study 
WACSIS Joint Industry Project (Forristall et al., 2004) 
was begun in 1997.  The key to the experiment was to 
place all of the popular sensors on the same platform 
located where they were likely to experience large 
waves in one season. 

The intrinsic difficulty in establishing which wave 
sensors are most accurate is succinctly given in a quota-
tion from Kinsman (1965): 
 

“I have never seen an account of a calibration 
procedure for a wave-gauge system that per-
suaded me of its validity; nor have I myself 
been able to devise one that satisfied me.”   
 

There is no standard wave for calibration.  When we 
test an instrument, we simply do not know the correct 
answer.  The best we can do, and the intention of 
WACSIS, is to achieve a consensus.  

Figure 4 shows the problems involved in comparing 
wave sensors.  The sensors shown by the lavender and 
blue lines were 15 or 20 m away from the others, but 

the other three measured within 2 m of each other.  Yet 
there are substantial differences in the detailed shape 
and height of the wave they measured.  Two video cam-
eras were mounted on the platform in hopes of under-
standing the effect of spray on the instruments.  Despite 
extensive study of the images, they proved to be of little 
use in understanding the differences in the measure-
ments. 
 

 
 
Figure 4. Sample of video records and wave measure-
ments from WACSIS.  The highest wave in the record 
is approximately 8 m high.   

The statistics of extreme waves 

Many reports of rogue waves, and in particular the 
New Years wave, are distinguished by having extremely 
high crests. WACSIS provided good information on the 
statistics of crest heights in steep waves because of the 
near agreement of several of its instruments. 

Figure 5 show crest height statistics from approxi-
mately 100 hours of the highest waves measured during 
the WACSIS project.  The abscissa gives the number of 
crests which exceed the height given on the ordinate.  
The Saab, Vlissing, and Baylor instruments give similar 
results.  The Marex radar reported many crests which 
far exceeded the crest heights from the other instru-
ments.  Marex radars have given apparently good meas-
urements in other locations; it may be that the one used 
in WACSIS was improperly adjusted.  Nevertheless, the 
results pointedly demonstrate that measurements from 
one instrument cannot conclusively show the presence 
of a rogue wave. 

The lower orange line in Figure 5 shows the crest 
heights expected from Gaussian statistics.  The ob-
served crests are higher, but they are matched well by 
the results of second order simulations.   
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Figure 5. Number of exceedances of crest heights in 
about 100 hours of the highest waves in the WACSIS 
project.   
 

Predicting crest heights from second order theory has 
now become standard practice in engineering design.  
Though nonlinear, it is a part of the standard perturba-
tion theory of random waves.   But second order theory 
is a poor explanation of the Draupner New Years wave.  
The probability of the measured wave crest is only is 6 
x 10-7.  Prevosto and Beauffandeau (2002) showed that 
the probability of the New Years wave crest was 4.4 x 
10-6 if the Improved Linear Representation (Henyey, 
2005) was used to transform the wave profiles.  Taylor 
and Williams (2002) modified a  NewWave profile up 
to fifth order.  The probability of the New Year wave 
crest was then about 1 in 10-5. 

The highest digitized point in the New Years wave 
profile was over 2.5 m higher than the other points 
measured in that wave.  If that one digitized point is 
removed from the record, the probability of the wave 
crest is 2 x 10-5.  There is no objective evidence of er-
rors in the Draupner measurements.  The point is that an 
error in one point in the time series would reduce the 
crest height to a plausible level. 

Large waves are not necessarily rogue waves, and a 
wave which stands out as unusual in a short record may 
be expected if we look long enough.  Measurements 
made in Hurricane Ivan in the Gulf of Mexico in Sep-
tember 2004 illustrate these points. 

Figure 6 shows the significant wave height, maximum 
wave height, and maximum crest height during each hour 
as the storm passed the Marlin platform.  The significant 
wave height reached 15.4 m between 1600 and 1630.  
During that half hour, the maximum wave height was 
26.3 m.  That is an extremely large wave, but it does not 
really deserve to be called a rogue wave.  It was only 
1.71 times the significant wave height at the time. 

Figure 6. Wave and crest heights measured during Hur-
ricane Ivan at the Marlin platform in the Gulf of Mex-
ico.   
  

The highest ratio of individual wave height to signifi-
cant wave height during the measurements at Marlin 
was at 0400.  The distribution of individual wave 
heights during that record is shown in Figure 7.  The 
wave heights were normalized by the significant wave 
height.  The sample distribution generally lies below the 
Rayleigh distribution and in fact fits the empirical dis-
tribution of Forristall (1978) rather well.  But one wave 
is an outlier with a ration of 1.89.  It might well be 
called a rogue wave. 

 
Figure 7.  Probability distribution of wave heights dur-
ing one hour starting at 0400 during Hurricane Ivan at 
the Marlin platform in the Gulf of Mexico.   The wave 
heights are normalized by the significant wave height.  
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But when taken in the context of a longer record, the 
large wave at 0400 fits ordinary statistics.  Figure 8 
shows the distribution of all of the individual waves 
during Hurricane Ivan at Marlin.  They are normalized 
by the significant wave height in each half hour record.  
The wave that appeared so unusual in a single short re-
cord falls right on the empirical distribution line.  If we 
wait a long time, Gaussian statistics can produce a very 
large wave. 
 

 
Figure 8. Probability distribution of wave heights 
throughout Hurricane Ivan at the Marlin platform in the 
Gulf of Mexico.  The wave heights in each half hour 
were normalized by the significant wave height in that 
half hour. 

Maximum wave heights over an area 

The maximum wave crest somewhere in a large area 
is expected to be larger than the maximum crest at a 
single point.  Piterbarg (1996) found asymptotic distri-
butions for Gaussian processes over large multi-
dimensional spaces.  Krogstad et al. (2004) applied 
Petierbarg’s theorems to the estimation of maximum 
wave crests.  The most probable extreme in a Gaussian 
field containing a large number of waves is 

 

where 
[max( )] 0.5772/
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n n

n

E x h h

h N n N

= +

= + −

                (1) 

 
and  N is the equivalent number of waves in the field 
and n is its dimension.  For fields involving space and 

time, the space-time correlation must be considered in 
estimating N.  We see that the number of dimensions of 
the field as well as the number of waves influence the 
expected maximum.    

Krogstad et al. (2004) give an example of a snapshot 
of waves over a 100 x 100 km area. They calculated 
that the expected maximum linear crest is 1.32Hs.  In 
comparison, the expected Gaussian maximum for a 
1000 wave time series is only 0.93Hs.  The theory for 
waves over an area makes the observations of large 
crests made by orbiting radars seem much more reason-
able. 

High crests are also expected to occur over smaller 
areas.  Figure 9 shows the results of simulations of lin-
ear waves over square areas with the side lengths given 
on the abscissa of the graph.  The simulations were 
based on a Jonswap spectrum with a peak period of 10 
sec.  The mean period was thus 8.35 sec and the associ-
ated wave length was 109 m.  The waves were direc-
tionally spread using the spreading functions for fetch 
limited waves given by Ewans (1998).  Each simulation 
lasted 1024 sec and at least 100 simulations were made 
for each area. 

The values shown in Figure 9 are the averages over 
the simulations of the maximum crest height anywhere 
in the area.  The crest heights are normalized by the 
standard deviation of the wave elevation.  They are sub-
stantially higher than the highest crest expected at a 
point even for areas of 50-100 m on a side. 

According to Piterbarg (1996), the equivalent number 
of waves is given by 

 1 22 L L TN
V

π=                         (2) 

where L1 and L2 are the lengths of the sides of the area, 
T is the duration of the simulation, and V is given by 

                                 1 2 zV Tαλ λ=                             (3) 

where λ1 and λ2 are the mean wavelength and mean 
crest length, Tz is the mean zero-crossing period, and the 
factor α accounts for the space-time correlation.  For the 
directional spreading used in our simulations, λ2 ≈ 3λ1.   
Fitting equations (1) – (3) to the simulations for the lar-
ger areas gave an empirical estimate of α = 1.25. The 
maximum crest heights from equation (1) using this 
value of α are shown as the red line in Figure 9. 

Equation 1 fits the simulations well when the side of 
the simulated area is greater than about 150 m.  Piter-
barg’s theorem is asymptotic in the sense that it applies 
for large areas.  It is not surprising that it fails for side 
lengths smaller than one wavelength.  For such small 
areas, it is likely that a local maximum of the surface 
will not appear in the area at any given time. 
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Figure 9. Expected maximum crest heights over an area 
with the side length given on the abscissa. 

 
Empirically we found that for small areas a good fit 

to the simulations can be found by taking 

                                
1

2
z

L TN
Tλ

=                              (4) 

and applying equation (1).   The results from using 
equations (4) and (1) are shown as the green line in Fig-
ure 9.  For small areas, the equivalent number of waves 
is thus proportional to the length of the side rather than 
to the area.  We may speculate that this is because the 
maximum value of the wave surface is likely to be on 
the edge of the area when the edge is shorter than one 
wavelength. 

The expectation of high crests over relatively small 
areas has important implications for the air gap under 
the decks of fixed structures.  Consider a structure with 
a deck 50 m by 50 m.  For the wave spectrum used in 
the simulations, the maximum crest somewhere under 
that deck is expected to be 1.18 times higher than the 
maximum crest at a single fixed point such as a wave 
staff.  If, for example, the significant wave height is  13 
m, then the expected maximum in 1024 seconds will be 
2.4 m higher than the conventional estimate from point 
statistics. 

Localized damage has sometimes been observed on 
the lower decks of platforms after storms.  This damage  
has often been hard to reconcile with hindcast signifi-
cant wave heights and standard crest statistics.  The fact 
that the expected maximum over the area of a deck is 
substantially greater than the expected maximum at a 
point may go a long way to explaining this anomaly. 

Localized damage during a severe storm does not 
necessarily mean that a platform was poorly designed.  
A small amount of water in the deck does not affect the 

structural integrity of the platform.  Occasional damage 
might be repaired at less cost than building and install-
ing a platform with a higher deck.  But designers should 
be aware that the potential for green water at some loca-
tion in the deck is much greater than would be estimated 
from statistics of crests at one point. 

Conclusions 

Evidence for rare events is very difficult to obtain.  
The behavior of wave sensors in extreme conditions is 
basically unknown.  If a very large wave appears in a 
record, it is difficult to distinguish from noise.  The 
noise may be electronic or the result of interference 
from the structure that supports the wave sensor. 

An unusually large wave will always stand out as a 
rogue wave in a short record.  Yet it may fit standard 
statistics perfectly well  if the statistics from many 
hours of storms are combined. 

Perturbation theories yield wave crests that are sig-
nificantly higher than given by linear theory.  Many 
observations of high crests can be explained by such 
theories. 

The highest crest expected over an area is naturally 
higher than that expected at one point.  It is somewhat 
surprising though that the crests expected over an area 
are so much higher than those at a point.  These predic-
tions may well explain observations of very high crests 
in radar images as well as the localized damage that has 
been seen on the decks of fixed platforms. 

Strongly nonlinear focusing of waves may well exist 
in the ocean.  But existing observations do not demand 
such a mechanism.  More investigation of sensor per-
formance, careful measurements, and statistical calcula-
tions are needed to establish whether the standard model 
remains adequate. 
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