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Abstract. Saddle points between neighboring deep ocean basins are the sites of unidirectional flow from one basin to the next,
depending on the source of bottom water. Flow in these sites appears to be critically controlled, so the interface between the bottom
water and the water above adjusts itself to permit bottom water flow from the basin which contains a source of bottom water into the
next. Examples in the Atlantic include flow in the Romanche Fracture Zone, the Vema Channel, the Ceara Abyssal plain, the
Anagada-Jungfern passage, and the Discovery gap, but there are many more. Examples are listed for all oceans along with theoretical
predictions of volume flux using CTD data archives. These are compared with volume flux estimates using current meters and/or
geostrophic estimates for four new cases. Ocean straits also critically control bidirectional flows between basins. Theory of the influ-
ence of rotation on such critical flows is reviewed. Predictions of a number of these cases in the ocean are reviewed and compared
with ocean estimates of volume flux. Finally, some considerations about fronts on continental shelves are given. A mechanism is
shown that uses inertia to produce flux across a geostrophic front that separates two fluids of differing density in a rotating fluid when

the front is forced to be narrower than the Rossby radius.

1. Introduction

For over a hundred years, critical control of fluid
flowing through constrictions has been understood in a
number of compressible, free surface, stratified or rotat-
ing fluid situations. One class of these problems com-
bines stratified and rotating constraints to the fluid as it
passes over bottom and sidewall constrictions. This
class has come to be loosely termed “rotating hydrau-
lics”. Problems are typically solved with ocean or
atmospheric examples in mind.

This paper reviews a number of ocean-related aspects
of this problem. It does not exhaustively review the
theoretical studies to date. Rather, the emphasis is on
intercomparison of theoretical predictions of volume
flux with oceanographic estimates based on direct meas-
urements. The intent is to assess the practical useful-
ness of the understanding presented here to knowledge
of the ocean.

We first review the very simplest concept of critical
control of a nonrotating fluid. Consider a simple fluid
flow problem as sketched in Figure 1, where water with
a free surface in a field of gravity of depth H and veloc-
ity U is flowing along a channel and encounters a bump
of size b. Assuming friction is negligible, the equations
of motion reduce to Bernoulli’s equation and conser-
vation of mass,
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u(H-b-n)=UH (1.2)

where u is velocity of fluid over the bump and n is
downward deflection of the free surface over the bump.
These two equations can be combined by eliminating u
to produce the following cubic relation between scaled

surface deflection n’=n/H, bottom bump b'=b/H,
and upstream velocity Froude number F = U/ 1/2g H.
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Figure 1. Sketch of an idealized flow of fluid along a chan-
nel with upstream velocity U and depth H, and the adjustment
to a slowly increasing bottom b. The deflection downward of
the interface is 7.
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An easy way to picture these solutions is to investi-
gate the intersection of the left hand parabola with the
right hand hyperbola keepingmna freely varying
parameter with fixed values of b’ and F. Two such
cases are shown in Figure 2. The first, represented by
theright parabola, has 4'= F = 05. There are three points
of intersection: The leftmost point corresponds to the
small deviation of 5’ as drawn in Figure 1. This is the
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physically expected solution since it continuously maps
to zero deflection as b° approaches zero. The middle

point is a very large deviation and corresponds to a flow
with local Froude number much greater than one. It
cannot be physically realized since momentum flux plus
pressure on the two sides of a control volume between
upstream and the small bump is unequal. This state is
known as a conjugate state. It could be produced by a
large bump between upstream and the small bump,
since then the large bump would experience pressure
that would equalize the force and momentum budget.
The right intersection point is physically forbidden
since b’+m’ > 1, so the free surface would be below the

bottom of the bump.
The left parabola in Figure 2 is shown for 4" =06

the parabola has simply moved to the left by 0.1 unit of

’

n’. At this value of F, the parabola intersects the
hyperbola at only two points. The left point is located
where the hyperbola and parabola are tangent. For
smaller b, both left and middle points have migrated
along the parabola for slowly increasing 5’ and merged
at this point. In addition the local Froude num-
ber F, =1at this point. The right point is still

0
unphysical.
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Figure 2. Values of the right and left hand side (a
hyperbola and parabola, respectively) of equation 1.3. The
hypetbola (dotted line) is drawn for F=0.1. The rightmost
parabola corresponds to b"=0.5. The leftmost parabola
corresponds to  b'=0.6.

For larger values of i’ there is no intersection except
for the right-hand unphysical one, the two other roots of
the quadratic expressed by equation 1.3 are imaginary.
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Thus if b’ is greater than a given value (depending on
F), the fluid cannot get over the bump. One of the
upstream conditions must be changed. For example, if
volume flux is specified, H would need to be bigger.
Or, if H is fixed (for instance by a large upstream lake),
U may have to change to allow a flow. Often the fluid
over the bump adjusts to the critical state. In such
cases, the topography determines what is happening
upstream.

These situations are found in physical oceanography.
Dense water can accumulate in a basin from either
surface cooling (in polar latitudes), inflow from an
adjacent basin, or surface evaporation. We infer that, as
the dense water accumulated, the interface of the dense
water rose until it was above sill depth of the deepest
passage which connects to another basin. The water
above sill depth could then flow out through the pas-
sage. When the outflow rate equaled the accumulation
rate of dense water, the interface ceased to rise and
steady state was achieved. Volume flux of such out-
flows are useful measurements of interbasin water
exchange and hence of fundamental interest in physical
oceanography and ocean climate considerations.

We review here some theoretical studies of the criti-
cal control problem for rotating fluids with possible
ocean applications. Most have been conducted over the
past score of years. Geometries include not only a deep
passage which we will call a “sill” where one water
mass flows between basins, but also surface passage-
ways (straits) where flows in both directions inter-
change water masses. A particular case in which there
are gappy boundaries, so that one strait might support
flow in one direction, but return flow is elsewhere, as
elucidated by the studies of Nof (Nof and Olson 1983,
Agra and Nof 1993, and Nof 1995) will not be reviewed
here. Sections 2, 3 and 4 summarize theoretical aspects
of sill flows, long strait flows, and very wide strait
flows, respectively. Sections 5 and 6 discuss some
ocean observations of such flows and some comparison
with theory.

2. Sill flow calculations

Figure 3 shows the balance of three forces (Coriolis,
inertia, and pressure) that are included in the simplest
problems of rotating hydraulic control. Other forces
which could be included in more complicated models
are acceleration, friction and eddy Reynolds stress. The
pressure is conventionally determined using the hydro-
static approximation.
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Figure 3. Diagram showing the three forces exerted on a
fluid element and how dynamic relations are derived from
these three forces.

These three forces are easily transformed into three
relations:  a geostrophic relation by looking across
streamlines, the conservation of potential vorticity by
taking the curl of the equation and using continuity, and
Bernoulli’s law by looking along streamlines. These
three relations are redundant, and the cross-streamfunc-
tion derivative of the upstream Bernoulli’s function
must be equal to the upstream potential vorticity. The
first, pioneering attempt to calculate critical flow along
a channel (Stern 1972) violated this constraint.

Flow in the sill region is determined by using any
two of the three above equations. If the geostrophic and
potential vorticity equation are used, two constants of
integration are introduced, but Bernoulli’s equation
eliminates one of them. We show for illustration here
the simple theory of zero potential vorticity. Fluid of
density p +Ap lies in an infinitely deep upstream basin
with surface h, above the lip of a rectangular exit chan-
nel. Above is still fluid of density p. This problem has
very simple algebraic solutions that illustrate the flows
in the channel (Whitehead, Leetmaa and Knox, 1974).

The geostrophic equation and zero potential vorticity
equation are

,0h
ga—fv 2.1
ov
5—;=—f (22)

which integrate to

2.2
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where g’=gAp/p, fisthe Coriolis parameter, and 4,

and v, are two constants of integration. They represent
water depth and velocity at x=0. Bernoulli’s law exists
along each streamline

v=2¢g"(h—h) 2.5)

which can eliminate one constant of integration by
making it a function of the other. Note that Bernoulli

potential is g'#  since fluid is stagnant in the upstream

basin. In problems with finite values of upstream depth,
(i.e. constant upstream potential vorticity [Gill (1977),
Pratt and Armi (1987), Whitehead (1989)1), Bernoulli’s
law may hold along all streamlines, but the Bernoulli
potential is not easy to determine. Fortunately, there are
some cases where it can be determined for one stream-
line.

In such cases, the problem is reduced to determining
one constant of integration which is found, as we
explained for the nonrotating example, by calculating
the critical condition. The simplest such condition is
that volume flux is maximized through the sill. This
results in the following predictions for volume flux for a
rectangular opening.

0= L>(2g]:h“) 2.6)

N
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where L is width of the channel. Rydberg (1980)
rejected the maximum volume flux argument, which is
equivalent to the Froude number of the longest, fastest
wave equal to one, in favor of having the local Froude
number be one. This makes sense because Froude
numbers greater than one would produce Kelvin-
Helmholtz instability which would lead in turn to mix-
ing. The resolution of this interesting conflict between
local and long wavelength control remains unresolved
by either additional theoretical work or direct observa-
tion in the laboratory or the ocean.
The first formula (2.6) is familiar to many ocean-
ographers. It could be obtained from a simple
geostrophic calculation if one assumes first that the
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fluid height on the right-hand side of the sill (looking
downstream in the northern hemisphere) equals
upstream height #, and second that the interface inter-
sects the bottom on the left hand side. The critical con-
trol calculation justifies the use of 4, in this formula.
Not only does it show this value gives maximum flow,
but it also connects it to the available upstream potential
energy through Bernoulli’s equation. The second
formula is familiar to hydraulic engineers in the limit of
f = 0, which was first determined in the last century. As
f is increased from 0, it smoothly connects the non-
rotating result to equation 2.6.

If potential vorticity is not zero, the functions
expressing velocity, height, and volume flux are more
complicated, but still readily found by common calcu-
lations. However, the connection of Bernoulli potential
between upstream and the sill is more challenging. In
some cases only one streamline preserves Bernoulli
potential from a point upstream to a point on the sill.
However, the calculation of maximum flux can be
accomplished in many cases. Gill (1977) simply speci-
fied the existence of appropriate currents in the
upstream basin for constant upstream vorticity and
graphically determined the volume flux as a function of
dimensionless parameters. No analytic solutions were
attained. Whitehead (1989) was able to find analytic
solutions to volume flux in general but was unable to
determine analytic solutions for the maximum value.
Contours of nine values of volume flux from the ana-
lytic solution are shown in Figure 4. This figure differs
from a comparable figure (Figure 6) in Whitehead
1989. There, negative values of fluid depth were
allowed in the computation, so the curves in a region
below the volume flux maximum are wrong. This error
does not effect the computation of critical flow, how-
ever. Thus, the central finding in that paper - that
volume flux for this case lies within 22% of the flux for
the zero potential vorticity solution - still holds. Thus
the feeling held by many in the 1980s, that the zero
potential vorticity was essentially incorrect is apparently
not born out for issues of volume flux.

Pratt and Armi (1987) investigated the flow patterns
in the sill region for more general potential vorticity
distributions and found that gyres and countercurrents
are possible. Since such cases are characterized by
upstream currents, Bernoulli potential varies in the
upstream basin so that comparison of volume fluxes
with the simple estimates above are not straightforward.
Given these complications, volume fluxes were not
determined in these cases, but a variety of issues, such
as that the control point is at the crest of the sill for a
certain class of sill geometries were clarified for more
general flows.
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Figure 4. Contours of normalized volume flux 2Q f/ g’h: as

a function of normalized right-hand wall depth and normal-
ized channel width. In the region with horizontal contours,
the flow has separated from the left-hand wall.

Both that paper and earlier studies by Borenas and
Lundberg (1986), and Gill (1977) focused strongly
upon the implications of the definition of control by the
geometry of the outlet passage. This is a rich area of
study since the nature of control from upstream basins
with more general vorticity conditions through openings
of more general shape is quite complicated. It is easy to
visualize, for example, that some fluid might not
possess enough energy to get through an opening while
fluid next to it could. In that case, upstream blocking
might occur which would be connected not with critical
control of the entire current, but current separation.
Such a process has the same branch structure used in the
above papers, but is distinct from control of the entire
current. Other aspects may be connected with particular
definitions of critical control. Indeed, Borenas and
Lundberg conclude that there is a range of parameters
such that parabolic passageways cannot exert control (in
the sense they use it). Yet it is difficult for this author
to think that the sketch in Figure 1 breaks down because
the channel happens to have a parabolic bottom. Other
studies (Table 1) have dealt with a variety of other
issues. This review will concentrate on volume flux
issues, the rest are covered by Pratt and Lundberg
(1991).

Most quantitative comparisons indicate that neither n
the potential vorticity distribution nor the shape of the
sill produce very large changes (order greater than one)
in the volume flux. But unquestionably they produce
changes of a fractio of order one. Recently, Kiliworth
(1994) has shown that the zero potential sill produce
very large changes (order greater than one) in the
volume flux. But unquestionably they produce changes
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Table 1. A List of Theories

Stern 1972 Trouble with upstream condition

Whitehead, 1974 Zero potential vorticity, zero

Leetmaa & currents

Knox

Gill 1977 Const. potential vorticity,
upstream currents imposed

Rydberg 1980 Local F should = 1

Shen 1982 Zero potential vorticity, more
tests

Pratt 1983 Adjustment to obstacle

Pratt 1984 Flow near critical speed

Borenas & 1986 Parabolic channel, not controlled?

Lundberg

Pratt & Armi 1987 Nonuniform potential vorticity

Whitehead 1989 Comparison of zero and const.

potential vorticity, application

Dalziel 1988, Zero potential vorticity exchange
1990 and control

Pratt & 1991 Review of theory
Lundberg

Hunkins & 1992 Const. potential vorticity
Whitehead exchange

Killworth 1992 Zero potential vorticity and

shapes, application

Killworth & 1993
McDonald

Zero potential vorticity and
maximum flux

Killworth 1994 Zero potential vorticity is

maximum

Johnson & 1994
Ohlsen

Frictionally modified exchange

Whitehead & 1994
Kimura

Wide exchange flow

of a fraction of order one. Recently, Killworth (1994)
has shown that the zero potentialvorticity flow in a
rectangular channel has the greatest volume flux of all
possible potential vorticity distributions. This is valid
for all bottom shapes, and makes the calculation of
maximum fluxes easier than before. Earlier, Killworth
and McDonald (1993) had found a maximum bound on
any flow with non-negative potential vorticity, and
showed it was roughly like the zero potential vorticity
relation.

3. Strait flow calculations - lock exchange theory

In an ocean context, we will define lock-exchange
flow as the flow through straits between basins with two
different but uniform densities. In formulating prob-
lems, one could picture a gate which, once removed,
allows the set-up of a semi-steady exchange of flow and
counterflow between the basins. This problem with

rotation included was analyzed for zero potential vortic-
ity by Whitehead et al. (1974). In that formulation, a

somewhat questionable energy conserving formula was
used.  Although laboratory data agreed with the
theoretical prediction, a more complete theory would be
useful. Dalziel (1988, 1990) extended the formalism
introduced by Gill (1977) and obtained a number of
improvements for openings less than one Rossby radius
in width. An improvement for wide channels was made
by Hunkins and Whitehead as reviewed here. The
model (Figure 5) consisted of two basins separated by a

channel of depth H. Basin 1 has water of density p and

basin 2 has water of greater density.

Top view

Side view

T Removed gate

e
"

Figure 5. Sketch of a lock-exchange flow through a long
straight channel.

The governing equations for the flow in the channel
are conservation of depth,

hi(x)+h(x)=H @3.1)

where h; and h, are depth of each water in the strait,
conservation of potential vorticity
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and thermal wind between the two layers

o,
fva-vi)=g'— (3.4)

One can derive differential equations for A, A2, v; and
v, as follows:

Take ai of (3.4) and use (3.2) and (3.3) to get
X

9%h, s 2 I

5 _?(F hy=-= (3.5)
We define x as being zero in the middle of the chan-

nel. The solution of A, is

H X X
h, = ?+Bcoshﬁ +As1nh—§ (3.6)

and from (3.1), the solution of Ay is

H X .
h =— —Bcosh——Asinh

X
) R 2 3.7

"H
where R = ’i—fT ,and A and B are constants of integra-

tion.
To solve for velocity, use (3.2) and integrate:

. .. x JRA X
Vl =——2——TslnhE—TCOSh—E+C (38)

or (3.3) and integrate:

RB fRA
v = _Q+f——sinhi+—cosh£+D (3.9
3 2 H R H R

where C and D are also constants of integration.

These constants are found as follows: First, equation
(3.4) dictates that C = D. Second, assume the height
profile is antisymmetric about the horizontal centerline
of the tank, so that B = 0. Because of the symmetry of
the profile, the assumption of equal and opposite vol-
ume flux through the strait requires that v; -v; at x = 0.
This requires that C = 0, so only the constant A remains
to be determined.
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Gill (1977) showed that the constant potential vortic-
ity current has a Bernoulli function that is easily deter-
mined except for a constant. Since there is no dissipa-
tion in the current, the constant is conserved along
streamnlines. Therefore, the symmetric solution for the
current extends throughout the entire region from
behind one nose through the passage to behind the other
nose.

To solve for the final constant, the time dependent
energy equation is used in the form

a 2
% a<vt>+g(wAp)=o (3.10)

where only the deviation of density Ap from a constant
value p has been retained. The angled brackets denote

a volume integral.

We do not know the detailed flow in the nose region,
but we can assume that the nose is fully developed (see
Stern 1980, Stern, Whitehead, and Lien Hua 1982,
Griffiths and Hopfinger 1983). Hence it will be self-
similar between a time ¢ and a time ¢ + 8 #. The similar-
ity assumption requires that the volume of the moving
nose region be unchanging, in which case we can set ¢;
= Q /A, where Q; is the volume flux of the i current
behind the nose and A; is the cross sectional area of the
current.

Thus the increase in internal kinetic energy in time
equals ¢; times the areal average of kinetic energy
across the current. These are summed for the two on
the left and the two on the right to give:

3(")

P T

[ Ql Q/2 1122 Mzz
E(T‘Aj) (J,tz e+ I "z‘i‘]

Likewise, the increase in potential energy is equal to
¢; times the area of the current times the vertical dis-
placement of the center of gravity of each column of
width dx. The product of these is integrated across the
currents and summed for the two noses to give:

(3.11)

B Qz A2 h22
g(wAp)—Tz_AJ'lzg 8p—>dx
- (3.12)
Q h,
—741—_):[/2 g Ap h1 (? + hz)dx

Equations (3.11) and (3.12) are set equal, and since
Qi = Oy, hy = H - hy, and Ay = Ay, they simplify to
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NooA
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x( 2A2)
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where

Asinh 2 = H (3.14)
R 2

These two equations are satisfied for the values

A osea0,  Asoosia. 315)
2R H

Since A was the last remaining unknown, volume flux
can now be determined from the integral

Al2

=-Q = | hv d
0 =-0,= | hvdx

-

=fAR(&coshL—2 R sinhi )
2 2R 2R

,HZ
=0.156%

(3.16)

Whitehead, Leetmaa, and Knox (1974) used the above
flat bottom energetics with the admittedly incorrect zero

potential  vorticity velocity profile to predict
7y

g H

Q =1/6 which is 7% higher. This is consistent
with the notion that the zero potential vorticity flux is an
upper bound, although this has not yet been shown to be
true for the lock-exchange case as Killworth has shown
for a sill. This volume flux prediction has been checked
by a laboratory experiment by Hunkins and Whitehead
(1992). Both the slope and the constant in front agree
with the data to better than 10%.

4, Very wide lock-exchange

Fronts are frequently encountered at the edges of
long, straight topography. Whitechead and Kimura
(1994) explored a mechanism that uses inertia to
produce flux across a geostrophic front that separates
two fluids of differing density in a rotating fluid. They
asked “when the front is forced to be narrower than the
Rossby Radius R so the full Rossby adjustment cannot
be reached, will fluid continue to flow in a cross-frontal
direction and if so at what rate?” The model had flow
in a submerged horizontal slot between two very deep
basins containing motionless water. The inviscid rotat-
ing nonlinear equations for exchange flow were solved
for two configurations: The first had Cartesian coor-

dinates and the slot was infinitely wide but of length [ in
the cross-frontal direction. The second case had cylin-
drical coordinates.

The model involved a reservoir of still water in the
deep ocean separated from a reservoir of still water of
different density near the coast by a planar shelf of uni-
form depth. In order to be sure that the upstream fluids
remain motionless even if there is exchange flow
between ocean and coastal region, two very deep basins
instead of shallow layers containing motionless waters
of differing densities were considered. They are sepa-
rated by a vertical wall except at mid-depth where there
is a horizontal slot of depth A, cross-shelf length / and of
infinite width (see Figure 6). At some previous time the
slot had been opened, the interface between the two
fluids slumped from gravity, and fluid started flowing
back and forth between the basins (as in the Rossby
adjustment problem). A steady exchange flow is
reached where low density fluid flows along the top of
the slot from basin 1 to basin 2 and a counterflow flows
along the bottom of the slot from basin 2 to basin 1. As
in most problems, it was assumed that the reservoirs on
either side of the slot are large but finite and that fluid is
not being added to either basin from the outside. Thus
when enough time has elapsed for pressures p; and p; to
adjust, the volume flux from basin 1 to basin 2 becomes
the same as the flux from basin 2 to basin 1. We seek to
calculate Q, the volume flux per unit slot width for the
case of inviscid fluids.

N

x=[

v

Figure 6. Sketch of a lock-exchange flow through a very
wide channel.
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In both layers, the steady inviscid Boussinesq rotat-
ing shallow water Euler equations were used. The
along slot velocity is now called v, in the direction of

y, it obeys

av

= @.1)
which integrates to

v o=—fx+v 4.2)

The across slot velocity component is u, , and it obeys
Bernoulli’s law

4.3)

n n

1 [ 2 2 pn (x’z) pn((—l")oo,z)
—|u +v ]+ =
2 P p

where it has been assumed that fluid is motionless i.e. u,
=y, = 0 in the reservoirs. Combining equations for
both layers, setting volume flux in each layer equal to
the magnitude of the other results in the following
equation relating volume flux Q=u s with deviation of

the interface & .

1 1
SRIED G R

Hir-2xl
—i‘2—X]+g’8:0

To investigate properties of this solution, it is useful to
define

40

transform to x’ =(2x/I) -1 and write equation (4.4) in
the form

Q* 1 1 _ 2,
2 [W—W}—a+a X (45)

wherea? = £212/g’hande (x')=28/h. The variable

a is the length of the slot divided by the Rossby radius
of deformation and is a measure of the strength of
rotation. The variable e(x’) is a freely adjustable
parameter corresponding to deviation of the interface
from the midplane of the slot.

We ask what values of Q’ can exist for each o and
€. We require that there be a continuous range of
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solutions between the center and the edge at x’ = 1. The
equation there can be rearranged to become

cfpspa] e

This is similar in some ways to the equation 1.3 that
was given in the introduction. It is easy to see that € is
negative for Q' > 1, but @’ is unbounded as negative ¢

approaches 0. These are supercritical solutions which
appear to be unphysical. In addition, for0< e <1, a
real solution is not possible for o > 1. Also , in general

the term 1-a” /e is negative for O<e <a” in which
case no flux is possible and flux is zero at € = o’. For
e>a’, flux increases rapidly with e but then it must
decrease to zero for ¢ = 1. In summary, there is a
maximum value of flux in the range o’ <e<1 and either
zero or supercritical flow for other values of €.

The dependence of @’ on ¢ for 7 values of a’ is
shown in Figure 7. When o approaches zero, flux is
maximum for ¢ =a>” and takes the value of Q' = 1
which is the well known value for the non-rotating
exchange problem (Yih (1980) pg. 206).

A two-layer flow in axisymmetric cylindrical geome-
try can be formulated in a similar manner, but now there
are edge conditions for the interface at the inner and
outer radius.

1.0
<- alphas$q.=.01
~- alpnhasq.=}

» € aphasq=2
-E 08 E -- alphasq.=3
= - aiphasq=5
P < alphasq=7
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3 0.61 -+ Qmax

S

> 1

=

8 047

=

E .

e .
5 0.2 /

00 - b T T T
0.0 0.2 0.4 0.6 0.8 1.0
€

Figure 7. Normalized volume fluxQ’as a Figure 7

Normalized volume flux function of scaled interface
displacement at the edge of the slot for different rotation rates.

Volume flux F is
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where y =r /r; and o) = f"r"/g'h are dimensionless

variables expressing the effects of the two radii and
rotation, respectively. The free parameters denoting the
deviation of the interface from midplane are

€i=28i/h and £, =280/h. As in the Cartesian

case, flux is scaled by the term outside the brackets
which we presume is the solution of the nonrotating
problem.

5. Oceanic observations of sill flows

Numerous measurements or estimates of velocity in
the vicinity of sills have been made. A number of these
are listed in Table 2. This is not an exhaustive list, but a
collection of studies with data that either give volume
flux measurements or contain measurements from which
estimates can be obtained. The location of a number of
these are shown in the three maps in Figure 8. The
magnitude of volume flux varies from about 102 Sv. to
well over one, depending upon the size of the basin.
Most exhibit clear cross-channel tilt, a sign of influence
of earth rotation. Indeed, geostrophic estimates have
been made of the speeds of many currents.

Four of the examples listed above will be compared
with an estimate from the idealized theory from Section
2. To make this comparison, a methodology used ear-
lier (Whitehead 1989) will be used again. Application
requires the adoption of a value of Ap/p, upstream

height over the sill, channel width L and the local
Coriolis parameter. With these four parameters, volume
flux can be predicted using either equation 2.6 or 2.7

which we repeat here for convenience:
1

— g,h: 2glhu :
otherwise
3 3
2 272 ]2
Q=(3) L,[,?[h“—f L] 5.2)
3 8g

Figure 8. Locations of some sills (unidirectional arrows)
and straits (bidirectional arrows). a) Atlantic ocean with
peripheral seas. b) Pacific ocean. ¢) Indian ocean. Light
grey: <400 m. Dark grey: >5000 m.
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Other Sills:
Windward Passage South Sandwich Island
Amirante Passage Arc Gap

Ecuador Trench into
Panama Basin
Nintyeast Ridge

Filchner Depression
[Southern Weddell Sea]
Indonesian Philippine Basin

Table 2. Flux Estimates Through Deep Ocean Sills

Denmark Strait 2.9 Sv., Dickson, Gmitrowicz and Watson (1990),
Dickson and Brown (1994).

Charlie Gibbs Fracture Zone 2.4 Sv., Saunders (1994).

Discovery Gap 0.21 Sv., Saunders (1987).

Bornholm Strait 0.02 Sv., Petren and Walin (1975).

Iceland Faeroe Passage, no direct measurements Dickson assigns 1.0
Sv. from indirect considerations

Faerce Bank Channel 1.5-1.9 Sv., Borenas and Lundberg (1988).

They also did both a parabelic and rectangular hydraulic control

is the point of zero velocity of current measurements; 1.9 Sv.,
Saunders (1990).

Windward passage (to Cayman Basin), unknown.

Anegada-Jungfern Passage 0.056 Sv., Stalcup, Metcalf and Johnson
(1975). Also contains estimate from WLK theory of 0.04 Sv.

Strait of Sicily eastward flow not estimated directly by Grancini and
Michelato (1987), who say the current meter data fully support the
hydrographic results which they review as: 0.6 to 0.8 Sv. by Morel
(1971), 0.65 Sv. by Molcard (1972), 1.23 Sv. by Garzoli and

Maillard (1976), 1.23 Sv. from Geostrophy, 1.21 Sv. by Bethoux
(1979) using WLK.

Vema Gap 2.1 to 2.3 Sv. using geostrophy, McCartney et al. (1991).
Ceara Abyssal Plain between 0.8 and 2 Sv, Whitehcad and
Worthington (1982). > 4 Sv. from Geostrophy, McCartney and
Curry (1993), Luyten et al. (1993). 2.1 Sv., Hall, McCartney and
Whitehead (in prep).

Romanche Fracture Mercier (in prep). Hydraulic estimate 2 Sv.,

Mercier and Bryden. (1994)

Vema Channel 4 Sv., Hogg, Biscaye, Gardener, and Schmitz, (1982).
New number, Hogg et al (in prep).

Samoan Passage 1.0, 5.6 and 4.8 geostrophic estimates Johnson,
Rudnick and Taft (1994). 6 Sv., Rudnick (in prep.).

Shag Rocks Passage overflow events detected (Zenk 1981)

To estimate Ap/p , we will select at least two density

profiles from CTD or bottle data, one upstream and one
downstream of the sill. The profiles must extend to the
depth of the sill, and the greatest density difference
between upstream and downstream will be used. The
sill depth is found from bathymetric charts. The depth
at which the upstream and downstream profiles diverge
will be called the bifurcation depth. The sill depth is
subtracted from the “bifurcation depth” to determine A,.
The width of the opening at the bifurcation depth will
be used to determine L.

This method was used earlier to predict a volume flux at
four oceanic sills: the Denmark Strait, the ridge between
Iceland and the Faeroe Islands, the Ceara abyssal plain,
and the Vema passage. These fluxes were compared to
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compared to flow estimates using the current meter data
for flow through three of the four passages. The fourth
was erroneously compared to geostrophic estimates by
Steele et al (1962) downstream of the Iceland-Faeroe
ridge which should include overflows from the Faeroe-
Scotland ridge as well as the Iceland-Faeroe overflow.
The predictions of volume flux were all greater than the
direct measurements by factors ranging from 1.6 to 4.1.
More recent modern measurements will change those
factors; a new version of the table with the latest
estimates is found in the first four lines of Table 3.
Since the mid-1980s, measurements of volume flux
have been made through a number of additional
passageways. We repeat the test of this method of
predicting flux for four more cases which are discussed
in turn.

The first is Discovery gap (Saunders 1987), which
connects the Madeira Abyssal Plain which is west of
North Africa in the East Atlantic, with the Iberian
Abyssal Plain which is west of Portugal and Spain.
Water of Antarctic origin (colder than = 2.1 C) flows
northward through this gap with a volume flux esti-
mated as 0.2 Sv. Information for our prediction is
shown in Figure 9. Data were taken from Saunder’s
Figure 3 - an along flow section. Upstream conditions
were complicated by an unmistakable cross stream tilt
that signified a current of unknown origin. From Figure
9b, the bifurcation depth was taken to be 4000 m, the
reported sill depth was 4600 m, so Ap was taken to be

10°. This produces a Rossby radius R=4 km whereas
the gap width is about 80K for the 4000 m contour, so
the rapidly rotating formula is used. It predicts volume
flows of 0.2 Sv. There is an unusual amount of room
for adjustment of this value, and we could easily predict
a value smaller than half as big, or more than three
times bigger.

The second is the Samoa passage (Figure 10). Data
are taken from Geosecs pacific stations 251 and 252
(upstream) and 253 and 257 (downstream). This gives
a bifurcation depth of 3950 m. The bathymetric map,
traced from the Gebco map shows a width of 240 km at
this depth. Since Reid and Lonsdale (1974) report a sill
depth of 4770 m, h, = 820 m and Ap/p=3 x 10°.

Rossby radius computed from these numbers is R=33
km so the rapid rotating limit should be used. This
gives Q=4.6 Sv. Rudnick (pri. comm.) has recently
recovered a moored array in this area and reports 6 Sv.
This is the first instance where the hydraulics prediction
is less than estimate based on current meter measure-
ments.
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Table 3. Data and predictions for eight sills, four reviewed and updated from Whitehead (1989) and four new ones

Sill Ap H f L R Q Qobs Ratio Cit.
p
x10* (m) s'x10* (km) (km) Sv. Sv. 0/0
Denmark Strait. 3 580 1.3 350 14 39 29 1.34 Dickson et al., 1990
Iceland Faeroe 5.8 400 1.3 400 17 3.6 1.0 36 Dickson et al., 1990
Ceara Ab. Plain 0.5 430 0.1 700 66 4.6 2.1 2.2 Hall Pri Comm
Vema Channel 1 1540 0.7 446 24 16.3 6 2.7 Hogg Pri Comm
Discovery Gap 0.1 600 0.87 80 4 21 .21 1 Saunders, 1987
Faeroe-Scotland 5 400 2 20 7 9 1.9 1.05 Saunders, 1990
Samoa Passage 0.3 820 0.2 240 33 4.6 6 0.76 Rudnick Pri Comm
Vema Gap i 950 0.28 9 35 3.1 2.1 1.4 McCartney et al, 1991

The first is Discovery gap (Saunders 1987), which
connects the Madeira Abyssal Plain which is west of
North Africa in the East Atlantic, with the Iberian
Abyssal Plain which is west of Portugal and Spain.
Water of Antarctic origin (colder than = 2.1 C) flows
northward through this gap with a volume flux esti-
mated as 0.2 Sv. Information for our prediction is
shown in Figure 9. Data were taken from Saunder’s
Figure 3 - an along flow section. Upstream conditions
were complicated by an unmistakable cross stream tilt
that signified a current of unknown origin. From Figure
9b, the bifurcation depth was taken to be 4000 m, the
reported sill depth was 4600 m, so Ap was taken to be

10°. This produces a Rossby radius R=4 km whereas
the gap width is about 80K for the 4000 m contour, so
the rapidly rotating formula is used. It predicts volume
flows of 0.2 Sv. There is an unusual amount of room
for adjustment of this value, and we could easily predict
a value smaller than half as big, or more than three
times bigger.

The second is the Samoa passage (Figure 10). Data
are taken from Geosecs pacific stations 251 and 252
(upstream) and 253 and 257 (downstream). This gives
a bifurcation depth of 3950 m. The bathymetric map,
traced from the Gebco map shows a width of 240 km at
this depth. Since Reid and Lonsdale (1974) report a sill
depth of 4770 m, h, = 820 m and Ap/p =3 x 10°.

Rossby radius computed from these numbers is R=33
km so the rapid rotating limit should be used. This
gives Q=4.6 Sv. Rudnick (pri. comm.) has recently
recovered a moored array in this area and reports 6 Sv.
This is the first instance where the hydraulics prediction
is less than estimate based on current meter measure-
ments.

The third example is the Vema gap (Figure 11). His-
torically, the source of the bottom waters of the tropical
Eastern Atlantic was considered to be a flow through

the Romanch fracture zone that lies almost exactly on
the equator. However, the work of Vangriesheim
(1980) and Eittreim et al (1983) indicated that the flow
through the Vema fracture zone was a major contributor
to the water in the eastern North Atlantic. This gap lies
at about 11°N in the Mid-Atlantic ridge. Recently,
McCartney et al (1991) have measured a flux of 2.1 to
2.3 Sv through the Vema Gap. The data for this
example is shown in Figure 11. From it we take h, =
950 m, d = 10", which, along with f = 2.8 x 10° s™ and
g = 9.8 m/s?, predicts a Rossby radius of 49 km. This is
wider than the passage width L = 9 km, so equation 5.2
is used to predict volume flux. With the above
numbers, this comes out to be 4.4 Sv. This is a little
over twice the geostrophic estimate. Corrections to the
hydraulic estimate could be made by accounting for the
tapering of the walls of the gap, for the influence of
continuous stratification and possibly for friction (Pratt
1986).

The fourth is the Scotland-Faeroe passage (Figure
12), estimated by Saunders (1990) to be 1.9 Sv. This
example did not work well using two stations from
Geosecs, probably because both stations were in regions
where there were surface currents associated with fresh
water near the topography. The bifurcation diagram is
made using 2880 stations from the NODC data atlas.
Stations with the deepest bifurcation have a bifurcation
depth of 500. Nearby station pairs that are closer to the
shelf have significantly shallower bifurcation depth. The
sill depth is reported to be 900 m which gives
Ap/p =5x10"*. This gives R=7 km. Using L=20, the
rapid rotation limit is used. The prediction is 2 Sv.,
whereas Saunders reports 1.9 Sv.  Borenas and
Lundberg (1988) used a parabolic bottom and selected
the 3°C isotherm and also got good agreement with
Saunders’ measurement.




152 WHITEHEAD

38°N T T T

4500m |
17°W 16° 15°

Figure 9a. Map showing the 4000, 4500 and 4700 m
contours in the vicinity of Discovery gap
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Figure 9b. Density (corrected to surface pressure) versus
depth upstream and downstream of Discovery gap.

All the results are shown in Table 3. It is clear that
the predictions approach the measured values in most
cases. But still the method must be used with caution if
additional currents are present. Otherwise the predic-
tion has unrealistically great values of h, and flux is All
the results are shown in Table 3. It is clear that the
predictions approach the measured values in most cases.
But still the method must be used with caution if
additional currents are present. Otherwise the predic-

tion has unrealistically great values of A, and flux is
greatly overpredicted. So far, only one prediction out
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to
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15° L

Figure 10a. Map showing the 4000, 4500 and 5000 m
bottom contours near the Samoan Passage. Locations of the
four GEOSECS stations are also shown.
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Figure 10b. Density (corrected to 4000 m ) versus depth for
the four GEOSECS stations upstream and downstream of the
Samoan passage.

of eight, the prediction for the Samoa passage, is less
than the measurements. (Actually assorted other esti-
mates have been made, but they have not adhered to the
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Figure 11a. Map showing the 3500, 4000 and 4500 m
contours near Vema gap.
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Figure 11b. Density versus depth for selected stations
upstream and downstream of Vema gap.

present methodology). Although it would only take a
small alteration of the bifurcation diagram to alter the
prediction, it is not probable that values over 6 Sv.
could be reached, so the Samoan passage may actually
be a case where the upper boundedness of the theory
doesn’t apply. The Samoa passage is very rough and
irregular, and possibly the topography produces an
effect as though more than one passage wall were
present.

6. Oceanic estimates of exchange flows

Lock exchange has now been used in numerous ocean
applications; some examples are the Straits of Gibraltar,

NV
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Figure 12a. Map showing the 500, 800 and 1000 m
contours near the Iceland-Faeroe passage.
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Figure 12b. Density versus depth for 2880 stations
upstream and downstream of the Iceland-Faeroe passage.

Spencer Gulf, Chesapeake Bay, Delaware Bay, and
Funka Bay. Table 4 contains a list of such straits for
which at least partial information of flux through the
opening is given. Here we use these formulas for the
connecting passage between the Baltic and the North
Sea.

Table 4. Strait Flows

Fram Strait Skagerrak Strait of Gibraltar
Gulf of Lyons Adriatic Shelf Belle Isle

Gaspe' Current Chesapeake Bay  Gulf of Mexico
Spencer Gulf Funka Bay Tsugaru Strait
Vancouver Island  Bass Strait Bosporus

Tiran Strait Red Sea Suez Canal
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In the Baltic, Petren and Walin (1975) measured the
flow of salty bottom water into the Baltic through the
Bornholm Strait during the period of June 1973 to
December 1974. They used geostrophic calculations
and gel current meters to estimate that the bottom salty
water volume flux was somewhere between 11,500 to
17,200 m’/s. This depended upon the limiting salinity
used, which ranged from 8.25 to 9.575 °/,, and upon the
method of averaging. The volume flux estimate was
used along with salt conservation considerations of the
outflow of surface water with salinity of 8%, to esti-
mate how much river inflow would be needed so that
the flux of salt is zero. They calculated a fresh water
discharge of 9,400 to 12,000 which is reasonably close
to the measured mean fresh water supply to the Baltic,
which averaged 14,000 m°/s for the period 1951 - 1970.

Their reason for measuring the flux of deep water
through the Bornholm Strait was that such flows are
steadier than the flows in the entrance regions. For
instance, the Baltic has a narrow, shallow (~ 18m)
entrance region, and currents in the region are variable
due to variations in surface level. Such variations make
measurements difficult unless taken for very long peri-
ods of time. We can, however, use a lock-exchange
estimate using the considerations in Bye and Whitehead
(1975) to predict the salinity difference between the
deep and shallow water in the Baltic. This will assume
that salinity difference is controlled by exchange flow in
the Baltic entrance, in response to the mean fresh water
supply of 14,000 m/s. In this the balances of volume
flux Q and salt flux are

0=0+0 ©6.1)
$Q =50 (6.2)

where subscripts i, 0, and r stand for into the Baltic, out
of the Baltic and from river inflow, respectively. In
this, we assume that @, and §; are fixed by climatologi-
cal factors and specified, whereas the other quantities
can vary. Equations (6.1) and (6.2) can be combined to
give

Q AS=S50, (6.3)

where AS=5 -5 . A dynamic condition relating the

volume flux to the density difference between inflowing
and outflowing water in a shallow sill region is:

_gAp H® gPASH’

= = 6.4
©  6pf 6pf ©9

Q
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where B=0.71x10" kg/1/ %, is the coefficient of

density change due to change in salinity, H is depth of
the sill, p = 1.01 is average density of the water and f

=1.2 x 10* s} is the Coriolis parameter for 55°N. This
formula applies to steady flow in a flat channel of both
length and width greater than Rossby radius (to be cal-

culated post facto), and it is assumed that both 0 =0
and § =S . Equations (6.3) and (6.4) are combined to

eliminate @, and a salinity difference is predicted to be

6pf5Q Y
As=| 2P %% 6.5
( gBH® ) (©3)

Using g =98 m/s, H= 18 m, S; = 18%, O, = 14,000
m’/s, and the above values for f, B and p, the formula
predicts salinity difference between outflow and inflow
is 8.3%,.

We next calculate volume flux from (6.4), and it is
25,700 m’/s, which is close to the value of the outflows
estimated by Petren and Walin. Since @, is roughly the
same magnitude as (,, they both are roughly twice the
value of the inflow. Therefore, the assumption that
Q =0 is relatively poor. If the salinity of the inflow-

ing water with 8%, was used, we would predict a salin-
ity difference of about 2/3 as large as the present
prediction. In that case, the volume flux, which is
linearly proportional to salinity difference, would also
be 2/3 of the present value.

Finally the Rossby radius of deformation can be cal-
culated from the formula

1 gBASH);
R =—| 2 == 6.6
’ 2( pf’ ©9

and it is 1.75 km using the above values.

The same technique has been used for a number of
other basins. These are listed in Table 5. Again it is
clear that predictions approach the measured values in
many cases. The test is deliberately crude, but it is
applied to a number of examples over a wide range of
parameters, so that the suitability of the calculations can
be assessed for future, more thorough studies.

Closing Remarks

By employing the very simplest theory and by delib-
erately using easily obtainable archival data, we indicate
that to a crude first approximation, the simple controi-
flow formulas produce sensible estimates of inter-basin
flux. Our comparisons depend on having ocean esti-
mates of flux through the opening. Fortunately, since
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Table 5. Flux and density difference estimates for some oceanic strait flows.

Strait FW Flux H f L R Ap Q Ap /o bs Cit.
p p
(m’/s) m)  s'x10*  (km) (km) x10* Sv. x10*
Gibraltar 300 1.0 12 20 2 .8 3 Whitehead et al, 1974
Spencer Gulf -200 40 8 50 32 6.8 0.02 9 Bye & Whitehead, 1975
Chesapeake Bay 2237 10 9 19 4 50 0.01 65 Whitehead, 1989
Funka Bay * 80 1.0 21 39 * .03 3 Miyake et al.,1988
Fram 10° 200 1.4 >200 5.0 7 0.3 7 Hunkins & Whitehead, 1992
Baltic 14,000 18 1.2 100 1.75 6 0.03 9 Present
* This information was not used for this study.
That crude first approximation, the simple control-flow References

formulas produce sensible estimates of inter-basin flux.
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