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Abstract. The along-slope currents flowing over topography of small, typically < 10 km, scale on the continental
slopes produce internal lee waves with a predominant transfer of momentum towards shallower water, that is up
the slope towards and across the shelf break and onto the continental shelf, at least when, in summer, stratification
permits their propagation. Analytical results show that even when the lee waves at generation have a component of
their group velocity directed towards deeper water, reflection at the sloping sea bed may lead to a turning towards
shallower water. A numerical model is used to examine internal wave propagation and to quantify the flux of their

momentum across the shelf break. The flux is usually dominated by the larger currents, greater stratification and
rougher topography near the top of the slope, and, in conditions in which f/N << 1, is paramcierised by a stress
(momentum flux per unit vertical area along the shelf break) per unit length down-slope, T, given by

Ty = kpgVNR 2 cos* (B +PBg), where py is the mean water density, V is the mean along-slope flow over the slope,

N is the buoyancy frequency in the vicinity of the shelf break, fis the Coriolis parameter, and % and B are the
mean square amplitude of the topography of wave number, /, such that VI/N < 1, and its mean orientation relative
to the upslope direction, respectively. The constant Py is 7 + 2°and estimates are for f < about 60°. A working
value of k of about (9 + 4) x 10° m™ is suggested, with values near 1.3 x 10"> m? when the topography is
dominated by wavelengths less than 4tV/N, or 5 x 10°® m when they exceed 20V/N. This flux represents a
transfer of momentum to the shelf currents in a direction contrary to the current over the slope leading to the
generation of the internal waves. Time-scales of about 5 days are associated with this transfer on 5° slopes with

10-m-high topography when N = 102 5",

1. Introduction

The continental slopes are major topographic features
of the surface of the solid Earth, being 4-5 km in height
and extending for thousands of kilometres. They have
great importance for the oceans. They are sites of
upwelling, major fisheries, and generally a maximum
(near 1 km depth) in biodiversity. They act as the natural
boundaries for the circulation of waters deeper than about
200 m (or more generally, the depth of the shelf-break)
and they form the outer boundary of shelf-sea circulations.
They are zones of exchange between the shelf seas and the
deep ocean of water, particles and solutes, some of
anthropogenic  origin derived from land. Visual
observations show in conditions of summer stratification
the shelf break and slopes are often regions of intense
internal wave activity (Apel et al,, 1975; Baines, 1981;
Fedorov and Ginzberg, 1986) and therefore sites at which,
if anywhere in the surface ocean, internal wave effects on
momentum flux may be significant.

In some areas the tidal streams are directed with large
components normal to the shelf break (or across the slope)
and generate internal waves and soliton packets as
explained, for example, by Maxworthy (1979; see also
Hibiya, 1986, 1988; Huthnance, 1989; Lamb, 1994,
Gerkema, 1994), but this is not generally the case, and the
mean currents near the slope at depths greater than that of
the shelf break are constrained by stratification and the
Earth's rotation to flow approximately along isobaths.
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Many of the theoretical investigations cited ignore the
variation of the continental slope along its length and
assume two-dimensionality, whereas inspection of high
resolution bathymetric charts of the continental slopes
show them to be highly convoluted along their length,
being cut by channels, rills, gullies and canyons of a
variety of scales; below the shelf break the major variation
in small-scale topography is generally in the along-slope
direction and so the features lie normal to the mean
current direction.

Interaction between the mean along-slope flow and
topography generates internal waves and hence a transfer
of momentum into the internal wave field (Bretherton,
1969). In the deep ocean the momentum associated with
these waves is generally small; they are constrained to He
in a wavenumber band between f/U and N/U, where f is
the Coriolis parameter, N is the buoyancy frequency, and
U is the current speed, and this band is narrow since N/f'is
not large. Bell (1975) shows that it is indeed only small,
about 300 m horizontal scale, topography, which is
effective in generating internal waves in the deep ocean.
However, as pointed out by Holloway (1992), Nf is
relatively large in the upper ocean and, where topographic
variability is large, as near the shelf break, internal wave
drag may be important.

This paper describes the transfer of momentum onto a
continental shelf by internal waves generated by flow over
the slope. It builds on an observation (Thorpe, 1992; see
section 2.1 below) that the energy associated with internal
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lee waves produced by flow along sloping topography has
a bias toward shallow water, being carried by a
preferentially positive component of group velocity up the
slope and into shallower water, rather than towards deeper
water, provided that the characteristics of the water mass
allow for internal wave propagation to continue in this
direction. This earlier work was based on analytical
studies of waves in an infinitely deep ocean and in a fluid
with a uniform and steady along-slope flow, V, and
uniform buoyancy frequency, N, so that waves of any
vertical scale could be generated, propagation was in
straight rays, with the effects of surface reflection and
subsequent bottom reflections largely ignored. We
emphasise that, although concerned primarily with wave
generation by the along-slope current, the full problem
now to be addressed includes the possible subsequent
reflection of waves from the sea bed, and in principle all
the complexity of that much studied problem (see
references above). Further progress by analytical methods
appears unlikely to be very productive and therefore we
have resorted instead to numerical studies (sections 3 and
4) guided by further analysis (section 2), with the overall
objective of deriving a parametric description of internal
wave drag which might prove useful in numerical models
of ocean or shelf-sea circulation.

Such modelling of internal wave momentum transport
and breaking in the atmosphere is relatively commonplace
(see for example, McFarlane, 1987); internal wave drag is
now recognised as having a large effect on the circulation
(see for example Lilly, 1972; Palmer et al., 1986; Miller et
al., 1989; Hoinka and Clark, 1991; Clark and Miller,
1991). In the oceans, the drag contributes to the lateral
boundary condition which should be applied to models of
ocean circulation abutting the continental slopes; we are
concerned with both the vertical flux of horizontal
momentum and in the horizontal flux of horizontal
momentum. In this examination of the effects of internal
waves we shall only begin to probe the problem of
describing the boundary conditions; a full solution
demands study both near the boundary itself (where the
waves are generated) and in the presently less-well-known
regions where waves are dissipated. Our modest objective
is to characterise the possible magnitude of the flux rather
than to attempt to derive a formulation valid for all slopes,
stratification, and flow structures. After all, if the flux is
negligible there is little sense in estimating its destination.
The parameterisation (see section 4) may require more
observations at sea.

The need to correctly describe the lateral boundary
conditions on the velocity field in ocean circulation
models is discussed by Ierley (1990); he stresses that the
choice of conditions is particularly important because of
the effect which they may have on the conservation (or
otherwise) of potential vorticity.

2. Analytical Results

2.1. The Generation of Internal Lee Waves on a Slope

Internal waves can be generated by the flow over
topography on a slope. For simplicity we consider a
uniform and steady flow, V, of a fluid with constant
buoyancy frequency, N, parallel to the mean isobaths of a
uniform slope, which is tilted at angle o to the horizontal
and covered by corrugations of wavelength A = 2m/l
running down the slope at an angle B to the line of
maximum slope (Fig. 1), adopting the approach that any
topography may be decomposed into Fourier components
and a linear wave field found by summation. The
inclination of an internal wave constant phase surface to
the horizontal is given by

0 =sin! (6/N), (N

and phase of the waves is stationary if the intrinsic
frequency of the waves, G, satisfies 6/l = Vcg, so that

6 = sin (cp)s 09

where x = VI/N is a Froude number of the flow, such that
[ps +(1—p>cgz]% <x<cp 3)
where p = 1 - (f/N)? (Thorpe, 1992; here ¢ = cos f etc.).
This may be written 2nV/IN < A, < 2nV/(N [psy +
a -p cp*]'/’), where A, is the wavelength of the
topography measured along the slope in the y-direction.
This implies that even though N may be small in deep
water, the values of A, for which internal waves will be
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Figure 1. Sketch of the model geometry. The deep water region is
generally taken to be 1000 m deep and the shelf 200 m deep. Both
are bounded by vertical walls (or by ‘spongy layers® to absorb
wave energy). Topography is superimposed on the slope (shown
‘stippled"). The model is periodic in the along-slope direction. The
mean flow is parallel to the line of the shelf break and uniform
across the channel formed between the side walls. In section 2 the
effect is considered of ‘ripples’ with crests aligned at angle B as
shown.
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generated in the ocean are generally limited to scales
between about 100 m and 10 km. We find that that waves
generated near the upper part of the slope are most
effective in the transport of momentum. The Burger
number, B = NH/fL, where H is the water depth, is large
there and generally it is justified to take (f/N)* << Sof << 1
(see also caption to Fig. 2). Then (3) becomes

S, <X <Cp - 4

(This can be written s,cy < ViI/N < 1, where V, is the
component of V normal to the crest lines of the
topography, a more general form of eq. (4) when the
direction of V is in any direction parallel to the plane of
the slope). Although the wave phase is stationary in the
flow, wave energy propagates with a positive component
of group velocity towards shallow water when

—lcos™ (s, /x)‘ <B<Beir s )

where B, is the positive root of CpCq =(1—s§/x2)}é .

There is a preferential trend towards shallow water for
moderate values of B; the area of the ¥ - B plane (Fig. 2) is
dominated by propagation towards shallow water. The
bias increases as x decreases from cy1 (when B ;= 0) to s
« (when B, = 7/2 and all waves generated with stationary
phase travel towards shallow water whatever the value of
B). It is found by simple geometry that the angle between
the projection of the relative wave group velocity vector
onto the horizontal plane and a horizontal direction
pointing upslope normal to the isobaths is ¢ given by

cosé = [ (22 2 -2 ]

/[te (c§ +13 )]

(e.g., see Eriksen, 1982; Gilbert, 1990).

(6)

2.2. Reflection of Internal Waves at the Sea Surface and
Slope; N and ¢ Uniform

The ocean, unlike the atmosphere, has an upper
boundary, the sea surface. Reflection of waves from a
smooth sea surface or from a smooth slope will preserve
the wave frequency and along-slope wavenumber and
waves will therefore remain stationary in the along-slope
flow,

After downward reflection at the sea surface, waves
will return to the sea bed. Provided that 6 > o, the angle
¢ will decrease towards zero at each successive reflection
of the waves from the slope, even if the internal waves are
generated with a positive component of their group
velocity directed towards deeper water (see Eriksen, 1982,
figure 2b). The internal lee waves are therefore trapped

within the slope-shelf region when 8 > «, their group
velocity relative to the mean flow progressively turning
towards the up-slope direction on each reflection from the
bottom. The only waves to escape will be either those
generated with a component of group velocity towards
deeper water, the areas which are not stippled in Figure 2,
or those which, on generation, propagate towards shallow
water but have 6 > o (those in the area in Fig. 2 with >
0 and s, < x < s,/cp). The latter reflect towards deeper
water on their first reflection from the slope. Of the former
there are two classes: those which propagate at an angle
below the horizontal, which may not intersect the slope,
and those which, after their first reflection from the sea

90—
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Figure 2. The P - y plane for sin™! & = 0.1 showing the areas,
S5e <Y < c'lﬁ, in which stationary phase waves can be formed
over sinusoidal topography on a slope. The direction of group
propagation of these waves is towards shallow water in the
stippled area. This area is bounded by the curve B = Berit =
cos—l[(l—sgc /xz))é /cy] when B> 0, and by the curve =
safcp when B < 0. The value of © is /2 (vertically propagating
waves) on ), = c",;. 0= tan’l(so(/tp) on the full curve separating
the areas of different propagation directions for § > 0. 6 = & on
the dashed curve where B > 0 and on the curve separating
directions for B < 0. Between the latter and ¥ = s, wave
propagation is below the horizontal and towards deeper water.
Ony=s5,9= sin (s cp) and so is less than o.. All waves in the
sector s,/ cp< X < c'lg will (after sufficient reflections if § > 0)
propagate towards shallower water depths (see 2.2). The effect
of non-negligible fIN is to increase the lower values of ¥ to (s,
+fZN?2, The lower bound of % increases with increasing | B
[, and the curve separating the regions of wave propagation
towards deeper or shallower water in > 0 has increasing values
of i at large B. The overall effect is to reduce the area of the y, -
B plane in which stationary waves are possible. Crosses and
circles correspond to the parameter values at which numerical
experiments are made (see Figs. 4 and 5).
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surface or on a subsequent group velocity towards deeper
water, reach the abyssal plain. (Some waves generated
sufficiently near the foot of the slope will always “escape”
in this way). Over the area in the % - B plane in which si/cg
< x < cp' (Fig. 2) all stationary phase waves, including
those which are propagating towards deeper water when
generated (provided they reflect sufficiently often from
the slope and do not reach the abyssal plain), will
eventually propagate towards shallower water depths.

If the the sea surface or slope is rough where the
reflection occurs, some of the internal wave energy may
be scattered (see Baines, 1971 a,b; Thorpe, 1992) or, for
surface reflection, the internal waves may even interact
resonantly with the surface waves. For simplicity, these
latter effects are disregarded here but should be
considered when it comes to comparison of theoretical
estimates with observations.

2.3 Effects of Non-Uniform N and o

The conclusions of section 2.2 ignore the variations of
N and o which occur in the ocean. Waves propagating
upwards towards the sea surface from the lower parts of
the slope will encounter regions where the density
gradient and therefore N increases. Since the intrinsic
frequency, ©, is conserved, the angle of the group velocity
vector to the horizontal, 6 = sin(c/N), decreases as N
increases, and the wave paths will be refracted towards the
horizontal. Since generally o increases towards the shelf
break, the waves propagating towards shallower water
may therefore return to meet the slope (i.e., propagating at
an angle, 8, which is smaller than the local slope), and
generally be reflected back toward deeper water. Waves
propagating towards deeper water at generation may never
reach the surface and will therefore not be reflected back
to the slope, will continue to radiate into deeper water,
and will not be trapped in the shelf region.

In contrast, If N becomes very small at some depth
level below that of the shelf break, as for example, it will
do when the depth of the winter convectively mixed layer
exceeds that of the continental shelf, internal waves will
be unable to propagate beyond the level at which 6 = N
and will be reflected down to be trapped in the wedge
between the slope and the level at which ¢ = N, possibly
with enhanced amplitudes and breaking which may serve
to contribute to the further deepening of the convective
layer if dissipation is not sufficient to limit them. No
momentum will then be carried by the waves onto the
shelf.

3. Numerical Results

3.1 The Model

We used a semi-spectral hydrostatic primitive equation
model developed by Haidvogel and others (see Haidvogel
et al., 1991; Chapman and Haidvogel, 1993) to examine
stratified uniform flow along a channel with a section
consisting of a constant 200-m-depth shelf, slope with
angle o generally taken such that s, = 0.1, giving an 8-km
length slope, and constant 1 km depth abyssal plain (Fig.
1). The uniform flow runs parallel to the isobaths of the
slope and is laterally constrained by parallel vertical
boundaries on the shelf and abyssal plain. Periodic
conditions were chosen in the along-slope direction. The
vertical flow structure is represented through modified
Chebyshev polynomials, seven being found adequate
when the buoyancy frequency, N, of the fluid is constant
in depth, but twenty-one being found necessary to
satisfactorily resolve the flow in some runs (Thorpe,
1995) in which N varies with depth. Experiments were
made with uniform and oscillatory flows over topography
of various kinds on the slope.

Like Chapman and Haidvogel we adopted a free slip
boundary condition at the lower and upper (rigid lid)
boundary and included only ‘horizontal viscosity', usually
set to zero. Where necessary, higher viscosity spongy
layers were introduced in the vicinity of the lateral
boundaries to prevent their affecting the flow over the
slope.

3.2 Steady Flow Over ‘Bump’ Topography

First test runs of the model proved its integrity through
its ability to reproduce earlier results of stratified flow
around isolated Gaussian topography on a horizontal
plane. Figure 3 is an example of the effect of the slope on
the perturbation field caused by an along-slope flow with
N =107 s" and speed V= 0.1 m s over an isolated 10 m
high Gaussian ‘bump’ with scale radius 2.1 km at the
position marked with a circle. Shown is the along-slope
component of the current field at the sea surface 30 hrs
after the onset of the flow, when (a) the slope angle is zero
and the water depth is 600 m and (b) when the topography
is located at 600m water depth, half way up a uniform
slope with s, = 0.1 between the 200 m ‘shelf’ and the
1000-m deep plain. The wave pattern is distorted in the
upslope direction. The momentum flux across the 20-km-
long shelf break is given by Fx,/p,VN = 1.55x10* m’, and
this is about six times greater than the momentum flux
across the foot of the slope at the same time.
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3.2 Steady Flow Over ‘Bump’ Topography

First test runs of the model proved its integrity through
its ability to reproduce earlier results of stratified flow
around isolated Gaussian topography on a horizontal
plane. Figure 3 is an example of the effect of the slope on
the perturbation field caused by an along-slope flow with
N=103%s"and speed V= 0.1 m s’ over an isolated 10-m-
high Gaussian ‘bump’ with scale radius 2.1 km at the
position marked with a circle. Shown is the along-slope
component of the current field at the sea surface 30 hrs
after the onset of the flow, when (a) the slope angle is zero
and the water depth is 600 m and (b) when the topography
is located at 600 m water depth, halfway up a uniform
slope with s, = 0.1 between the 200 m ‘shelf’ and the
1000-m-deep plain. The wave pattern is distorted in the
upslope direction. The momentum flux across the 20-km-
long shelf break is given by Fx/p,VN = 1.55 x 10* no’,
and this is about six times greater than the momentum flux
across the foot of the slope at the same time.

3.3 Steady Flow Over Sinusoidal Topography

Further tests of the model were made to establish it
produced waves over sinusoidal ripples on the slope at
times of about 3-12 hr which were consistent with
predictions of the analytical model; their inclinations were
in accord with the theory.

Several runs were made to explore the properties of the
model with ‘typical’ values and rippled topography of
amplitude a. Seven polynomials were usually taken to
define the vertical structure and an along-slope grid of 14
points and an upslope direction grid of 101 point was
generally used. Values of the momentum flux through a
vertical plane at the shelf break, Fx,, generally increased
with time after the flow was switched on, before settling to
a value about which fluctuations of 5-10% occurred after
a ‘spin-up’ time estimated to be approximately equal to
that required for waves to arrive from the foot of the
slope. Eventual numerical instability proved to be
unavoidable with zero viscosity, but was usually delayed
until the model had run for some 90 hrs. It was commonly
preceded by a fall and then a huge and rapid rise in flux.

The ‘steady’ momentum flux Fx, scales with a’ as
expected by linear theory, at least up to values of al =
0.024.

Figure 4 shows the variation of the scaled flux at the
shelf break, F, = Fx,/(a’p,VNA), where p, is the mean
(reference) density and A is the area of the vertical section
at the shelf break, for various values of B and with V= 0.1
ms',a=05m A =3 kmand N = 1x10% s (the
corresponding x and P values are shown by crosses in
Figure 2. Values of Fx, are factors of (3.4 + 1.1) greater
than those found for |B| < 40 ° when vy = 1 m* 57,
demonstrating the large damping produced by viscosity
when it is included in the numerical model). Slightly
higher fluxes are found for B < O than at the corresponding
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Figure 3. The effect of the slope on the perturbation field caused
by an along-slope flow over an isolated 10-m-high Gaussian
‘bump’ with scale radius 2.1 km at the position marked with a
circle, Here N = 1073 57! and the flow V= 0.1 ms™! is to the right.
The scales are in km. (a) shows the along-slope component of the
current field at the sea surface 30 hr after the onset of the flow,
with zero slope angle and 600 m uniform water depth. (b) shows
the same current component at the same time when the topography
is located at 600 m water depth, but now half way up a uniform
slope marked by dashed lines with sg = 0.1 and which lies
between the 200 m ‘shelf® (at the top) and the 1000-m-deep plain
(at the bottom of the figure). Contours are shown at 0.05 cm 57!
intervals. The largest current component fluctuation from the mean
10 cm s™! current is 0.45 cm s”!. The effect of the slope is to distort
the wave pattern in the upslope direction towards and across the
shelf break.
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001 - : Figure 5 shows the variation of the scaled flux, F, with
~d %, when B =0 and with @ = 0.5 m and with V taking values
from 0.07 to 0.2 m s, N values from 0.5 x 103 s to 2 x
: E 10 57!, and A, values from 0.5 to 6 km. The mean flux is
, P estimated between 48 and 84 hr after the onset of the flow.
i o At values of % = 0.105 (close to X = s, when waves
nor b O \ propagate with 6 close to o) and at 0.90 and 0.97 (near )
! \ = cp' when 0 is close to w2) the values of F, were
) ! unsteady and still generally increasing when numerical
! o instability occurred. Very small values of flux are found
\ when % > 1. The mean values of the scaled flux are about
e v 0.035, with a rise in values occurring near = 0.44. At
/ v time ¢ such that N = 64.8 (18 hr if N = 103 s1) F, has
o1 | / Y ,5/ reached about half the ‘steady’ value when 0.1 <y < 0.3,
but is already within the uncertainty of the ‘steady’ values
when 0.5 < x < 0.8. Over the limited range of values
/ ‘ N tested, the scaling gives consistent results, at least within

P ; PR Y the uncertainty of the variations of the estimates, and are
/ : X N independent of A, except in so far as it affects Y. As
expected, the momentum flux into deep water at the foot
of the slope was very small, but positive, for all values of
¥ When s, = 0.2, similar values of F; are found near y =

Figure 4. Plot of values of the scaled horizontal flux of horizontal 0.3, but values 50% lower than those shown in Figure 5
momentum, F, = Fx/(a®pVNA) (circles) and F, = Fx,/(a’p,VNA) when x = 0.48 and 0.62, suggesting that here at least the
(crosses) vs B, derived from the numerical model with values of v flux is proportional to the area of slope generating the
=0.1ms", o= 574% N = 103 5. Larger values of the flux, F/;,, ~ waves. F; mustbe zeroato=0,3=0.

are found at negative values of [ than at the corresponding The magnitude of the stress at the shelf break can be
positive values. F, is significantly greater than zero only when Bis  compared to that on the sea bed

greater than about 28° and dominates the flux from the slope when

B > 40°, The dashed curve is F; = 0.028 cos*(B + 7.0°). Tn=Cppo V2 N

where C,, is a drag coefficient, approximately equal to
positive values of B, as expected from the analytical 3x10* (Heathershaw, 1979). The maximum momentum

results. The dashed curve in Figure 4 is the best fit of F| = flux across the shelf break per unit area when B = 0 is 5 x
F,, cost(B + B) to the data having g = 3.9+ 0.15and B, = 107 pea’VN, which is equal to 7 (with V=0.1 m ", N =1
7 + 2°. This figure also shows the scaled
horizontal momentum flux through a 005 - } X {
vertical plane at the foot of the slope, F,.

The value of B, at which the infinite
depth analytical model predicts that the
direction of the wave flux changes
direction from being towards shallower 0os L g
water depths (f < B to being towards °
deeper water, is 27.9°. F,is negligible
for B < By (when all wave propagation ooz}
is towards shallow water) but increases o
for larger B, becoming equal to F, at § =
42° and exceeding F, at larger B. F,,
however, does not approach zero as P
increases towards [, supporting our . . . . L . .
earlier conclusion that even when the too o o6 o e +

group velocity of the generated waves =
has a positive component towards Figure 5. Plot of values of the scaled horizontal flux of horizontal momentum across the shelf break,

deeper water, reflections from the sea F, = Fx,/(a*p,VNA), versus ¥, at s, = 0.1 and B = 0. The points represent variation of (crosses) A,
bed will lead to momentum transfer (citcles) U, and (squares) N, from ‘typical’ values, A =3 km, U=0.1 m s1, and N=1x102 s . The
towards shallow water vertical bars represent the range of variability of the numerical estimates.
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x 10 s')'when @ = 2.5 m. This is a small value. The net
stress in the 200-m-deep water at the shelf break is equal
to that on the 8-km sloping boundary when a = 15.5 m,
which is not untypical of the amplitude of the real
topography on continental slopes. Smaller corresponding
values of a would be found if N were larger.

Flow over model ‘canyons’ is found to produce wave
patterns propagating onto the 'shelf, with intensification
of currents near the canyon head.

3.4 Other Cases

The effect of flow oscillation and stratification is found
to modify the area of the slope and the time over which
wave generation is possible, and to create an oscillatory
flux. Even a relatively small mean flow can result in a
rectified momentum flux of mean magnitude similar to
those found in steady flows alone. An area of real
topography with mean bottom slope close to 5° and with
superimposed topography with relative rms amplitude, #,
of 9.2 m has also been modelled. Stress values within the
range of those in Figure 5 were found.

4. Discussion

4.1 A Working Value for the Flux Across the Shelf
Break

As a working scheme for parameterising the drag
coupling between the deep water circulation and the shelf
water circulation at the shelf break, the model results
described  above and  comparison  with  the
parameterisation of wave drag in the atmosphere (Thorpe,
1995) suggest a stress T. at the shelf break produced by
waves generated per unit area of the slope given by

. = kpoVNR?cos*(B+ By), 8)

where p, is the mean water density, V is the mean along-
slope flow over the slope, N is the buoyancy frequency in
the vicinity of the shelf break, and 4 and P are the rms
amplitude of the topography of scale such that 4 < 1, and
its mean orientation respectively. The [ variation is
derived from Figure 4 with B, = 7 + 2°nd is probably
valid only when B < 60°. The value k determined from
Figure 5 is about 9 x 10° m?, with values near 1.3 x 10°
m? when the topography is dominated by wavelengths
less than 4nV/N (y > 0.5), or 5xX10°° m? when they exceed
20VIN (3 < 0.3).

4.2 Is the Momentum Flux Significant?

Equation (8) provides an outer boundary condition for
the shelf circulation. Where the momentum is surrendered
to the shelf-sea circulation will depend upon the processes
which lead to the transfer of stress from the waves, such as
wave breaking or wave-flow interaction, and corres-

ponding distances over which these are effective. Internal
waves near the shelf break frequently appear as soliton
packets which, in a shallow thermocline or water depth,
evolve from localised, often single crest or trough, tidal
disturbances (Gerkema, 1994). In reality, the waves
generated in our models may evolve in a similar fashion.
The course resolution of the numerical model fails to
show this evolution. Sandstrom and Elliott (1984)
observed that internal tidal waves and associated wave
solitons are dissipated within about 10 km of the shelf
break and over periods of about 5 x 10* s, with shear flow
instability probably playing a part. In their analysis of
other observations of internal waves propagating on the
shelf, Sanford and Grant (1987) conclude that dissipation
in the benthic boundary layer is unable to account for the
dissipation observed; other mechanisms must be
important.

We may estimate an eddy diffusion coefficient for
momentum at the shelf break, x, from the equation t/p, =
x dU/dx. If we write dU/dx = U/Ro, where Ro is the
internal Rossby radius of deformation of the shelf waters
(equal to NH/f) and which we might suppose provides a
scale for wave-flow momentum transfer (arguably the
scale might increase with H and f !, and decrease when
stratification decays in winter), then with T = 7., K = k
N*H*HIf, so that the coefficient scales with A%, the mean
square roughness of the topography on the slope. The
value of x falls to zero when N tends to zero, a condition
(as in winter) in which no internal waves can propagate
onto the shelf. With N = 10° s, f=10* s, H=200 m
and 2= 10 m, k= (14 + 6) x 10 m? s, a large value at
the scale, 20 km, of the corresponding Ro (less than the 10
km found by Sandstrom and Elliott, 1984).

We may alternatively estimate a time-scale associated
with the rate of transport across the shelf break, the ratio
of the momentum in the slope current divided by the flux.
The momentum per unit along-slope length of the cutrent
is its cross-sectional area multiplied by Vp, and, using the
5, = 0.1 slope from 200 m depth to 1000 m depth, this is
9.6 x 10° Vp, (SI units). The corresponding momentum
flux is Tox (200 m) x (8 km), and the time scale is 1.2 x
10%kNa?, or (4.9 £ 2.1) days if N = 107 s. This is
sufficiently small for the flux to be a significant factor in
the balance of forces driving and dissipating the flows.

The wave momentum is positive in the direction of
wave propagation through the mean flow, and therefore
has a positive component in a direction contrary to the
mean flow which is supported by the pressure acting on
the sea bed. The momentum transferred back into the
mean flow when waves break, or otherwise interact with
the flow field to transfer their momentum to it, will
therefore accelerate the fluid in a direction contrary to the
mean flow over the slope generating area, retarding the
mean current where it is in the slope flow direction or
possibly driving a counter current on the shelf. Since the
internal waves reaching the shelf have a component of
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momentum directed in the on-shelf direction, the source of
which is a component of the lift forces experienced by the
topography, they may also tend to drive flow onto the
shelf, at least until resisted by the production of adverse
pressure gradients from the shoreward boundary.
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