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Abstract. It was recognized recently that the interaction of the mesoscale eddy field with bottom topography
of the the ocean does not only lead to the dissipation of large scale ocean currents, but may appear as a driving
force that strongly affects the large scale circulation. A high resolution numerical model is employed to investigate
the evolution of the turbulent eddy flow over topography. Our attention is focused on the extreme case, when the
change of layer depth is comparable to its maximum value. Under these conditions the flow is primarily controlled
by the vorticity dynamics, particularly by the stretching of vorticity lines and the tendency to conserve potential
vorticity. Because the cross-isobatic motion of fluid particles causes changes of the relative vorticity comparable to
the local Coriolis parameter, the flow is no longer in the geostrophic regime. The particular goal is to explore the
mechanisms of large-scale rectified flow emerging from an initial random eddy field. Several numerical experiments
with the barotropic shallow water model were performed with low dissipation and with idealized geometry and
topography were performed.

where kmin 1s the minimum wavenumber associated
with the streamfunction or the potential vorticity
(PV) field, while v/< u? > is the mean square velocity
of the random field.

A theoretical study by Carnevale and Frederiksen
(1986) applies Arnold’s criterion to the nonlinear sta-
bility properties of QG flows over topography. It was
shown that minimum enstrophy states have potential
vorticity proportional to the streamfunction and are
nonlinearly stable.

Introduction

Rhines and Young (1982a,b) presented a quasi-
geostrophic (QG) theory of the wind-driven circula-
tion in the presence of bottom topography. This the-
ory combines the ideas of topographic forcing of the
fluid motion and of homogenization of the potential
vorticity field by mesoscale eddy interaction. The to-
pographic forcing results in the tendency that water
parcels move along the contours of constant planctary
potential vorticity, i.e., f/H lines, where f is the local
Coriolis parameter and H is the depth. Earlier nu-
merical experiments by Rhines (1975) investigate the
development of geostrophic turbulence in a periodic
domain in the presence of f-effect and topography.
It was found that the planetary F-effect partially in-

In the spirit of the quasigeostrophic theory, the ef-
fects of bottom topography were always treated as
modification to the FG-effect, e.g., Salmon et al., 1976.
This theory makes a qualitative distinction between
regions where lines f/H = const intersect the bound-
aries of the domain and regions of closed f/H con-

hibits the eddy merger process, restricting the maxi-
mum scale to which the coherent structures may grow
to (Rhines’ rule)

B
< u?>

: (1)
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tours. In the latter case the geostrophic flow is topo-
graphically trapped and the potential vorticity tends
to homogenize (Rhines and Young 1982b). A simi-
lar effect was observed by Thompson (1993) in a nu-
merical experiment with a QG eddy-resolving three-
layer model, which shows the emerging of abyssal cy-
clonic circulation in the region where f/H contours

! Author affiliation and corresponding address effective from May 1, 1995: Institute of Geophysics and Planetary Physics, University
of California at Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90024-1567

2Formerly known as Mesoscale Air-Sea Interaction Group (MASIG)



226 SHCHEPETKIN

are closed.

On the other hand, coarse resolution numerical
models used in ¢limatological studies cannot simu-
late the effect of the self-organization of the random
eddy-field into large scale motion over topography.
Holloway proposed to parametrize this subgrid scale
effect by relaxing the velocily field to some nonrest
final state, u,, i.e. the conventional dissipation in
the right hand side of the momentum equations is
replaced by terms like

u— U,

or AA(n—u,) , (2)
-

where 7 is a relaxation time and u, is some function
of the bottom slope (Holloway 1986, Eby and Hol-
loway 1994, Cummins and Holloway 1994, Holloway
and Eby 1994, Alvarez et al. 1994).

Several questions remain open.

o The QG theory always assumes that the distur-
bances of the bottom topography are small in com-
parison with the characteristic depth. In reality, how-
ever, the depth changes continuously from the deep
ocean to coastal regions, where it is nearly zero. Con-
sequently, the f/H contours are always closed.

¢ As it was pointed out above, there is the expecta-
tion that mesoscale eddy mixing drives the flow to the
statistically equilibrium state predicted by the mini-
mum enstrophy principle, but the particular dynam-
ical mechanism of this process and its characteristic
time scale remain unexplored.

e It is also not clear how close real flows are to
the equilibrium state and to what extent the existent
models can simulate this effect directly or must rely
on parametrizing it.

In the preseni study we attempt to simulate the
eddy-topography interaction in the simplest case, in
the absence of wind forcing and with 1dealized geom-
etry and topography. Most of the previous theoreti-
cal studies are made within the QG framework, while
their results were applied to primitive equation mod-
els. We chose the barotropic shallow-water equations
over finite amplitude bottom topography as the pro-
totype system. This model is free of the restrictions
typical for QG models.

Barotropic Shallow-Water Equations
With Bottom Topography

Consider the barotropic one-layer shallow water
equations with bottom topography, in Cartesian co-

ordinates:
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where upper case U = pHu, V = pHv are the mass
fluxes in x and y directions; lower casc u and v are the
velocities; H is the layer thickness; p is the density
of the fluid; R = pH is vertically integrated mass
content, or the two-dimensional density; p = pg(H —
D) is the pressure field obtained from the hydrostatic
equation, g is the acceleration of gravity, and D 1s
the layer thickness at rest. Pyg, Pyy and Py are the
components of the tensor of the momentum flur, and
they are defined as follows:

du v
rr — —AR(— — +
P Uu R( 9% oy
Ou v
- AR(ZE - Z
Py =Vu+ 1R( 5 " 7
Poy =Py = -2-(Uv +uV)—
v Ou
—AR(—+ —
R(ax + 6y)

(4)

where A is the horizontal friction coefficient. This
definition of the momentum flux tensor is somewhat
nonstandard because the pressure term has been ex-
cluded. This is done for convenience because the pres-
surc term will always be considered separately in the
nurmerical discussion. The expression for the nonlin-
ear term in the bottom line of eqns (4) looks redun-
dant, because obviously Uv = ©V = Ruv. However,
as we will see soon, this equality will no longer be
valid in the discrete case, if a staggered grid is used
to discretize eqns (3).

An Arakawa C—grid is used to discretize eqns (3).
In our elementary stencil V; ; is located half a grid
interval to the south from H; ;, and U 4 is located half
a grid interval to the east of the H; y point.

Vik+1 Vit k+1
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The grid intervals Az and Ay are the distances
between alike points, for instance, U g and Uj41 k.

The numerical model we use to solve eqns (3) is
designed to minimize dissipation. It incorporates a
fully implicit Crank-Nicholson time step with spatial
discretization of the momentum equations in the flux
form, similar to Lilly’s (1965) scheme for the nonlinear
terms. A backward Euler time step is used for the
dissipation terms.

Three features of the computational scheme are
worth emphasizing:

o Following Weiyan (1992), Schar and Smith (1993)
we have applied the phenomenology of the two-dimensional

compressible fluids to the shallow water hydrodynam-
ics. Both the nonlinear and the dissipation terms in
the momentum equations have the form of a diver-
gence of a symmetric tensor. The discrete scheme we
use retains this property. On the C-grid, the diag-
onal elements P, and P,y are defined at H-points,
while the off-diagonal element Py, is defined at vor-
ticity points. After all of the elements of the stress
tensor are computed, the second order centered finite
difference approximation of the momentum equations
is straightforward.

It should be mentioned that the original Lilly
scheme for the nonlinear terms conserves the mean ki-
netic energy exactly. This property is based on a del-
icate balance of the truncation errors of the approxi-
mation of different terms and it restricts the choice of
the possible discrete scheme for the nonlinear terms.
In particular, in the z-momentum equation Py is
approximated as VZ4¥, while in y-momentum it is
represented by U¥4®. Though both of these two ex-
pressions approximate the same term with the second
order of accuracy, they are ezactly equivalent only if
the layer thickness is uniform. In this case the scheme
is equivalent to the discrete Arakawa Jacobian of the
third kind, which conserves the mean vorticity ezactly
(Lilly 1965). The symmetric scheme we develop here
produces more accurate conservation of the poten-
tial vorticity for the case of nonuniform layer thick-
ness, but it does not have the property of formal ezact
conservation of Kinetic energy. Consequences of this
choice will be discussed later.

e As an alternative to midpoint averaging (Lilly
1965), an asymmetric three-point formula is used to
interpolate the velocities and mass fluxes into H and
vorticity points when computing the nonlinear terms
of Pz, Pyy and Py respectively. The additional
points are always taken from the upstream direction,
so the following expressions are used to approximate

U and V at H points (v and v similar):

7Y = U]'_l L=
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and, at vorticity points,
UU = j,k—% =
_Jalje+ BUj k=1 +1Uj k=2, 1if Ve >0
- al; -1+ BUjx +9Ujp41, i VF<O
Vu = V:i+%,k fracd
_ aVigi g+ BV +Viork, if UY >0 (1)
aVix + BVi1k + 1Vigak, if UY <O

To maintain second order of accuracy, coeflicients
a, B, v in (6) and (7) must satisfy

a_ﬂ::;’)’,

and, therefore, there is only one free parameter among
a, B, 7. Let

at+fB+y=1,

1 1
= — = - —2
a=g5+y, B=5-27,

and v is the adjustable parameter.

Analysis of the truncation error shows that, for
example,

NRM)—aﬂw

T Oz

+sign(U)(Az)*x
1 U Py
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4 VNG 22 " Bz 0z
+0((Az)®) (8)

where 6() is the usual centered difference operator.
The first term in curly brackets may be interpreted as
numerical dispersion in the nonlinear terms, while the
second term corresponds to the numerical dissipation
in the nonlinear terms. No choice of the upstream
parameter 7 can eliminate both terms in cirly brack-
ets; however, we see that introduction of the upstream
scheme may drastically reduce the truncation error in
comparison with the original Lilly scheme with y = 0.
In the present study we set v = —1/8, which corre-
sponds to the third order of accuracy approximation
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Figure 1. Perspective view of the bottom topography for all four cases. The quarter of the domain closest to the viewer has
been lowered down to the deepest value for illustrative purpose. The actual topography is symmetric and has continental
slopes along all four sides. The shape of the slope can be easily seen on the cross sections. The minimum depth near the

sides is 20% of the deepest value in the middle.

for the nonlinear part of the stress tensor. Though
not the best from the point of view of (8), this choice
virtually eliminates aliasing errors caused by the sub-
sequent use of spatial averaging and finite differencing
of the averaged values. Consequently, the asymmet-
ric scheme does not generate spurious enstrophy cas-
cades to small scales and, therefore, requires a rela-
tively small explicit dissipation to keep the numerical
stability.

e The method of artificial compressibility is em-
ployed to implement the fully implicit time step
(Turkel 1987, Gresho and Sani 1987, Soh and Goodrich
1988, Weiyan 1992, Alcubierre and Schutz 1994, Marx
1994). This approach is based on introducing an in-
ternal pseudo-time and special relaxation procedure
between physical time steps to obtain the solution.
The iterative procedure starts from a second order
explicit predictor in physical time to obtain the ini-
tial approximation for the new time step fields. Af-
ter that several ADI-type split-implicit substeps in
pseudo-time are applied to obtain the pressure field
at the new time step and correct the solution. The
time step is unconditionally stable with respect to

fast surface gravity waves, can formally be applied
to the incompressible limit ¢ = oo, and allows an
implicit representation of the nonlinear and dissipa-
tion terms. In comparison with the more common
three time level semi-implicit version of Kwizak and
Robert (1971), the new approach leads to four times
smaller truncation errors in the time differencing of
both nonlinear and pressure terms. The computa-
tions presented here are performed on a 301 x 301
grid. The nonlinear terms are recomputed 3 times
per every physical-time step, and 8 = log,300 ADI
iterations are required to correct the pressure field
every time after the nonlinear part is recomputed.

The Topographic Engine Experiment

Because our purpose is to investigate the possi-
bility of conversion of energy from random flow into
large scale rectified motion, i.e., in thermodynamical
terms, from heat into mechanical energy, we refer to
this part of the study as the topographic engine ex-
periment. In the present section we discuss several
experiments with free decaying shallow-water turbu-
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Figure 2. The initial state. The potential vorticity field
is shown in contours, while arrows represent velocities.
Only every sixth vector is plotted. Note that the initial
flow is composed of dipoles and has no specific symmetry.
Also, there is no net circulation around the box.

lence in the presence of bottom topography. All of the
cases presented here have the same domain geometry
and bottom topography shown in Figure 1. The bot-
tom is flat in the middle of the basin and rises near
the sides, which simulate the continental slopes. No-
slip boundary conditions are imposed on the sides of
the rectangular domain.

To specify the initial state, we prescribe the poten-
tial vorticity field (f-plane case, see below) or relative
vorticity field (3-plane cases), solve the elliptic prob-
lem to obtain the streamfunction, and, finally, the
mass fluxes of the initial state, which is always as-
sumed to be nondivergent. The (potential) vorticity
field of the initial state is always composed of ran-
domly oriented dipoles, so that there is no net circu-
lation around the box (Fig. 2). There is no forcing
in any of our experiments.

All computations are performed for nondimen-
sional variables where we set different values of the
nondimensional Coriolis parameters and keep all other
nondimensional parameters unchanged. To get some
impression about the correspondence of our experi-
ments to the dimensional world, the four experimen-
tal setups may be identified as follows:

o The first case, hereafter referred as the f-plane
case, corresponds to a domain of 500 x 500 km at
45°N. The Coriolis parameter f = 107 %sec™! is as-
sumed to be uniform. With velocity scale V =1
m/sec and the advection time scale 7' = L/V =
5 x 10° sec &~ 6 days, the non-dimensional Coriolis
frequency is

fL

.7-':7:50

Grid resolution is 301 x 301 for the all cases presented
here.

e Weak f-case

- Y_ v_1
F(y) = Fo+ 5% =50+50(% 2)

o Moderate (-case

_ y_ y_1
Fly)=Fo+ By = 150+150(L 2)

e Strong (-case The domain size is 3000 x 3000
km (from 20 N to 50 N). A velocity scale of V = 0.5

IXI/E eC gi €s
[ 2

The advection time scale 6 x 101 sec = 70 days

F(y) = 400+ 400(

The results of the computations are presented in
Fig. 3 - Fig. 6. (See also captions for additional
discussion.)

The f-plane experiment: To compare the up-
stream scheme with the original centered difference
Lilly scheme, we run the f-plane case twice, using
both schemes. All of the conditions are the same, ex-
cept for the viscous coefficient A. The Reynolds num-
ber (based on the domain size) is 10+* for the centered
difference case, which is nearly on the edge of the
numerical stability for this numerical scheme. Note
that the Reynolds number is 3 x 10*° (which is 30
times larger) for all other experiments, when the up-
stream scheme is used to discretize the nonlinear part
of the momentum flux tensor. We did not find any
tendency to produce grid size scale oscillations when
the upstream version is used. Despite the larger dis-
sipation, the centered difference solution (not shown
here) is much noisier, dissipates kinetic energy faster
and does not result in a monotonic decay of poten-
tial enstrophy. However, the physical behaviour of
the flow is similar for both cases. The experiments
show that the turbulent flow tends to organize itself
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Time is scaled by the advection time scale. The upper left panel shows the potential vorticity and velocity field

3. Temporal evolution of the potential vorticity field from the initial state shown on Fig. 2 for the case of an

Figure
f-plane.
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effect. In this regime the (-effect is not strong enough to either restrict fluid motion in

Case of weak planetary 3-

igure 4.

F

it restricts the size

to which the coherent structures may grow. Notice the presence of many small intense eddies in the middle of the domain

or to cause decay of mesoscale eddies via radiation of Rossby waves. However,
instead of a large scale merged core

the meridional direction,

, as seen in Fig. 3. There is also evidence of the development of a rectified cyclonic

circulation around the domain (bottom right panel).
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-effect is now stronger and decay of mesoscale features due to

y waves becomes more evident. Time is scaled by the advection time scale. Note that these four snapshots

radiation of Rossb

west asymmetry,

are taken at times different from those of the two previous cases. This flow has north-south as well as east-
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ractically absent in the previous two experiments. Rectified circulation intensifies near the southern part of
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the domain and it detaches from the eastern coast. The separation point becomes also the place where anticyclonic ed
leave the coast and are advected into the interior of the basin, where they eventually will be destroyed by the

emain topographically arrested and tend to propagate along the eastern coast to the north.

-west alignment of eddies as well as a restriction of the fluid motion in t

The cyclonic eddies r
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Figure 6. Case of strong planetary B-effect. In this case the meridional change of the Coriolis parameter dominates
the relative vorticity anomalies associated with the initial random eddy field. Consequently, the original structures were
immediately destroyed. Both the east-west and. the north-south asymmetries are more pronounced than in the previous
case. There is formation of both cyclonic and anticyclonic eddies near the western coast, but both the planetary (-effect
and bottom topography prevent them from being injected into the interior of the basin. Note formation of the intense jet
along the southern boundary and recirculation gyre. As in the previous case, we see injection of small scale eddies at the
flow separation point on the eastern coast.
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into a current along the perimeter of the basin in the
counter-clockwise direction, while the negative vortic-
ity tends to concentrate in the middle of the domain
(Fig. 3). In classical numerical simulations of free-
decaying two-dimensional turbulence there is no pro-
cess opposite to the vortex merger and, therefore, no
small scale structures can be created from large scale
structures. In our case, in contrast, there is gener-
ation of small scale structures on the no-slip bound-
aries. Injection of fresh, intense and compact new ed-
dies into the interior of the domain enhances mixing
of the low-vorticity anomalies of old vortices. Con-
sequently we observe a relatively uniform potential
vorticity background field with several small scale in-
tense coherent structures embedded in it. In this situ-
ation, regardless of the details of the initial state, the
spatial spectrum of the turbulent flow rapidly reaches
some equilibrium state, which persist during a rela-
tively long period of time (bottom left panel of Fig.
3).

Due to the presence of continental slopes and Cori-
olis effect, the anti-cyclonic eddies are more likely to
be driven into the interior of the domain, while anti-
cyclones tend to stay near the walls. This can be
explained by potential vorticity conservation and the
energetics of the flow: moving a cyclonic vortex core
from a shallow to a deep region causes its spin up:

Jtw

PV = = const, f>0, w>0

f — conserved .
. = W — Increases
H — increases

The kinetic energy associated with an eddy is

2.2 pw? w

KE ~Vol -wr - ~ Vol i ~w-H ,
where Vol ~ r2H is the characteristic volume of the
vortex core, while r is its radius. Obviously Vol is
conserved and both w and the ratio w/H increase
due to the conservation of potential vorticity. Con-
sequently, the kinetic energy has to increase when
a cyclonic core is driven from the shallow to deeper
regions. Thus, an external flow must produce some
work on order to move the core.

Similar considerations may be made for the anti-
cyclonic vortices, where w and f are of different signs.
It turns out that there is no energetic barrier for the
anti-cyclones to leave the coast. For example, zero
potential vorticity eddies, w = —f, are not sensitive
to the vortex stretching at all, while they may even

release some amount of kinetic energy when H is in-
creasing. On the other hand, assuming some dissipa-
tion in the system, one can see that the process of re-
distribution of the vorticity field becomes irreversible
in the sense that once an anti-cyclonic eddy leaves
the coastal region, it cannot come it back, unless it is
pushed by the background flow.

Weak (-effect case. The most noticeable dif-
ference from the previous case is the behavior of the
turbulent flow in the interior. To some extent, the 8-
effect inhibits the merging process inside the domain
and restricts the size to which the eddies can grow
(Rhines rule). There is no evident decay of single ed-
dies due to radiation of Rossby waves. There is some
evidence of the meridional restriction of the motion
and east-west as well as north south asymmetry of
the flow.

Intermediate g-effect case. The differences
from the previous case are these: there is evident de-
cay of eddies due to radiation of Rossby waves. The
motion tends to be meridionally restricted. The orga-
nized flow around the box is intensified in the south-
ern part of the basin, while the northern part exhibits
predominantly wave type motion rather than turbu-
lent eddy flow.

Strong planetary S-effect. Rapid decay of ini-
tial eddies is due to radiation of Rossby waves. There
is an evident formation of the organized flow with the
strong jet along the southern boundary.

For the all four cases the decay of the mean ki-
netic energy 1s shown in Figure 7, while Figure 8
shows time evolution of the mean potential enstro-
phy. The kinetic energy is normalized by its initial
value, so all curves on Figure 7 start from K£ =1
and monotonously decay. The lowest curve corre-
sponds to the dissipative centered difference scheme.
It is presented here only to demonstrate difference be-
tween the two numerical scheines. For physical con-
siderations it should be ignored. From the other four
curves one can conclude that presence of 3-effect gen-
erally enhances dissipation. This result may require
additional investigations, because for the case of un-
bounded freely decaying geostrophic turbulence (dou-
bly periodic domain) there is an opposite tendency:
radiation of Rossby waves in a periodic domain does
not dissipate energy, while the eddy mixing process
(which causes eddy merging and filamentation — the
main dissipative mechanism) tends to be suppressed
(Rhines and Young 1982b). The difference may be
explained by the presence of no-slip boundaries.

Before interpreting Figure 8, it should be explained
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Figure 7. Time decay of the kinetic energy (KE) integral
for all four different experiments. The KE is normalized
by its initial value. The five curves, starting from the
highest, correspond to the f-plane upstream case (termi-
nates at t = 16,20); weak planetary §-effect case (goes be-
yond t = 21.60); intermediate § (terminates at ¢ = 13.5);
strong B (terminates at ¢ = 5.8); f-plane case when cen-
tered scheme was used (goes beyond ¢ = 21.60).

that the mean enstrophy is defined as

ot e -(85).

where <> denotes the integration over the domain.

For a given initial state we may define the initial value
of the potential enstrophy go = ¢(¢ = 0), and the
mean potential enstrophy of the rest state

2
Qrest = <2ﬁfrest> . (10)

Fugure 8 shows the function

t) — re
q* - q( ) Jrest ) (11)
q0 — Qrest

Obviously, this function is the normalized mean po-
tential enstrophy. In the case of a closed system,
when no potential enstrophy can be generated on the
boundary or brought in through the boundary, this
quantity must be conserved if there is no internal dis-
sipation. It monotonously decays from 1 to 0 if dissi-
pation is present.

POTENTIAL ENSTROPHY

00 ST SOURETUP 5
6.00-
voo MMy ;
3.004 ALY, . S

200 J ....... L

0.00 I - T T 1
0.00 5.40 10.80 16.20 21.60

Figure 8. Potential enstrophy integral as the function
of time for all four cases. The four curves (f-plane cen-
tered difference case is not shown) may be identified by
the length of the curve, similar to the previous figure.

In the case when vorticity (and, consequently, en-
strophy) may be created on the boundary, the be-
haviour of this integral is not so evident. It is in-
teresting to note that in the f-plane case it decays
practically monotonously. All #-plane cases may be
characterized by an initial burst and a subsequent de-
cay. We suggest that the initial state is very far from
the dynamical equilibrium in the B-plane cases, so,
shortly after the beginning, the flow tends to readjust
itself to bring all fluid parcels to their equilibrium
latitudes. This process takes place mostly in the in-
terior of the domain and causes generation of strong
shear near the boundaries, which results in the gen-
eration of small scale turbulence, which becomes the
major contribution to the enstrophy integral. After
this readjustment enstrophy decays.

Final Remarks

For the conclusion, we summarize several observa-
tions:

e Due to the presence of the no-slip boundaries
there is generation of the small scale features which
oppose the merging of sign-like eddies in the interior
of the basin.

o In the presence of topography on an f-plane, the
turbulent flow tends to organize a rim current around
the domain and concentrate negative vorticity in the
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middle.

o Coupling of bottom topography and Coriolis ef-
fect causes cyclone-anticyclone asymmetry, even in
the case when the Rossby number is small.

e Migration of the eddies along the wall can be
explained by image effect, topographic F-effect, plan-
etary S-effect and interaction with the viscous bound-
ary layer. Anti-cyclonic eddies are more likely to be
ejected into the interior of the domain, while cyclones
tend to be coastally trapped. This effect can be ex-
plained in terms of conservation of the potential vor-
ticity and cnergetic consideration.

o A weak planetary S-effect partially inhibits the
merger process inside the domain. Rhines (1975) rule
may also be applied to the case of ageostrophic dy-
namics. '

o In the presence of topography, both weak and
strong planetary S-effects make the anti-cyclonic ed-
dies more likely to separate from the coast than in the
case of an f-plane.

o The planetary [-effect causes asymmetry of the
rectified flow with intensification of southern bound-
ary currents, which results in configuration of the flow
similar to Fofonoff’s southern mode inertial boundary
current.

o There is an east-west asymmetry in the boundary
current behavior (Figs. 5 — 6).

e There is a topographic instability of northward

flowing eastern boundary current and cyclone-anticyclone

separation near the eastern coast.

From these numerical experiments we see that the
rectification process is associated with several physical
phenomena, such as vortex stretching and turbulent
mixing, which are affected by the topography itself
as well as by planetary vorticity gradients and lat-
eral friction, which also allows generation of vorticity
on the boundaries. This study shows that, in princi-
ple, ocean models are capable to simulate this behav-
ior directly, however, at a high computational cost.
Parametrization of this effect is desirable, but not
obvious. In particular, this effect has nonlinear and
nonlocal nature, so that the statistical equilibrium ve-
locity at some particular point depends on the global
field, rather than on the local bottom slope and Cori-
olis parameter. One can expect this keeping in mind
the inherent elliptic properties of the barotropic flows.
Parametrizations based on variational principles seem
to be more attractive.

One should recall that in numerical simulation of
the geophysical flows there is a tendency to gener-

ate finer and finer scales when the grid size and the
lateral viscous coefficient decrease, rather than going
to a computational regime when the fields become
smooth on the grid scale. This classical mathemat-
ical convergence is practically never achieved. This
motivates the design of numerical schemes which pro-
duce well behaved solutions in all scales up to the grid
size. In many cases, special properties, such as non-
generation of spurious cascades of enstrophy in small
scales as well as properties of monotonicity (i.e. non-
generation of spurious minima and maxima), may be
more valuable than the formal order of the mathe-
matical convergence. Because there are many desir-
able properties and no one computational design can
reproduce all of them, a compromise should be made.
The scheme used in the present study is an exam-
ple of such a compromise: despite the formal loss of
the conservation of kinetic energy in the nonlinear
terms, the better cascade properties allow the use of
a smaller explicit dissipation. As a result, the model
has better overall energy conservation than the model
which uses the centered scheme.
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