A Simple Model of Abyssal Flow
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Abstract. The planetary geostrophic equations (PGE) have special properties that greatly facilitate analytical and
numerical solution. In particular, when the potential vorticity is assumed to be an arbitrarily prescribed function of
the buoyancy, then the ideal three-dimensional PGE exactly reduce to a pair of coupled equations in two space
dimensions. As an example of this method of reduction. I offer a simple model of abyssal flow in the southwestern

Pacific.

I, among many others, have advocated the use of ocean
models based upon the planetary geostrophic equations
(hereafter PGE),
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Here, 0 is the latitude, A the longitude, z is the vertical

distance, r the radius of the Earth, T is the buoyancy
(which I will call temperature), and the other symbols
have their conventional meanings. Wind- and thermal
forcing terms can also be appended.

The defining characteristic of the PGE (1-2) is their
complete neglect of inertia, leading to linear equations of
motion except for the advection of temperature in (2).
However, this single nonlinearity is enough to make the
PGE dynamics both challenging and very rich. Neverthe-
less, because of their relative simplicity (compared to say,
the primitive equations) the PGE have a number of
important advantages.

First, numerical solutions of the PGE (with steady
forcing) seem always to approach a steady state. This
effectively reduces the number of independent variables
by one, and it means that if only the final steady state is of
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interest, it can usually be found using numerical relaxation
methods that are much more efficient than time-stepping.

Second, since the PGE omit the advection of moment-
um, they do not require a diffusive (i.e., Laplacian)
friction. In fact, the simpler Rayleigh friction in (1) is
sufficient to meet boundary conditions of no-normal-flow
at rigid boundaries provided that the ocean depth vanishes
smoothly at the coastline (Salmon, 1986, 1992).
(However, if any part of the boundary is vertical, then the
vertical momentum equation (1c) must also contain a
Rayleigh friction term.) The simpler Rayleigh friction
leads to a much simpler boundary- and internal-layer
structure and greatly facilitates analytical and numerical
solution.

Third, analytical and numerical solutions of the PGE
contain internal boundary layers of thickness 7
corresponding to the ocean’s mean thermocline (Salmon
1990, Salmon and Hollerbach 1991) and leading to a
picture of the subtropical ocean as two inhomogeneous
layers in which temperature diffusion is unimportant,
separated by a thin region in which T changes rapidly and
diffusion is important no matter how small the value of x.
This result calls into question the many attempts to
explain the structure of the main thermocline on the basis
of the ideal (x=0) equations and to justify such
explanation by appeal to the smallness of measured values
of x.

Finally, on account of their simplicity, the ideal PGE
admit an exact reduction from three to two space
dimensions. This reduction, which leads to equations that
generalize the conventional two-layer PGE equations,
further facilitates analytical and numerical solution. In
this brief report on work in progress, we show how the
reduction principle can be used to obtain a simple
equation governing the flow of a dense layer of fluid
along the ocean bottom. The simplicity of the dynamics
offsets the difficulty of incorporating real bathymetry and
makes the results easier to understand.

The basic idea of reduction goes back to Welander
(1971) and Needler (1971). In the ideal-fluid limit
(e=x=0), the PGE conserve the temperature and potential
vorticity on fluid particles,
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where G() is an arbitrary function is consistent, in that
sense that if (4) holds at some initial time, it then holds at
all future times. But (4) integrates immediately to

T= F”(—+S(x,e,r)} (5)
f

where F"’() is another arbitrary function, related to G, and
the primes, which denote differentiation, are introduced
for later convenience. S(A,8,f) is a function of integration,
independent of z, which must be determined by
substituting (5) back into (1-2). The result (still assuming
e=x=0) is
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an evolution equation for S(A,8,7) in which the vertical
coordinate z does not appear.

The S-equation (6) contains two additional dependent
variables, P(A,8,t) and D(A,6,1), which are determined by
boundary conditions at the top and bottom of the ocean.
If these boundary conditions are taken to be no-normal-
flow at the ocean surface and bottom, then D is easily
determined, and P (or alternatively W, the streamfunction
for the vertically integrated horizontal velocity) is
determined by a second equation, also containing S. The
dynamics then reduce to a pair of coupled equations in
S(A,8,¢) and (A, 6,¢), which together determine the whole
flow. Salmon (1994) called these the generalized two-
layer equations (GTLE), because they reduce to the
conventional, two-homogeneous-layer analogue of (1-2)
when the arbitrary function F”’() in (5) is chosen to be a
Heaviside function. However, other choices of F”'() were
found to be both more realistic and numerically
convenient. In particular, the conventional two-layer
model is an inconvenient basis for numerical modeling
because of the difficulty in following the outcropping line
at which the meniscus between the layers intersects the
ocean surface or bottom. However, if two nearly
homogeneous layers are really wanted, then F”()) can be
chosen to be a function that changes rapidly but
continuously between temperature values corresponding
to the two layers. The outcropping lines are then regions
of rapid but continuous temperature change, which need
not be explicitly followed.

Of course, full-basin solutions require wind- and
thermal forcing, and the PGE can satisfy coastal boundary

conditions of no net transport across coastlines only if
£ # 0. Moreover, if the model ocean spans the equator,
then the ansatz (5) itself contains a singularity at f = 0. To
avoid this singularity, Salmon (1994) generalized (5) to
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where f, is a small constant. With T of the form (7), the
linear equations (1) and no-normal-flow boundary
conditions can still be completely satisfied; they serve to
determine the velocity field (uv,w) in terms of T.
However, substitution of this velocity field and (7) back
into (2) no longer yields a z-independent equation. This is
because of the modification of (3) to (7) and because
forcing, friction, and diffusion anyway destroy the
conservation properties (3) on which (5) relies. Salmon
(1994) therefore replaced (2) by its vertical average. The
resulting equation, which is essentially (6) with forcing
and dissipation terms appended, has “three-dimensional
accuracy” except at very low latitude, where the f, term in
(7) is significant, and the GTLE have the character of a

Galerkin approximation. For many further details, refer to
Salmon (1994).
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Figure 1. A simple model of the flow of dense water along a
bumpy ocean bottom—the so-called one-and-one-haif layer
model. The water above the moving layer is assumed to be at
rest.

In this note, we consider an ansatz of the general form (3)
or (7) that leads to dynamics even simpler than the
generalized two-layer equation. This new model, which
could accurately be described as a generalized one-and-
one-half layer model, bears the same relation to the simple
model of abyssal flow shown in Figure 1, as the GTLE
bear to the conventional two-layer model. In Figure 1, the
upper fluid layer is assumed to be infinitely deep and at
rest, so that (neglecting the inertia, the lower-layer
dynamics are governed by
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where £ is the thickness of the moving layer, N = h- H is
the height of the interface between the layers, and g’ is the
reduced gravity. Eliminating # and v yields a single
equation for A,
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Now consider the more general case in which the
temperature is given by (5), but still approaches a uniform
value (conveniently taken to be zero) as z—weo. This
imposes the condition F”'(e0) = 0 on the profile function.
The quantities P and D are now determined by the
requirements that the horizontal velocity (#,v) vanish as
z—eo and that there be no flow through the ocean bottom
at z = -H. The ideal (¢ = 0) S-equation (6) takes the form
of a “bottom-layer” potential vorticity equation,
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where
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and F”(q) is the potential vorticity f7T, at the ocean
bottom. The second term in (10) induces a westward
propagation of g at speed determined by g itself; the third
term propagates g along isobaths in the sense of clockwise
propagation around deeps in the southern hemisphere.

Next, assuming € # 0, adopting (7) instead of (5), and
following the procedure summarized after (7), we obtain
the frictional generalization of (10), namely
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= diffusion

where the right-hand side stands for relatively simple

diffusion terms which will not be written out. In the
special case
. 0, &>0
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in which the profile function is a step function, (12)
reduces exactly to (9) with g= -A/f (the layer-depth
potential vorticity).

I have used (12) as the basis for a simple numerical
model of bottom water flowing northward in the
southwestern Pacific. Observations (Mantyla and Reid
1983, Taft et al. 1991) show that the densest abyssal water
enters the North Pacific through the Samoa Passage at
10°S, 170°W. I solve (12) on an open computational
domain extending from 25°S to 5°S, and from 180° to
160°W, including the Samoa Passage and several
apparently less important passages for the northward
moving bottom water. Refer to Figure 2. The temperature
profile function is a “smooth step,”

F"(E) =%T0[tanh(§/A)—l] (14)

with constant amplitude 7, and “step-width” A chosen to
agree roughly with the local Levitus data. The boundary
conditions are fixed g (i.e., fixed temperature) on the
computational domain. The Rayleigh damping coefficient
€ is 0.15 times a representative value of f.

The calculation begins from a state (Figure 2, top) in
which the cold bottom water is pressed against the
southern computational boundary at 25°S. As time
increases, this cold water spreads northward, steered by
the bathymetry in the potential vorticity equation (12).
After 128 days (Figure 3a), the cold, dense water has
filled the Tonga Trench, turning westward (with the axis
of the trench around the Samoa Islands. By 558 days
(Figure 3b), significant flow is also occurring around the
eastern side of the islands. By 1192 days (Figure 3c) cold
water is spilling through the Samoa Passage and through a
shallower passage in the Robbie Ridge at 175°W. The
maximum current speed of 9.8 km day’ in the Samoa
Passage agrees well with recent direct measurements of
the current (Dan Rudnick personal communication)

Figure 4 shows three temperature sections at 1563 days.
The north-south section at mid-domain (Figure 4, bottom)
passing through the Samoa Passage shows that the cold
water has nearly reached the northern computational
boundary. A section along 17°S (Figure 4, middle) shows
how the cold water has filled up the abyss south of Samoa.
The top section in Figure 4 corresponds to the broken line
on Figure 2 (bottom) and crosses the axes of all the
important passages into the North Pacific. This top section
shows the coldest water flowing northward through the
Samoa Passage, but cold water is also flowing northward
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through the passes in the Robbie Ridge, and to the east of
the Manihiki Plateau.
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Figure 2. The ocean depth (bottom) and initial temperature
(top) in a mid-domain section along 170°W in the preliminary
study of the northward spread of bottom water in the southwest
Pacific. The computational domain is open, with boundary
conditions of prescribed temperature. The model topography is a
smoother version of the “etopo-5 topography with a grid spacing
of 0.1667 degrees in latitude and longitude.

The initial-value calculation summarized on Figures 2
to 4 is mainly intended to show the feasibility of using
reduced-PGE models with realistic bathymetry. I chose
the Samoa Passage for its importance as a source of North
Pacific abyssal water and because the assumption of a
level-of-no-motion far above the bottom is perhaps easier
to defend there than in other places. With one-sixth-
degree resolution (121 by 121 grids) the calculation
required three hours CPU time on a Sparc-120
workstation. Thus even higher spatial resolution and a
broader computational domain are quite feasible. I am
particularly interested in the influence of spatial resolution
(i.e., the very small scales in the bathymetry) on the
solutions.

Figure 3. The temperature (contours) and horizontal velocity
(arrows) at the ocean bottom at three successive times in the
numerical solution of (13) with the bottom topography shown in
Figure 2. (a) The flow after 128 days, (b) after 558 days, (c)
after 1192 days. >
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Figure 4. Temperature after 1563 days along 170°W (bottom),
17°S (middle), and (top) along the dashed line shown on Figure
3, which crosses the axes of all the major passages into the
North Pacific. The densest water and highest flow speeds occur
in the Samoa Passage, but the top section also shows significant
deep flow through the pass in the Robbie Ridge, and east of the
Manihiki Plateau.

Of course it is a great conceit to imagine that one can
, explain the observed ocean flow with no inertia
] whatsoever; with the highly constrained buoyancy (7)
required for reduction to two space dimensions; or without
separate equations for the temperature and salinity. And I
am certainly aware of the widely held opinion that flow
through some deep ocean passes is hydraulically (and
therefore inertially) controlled. But for me it is very
important to start with dynamics, like (12), which is
simple enough that its solutions can be physically
understood, this simple dynamics will certainly not
explain everything that is observed, but what it can
explain can at least be understood. However, my general
strategy is grounded in the belief that accurate
incorporation of realistic bathymetry may actually be
more important than much of the “higher order” physics.




