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Abstract. Topographic (B=0) Rossby waves over an infinite rectangular latticc of identical scamounts have the form of plane waves
propagating in frequency bands close to the natural frequencies of the topographic Rossby waves trapped around one seamount in
isolation (Rhines). When the height of the scamounts varies randomly and the seamounts are separated by more than a few seamount
radii, then the topographic Rossby wave ficld is described by a model first introduced by Anderson in another context. In this model,
randomness in seamount height converts the extended plane waves into localized modes whose horizontal scale of energy trapping
decreascs with increasing disorder in scamount height. The numerical results of Mackinnon and Kramer are used to quantify this

relationship.

1. Introduction

The ability of Rossby waves to transmit low frequency
energy over long distances in the ocean is important directly
or implicitly in most quasianalytical theories of the large
scale circulation as well as in the interpretation of results
obtained from numerical models of ocean circulation. Our
qualitative ideas about such waves have grown largely out of
analytical or quasianalytical solutions of the Ilinearized
shallow water equations or of the quasigeostrophic equations
over ocean bottom relief that is either flat or has some very
simple form which makes analysis feasible. But basin scale
modes and much smaller scale topographic modes can easily
have very similar frequencies (Miller, 1986). This
observation raises the question of whether and/or when
Rossby modes computed over smoothed relief would have
recognizable counterparts over realistic relief.

An important aspect of this question has been addressed
for surface gravity waves by Devillard et al. (1989), who
found that for bottom relief and waves varying in only one
direction, any amount of random variation in the underlying
bottom relief changed the travelling waves into standing
modes spatially locatized over a horizontal scale that became
ever larger as the random variation of the relief was
decreased. The present calculation establishes a similar result
for two dimensional topographic Rossby waves.

Even when P=0, Rhines (1970) has shown that energy
transmission over unlimited distances wvia traveling
topographic Rossby waves can occur if the bottom relief is
periodic 1n space. It is shown below that if a collection of
identical seamounts arrayed on a periodic lattice and
separated by more than a few seamount radii is randomly
perturbed in seamount height, then these traveling
topographic Rossby waves extending over the entire
horizontal plane are changed into spatially standing modes
localized over a horizontal scale that becomes ever smaller as
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the random variation of the relief is increased. This is
accomplished by transforming the Rossby wave problem into
a form previously investigated by Anderson (1958) in another
context, and then making use of quantitative numerical
studies of the horizontal scale of localization for this model
(MacKinnon and Kramer, 1983). The salient results are
summarized in Figure (1).

2. Topographic Rossby waves over a Lattice of
Seamounts

Over a single isolated seamount of radius 4 that is
centered at 1, =(%.,y) and whose relief D(x,y)=D (1-h(x.y))
varies only for |r-r|<4, so that

P,(Ir—rl|) lr-r,| <4,

h(x.y) = (2.1)

0 |r-r| >4,

the streamfunction {5, describing purely topographic (B=0)
seamount oscillations with natural frequency o, satisfies

~i0 Vet JWpg, foP) =0 2.2)

The subscript / indexes the seamount (in preparation for the
case of many seamounts) while the subscript K
orders modes over the seamount. From (2.2) the sign of o,
changes with the sign of the relief, o, < 0 for hills.

In cylindrical coordinates r,0 centered at r, the
eigenfunctions over circularly symmetric relief have the
separated form
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e™® @, /1) r<d,
v o= in® SN(A /ey 5 @3
e’ @, Ad,\d,/r) r>d,

n=1,2,3 ... . The index K is usually a pair of integers indexing
variation of i in the 6,r directions. Thus over the particular
relief

Ho) hy( 1-(r/d, ) r<d
xy) =
d 0 r>d, (2.4)
the eigenfunctions yr, are of the form
Ae™® J(a,r r<d,
v - @.5)

Ae™® J (e d Nd,/r)" r>d,

in which A is a constant and the eigenfrequencies oy are
given by

O = —211H fol(e, d,)

2.6)
J (e d)=0 nm=123

The index K in (2.3) is the pair nm in (2.6). Seamount
oscillations over the tophat relief

h r<d,
2.7
hxy) = @7
0 r>d,
are of the form
ei"e(r/d,)” r<d, A=(4nm)’'?
e r>d,  n=123.. 2%

and are degenerate in that all modes of angular wavenumber
n have the same radial vanation, and the eigenfrequency

O = Johy/2 29

1s the same for all the modes. Nonetheless the tophat modes

will be found useful because their simplicity facilitates
estimation of the coupling between seamounts; away from
the seamount their dependance on r,0 is the same as in the
general case (2.3).

Over isolated seamount [/ of arbitrary shape,
eigenfunctions . satisfy the orthogonality relationships

Wi Sy foPr) = 10 Vi Vi = =iy By
llI]LJ(q’lK’fOPI) =-i0y V‘II[L.V"IIK =0

(2.10)

in which the overbar here and everafter indicates integration
over the entire horizontal plane. The constant A in (2.8) has
been chosen in accord with (2.10).

For every eigenfunction § with frequency o, there is
another eigenfunction {,* with eigenfrequency -g;. A given
eigensolution and its complex  conjugate  are
indistinguishable when free but respond differently to
forcing, This is most obvious in the case where clockwise
rotation of phases about a hill necessarily forces
counterclockwise rotation of phases about any neighboring
hill, a sense of rotation of phases opposite to that associated
with free seamount oscillations at the neighboring hill.

Now let the relief be an ensemble of distinct seamounts:

hx,y) = Y, P(r-r)) (2.11)

Expand the total streamfunction Y(x,y,t) over this relief in
individual seamount eigenfunctions:

Y1) = %: [ xy) + Byl Dde)] @.12)

The total energy E 1s

2E=pVUVE =p Y e VWi Vet (213)
IK M

in which p is the mass per unit surface area of the fluid layer.
With the normalization of (2.10), |ay* and [b,*| are the
energies associated with y,, and ;. * in isolation. Insert the
expansion (2.12) into the governing equation

VYAt + S, fr) = 0 (2.14)
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for linearized nondivergent quasigeostrophic flow over relief
h given by (2.11) to obtain

sz: Ly P = b Vil (2.15)

alKZJ(\le’fOPs) + szZJ(lIJz},foPs)]F 0

Multiplying (2.15) by Y, and §,, * separately and then
integrating the resulting equations over the horizontal plane
yields the following coupled ode's for the amplitudes a; and
by

Vq‘(;M V‘IJQM dgst ; IZ;, [V‘p(;M ' V"py(] dy
+ Vi Vg B * ; g [Vor * V] B

Do+ Y Doy ag + ; ;; (D™ + Dayy¥ay

520

+ XYY 0 Nay+ D:f,'é"{oa%:“ibw

K 1+0 s+0

T 0 Dl BT T D e

K 1»0 1=0 520,/

(2.16)

Vg, - Vb dg + ; IX(; Vo Vg dy
Vg Vo byr + ; 12; (Vo VWil b =

DY + Y Dylag, + X X (Dyg + Doy g 2.17)
120

50 X

LT D5+ Oogs” + 3 Daos M

1¢0 520,¢ 50

+§: E [Dglﬂ(f‘ +D(j)\/11f']blx + E Z E (D(flif*)blk’

1£0 K 1+0 5+0/

In (2.16) and (2.17) terms refering to the seamount labeled
0 have been isolated, and the notation

M+«K

D) (2.18)

= ‘I'(;M ‘](‘IJIK’ fOPs)

has been introduced. In (2.16) and (2.17) only, the square
brackets [] enclose terms which are found upon detailed
calculation to vanish. The remaining nonzero terms may be
grouped as follows:

Sone = EO iDyoy (2.19)

MK MK
dor = Z iDygyg
s+0,]

(2.20)

A =V, Vi, @21)

and we have the particular values

Vo Vg, =1

MM

Dygq = _iOOMV‘I’(;M' Vg, =1,

M« Kx . MK «
+Dyje = ~H(0g, =0 Ny )

MM
Dyoo = ~i0g,

(2.22)

M*+K*
DOII

MK
AOO = 0,

Sas in (2.19) is a small correction to the eigenfrequency
0y, of seamount oscillation yy,, over seamount O due to the
presence of all the other seamounts. ;"™ in (2.20) is the
interaction between eigensolution pairs at sites 0 and /
because of their overlap with all other seamounts. A,™ in
(2.21) is the direct interaction between complex conjugate
eigensolution pairs at sites 0 and /.

With the introduction of (2.19) - (2.22), (2.16) - (2.17)
become

- . MKvx 7
1y, * ’; § (Ao ) by = (Ogy + Sorr) us (2.23)

+Z 2 ( 1(\)411() A + ; 12(; (O _OIK)(A%K)%K

K 1#0

and
iBOM + iZ Z (AgK) = ~(Og + Sorr) Pons
K 1+0 (2.24)
A; ,Z CHaNIED) ,E (O~ ) Aoy
O 1#0 K 120

3. Topographic Rossby waves over a Lattice of
Randomly Differing Seamounts

Rhines (1970) has shown that if all the seamounts are
identical and they are arrayed in a rectangular lattice, then
even in the absence of P, energy initially in topographic
Rossby waves can propagate indefinitely. If the distance R
between seamounts somewhat exceeds the seamount radius
4, then detailed calculations (some of which are shown
subsequently) show that the correction and coupling terms
(2.19)-(2.21) decay as positive powers of a/R. If we label
lattice positions by x,y (in units of R), then the solutions
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found by Rhines (1970) have the form

= pflrx vy -o(uv)
Y e

3.1
0(1,v) = Oy, [ 1+ Q@R *( cos(ux) +cos(vy))] G

where n is the angular order of an individual seamount
oscillation with frequency 0, Plane waves thus propagate
within frequency bands that are centered about the
frequencies oy, of isolated seamount oscillations and have
widths the order of o, (/R)*™"".

The question now to be addressed is ‘'what happens to
these propagating topographic modes when the seamounts
are of slightly differing heights h? We thus consider a
periodic lattice of seamounts whose individual seamount
oscillation frequencies are randomly distributed about a
central value o.. The width of this distribution will be
supposed to be small relative to the size of o,. For motions
at a fixed frequency w, (2.23)-(2.24) may be compactly

written as

[ 11

0 -of lo -] [0 -] lo]
0 oA*-A"c

+
Ao-0A 0

a I A" 32

=W

)

in which o is the diagonal matrix of individual site
eigenfrequencies O,, and S, ¢, and A are matrices whose
elements are given by (2.19)-(2.21).

b AT

As long as the disorder in seamount height is sufficiently
small that individual seamount oscillation frequencies
associated with different angular or radial orders do not
overlap, we may retain but one mode per site (typically the
mode having the smallest angular wavenumber n=1 and
consequently the greatest frequency). The elements of S, ¢,
and A may be shown to decay as positive powers of (a/R), so
that (3.2) may be simplified by left multiplication by the
factor

{1 Am]—l (l_A'FA)-l _(l_A-A)—lA-
A ] -(1-A"A)'A  (1-ATA)!
N (I*A*A) _Ax« (33)
-A (1+A™A)
The result is
(0+S+ +A"0A) oA” a a
. = © (3.4
-oA -(0+S+$"+AcA™)| 1p b

Here, terms such as AA’A have been neglecte*d relative to
terms such as AA", and terms such as A'S and A ¢ have been
neglected relative to terms such as A 0.

Now we consider motions at a frequency w that is close to
the natural frequencies o, of individual seamounts in the
ensemble (the single subscript now indexes seamounts). The
dominant terms of the diagonal elements of (3.3) are thus the
diagonal matrix 0, so that the linear equations for a may be
close to resonance but those for b are far from resonance.
Consequently we may take

b = ~(w/+0) 'oAa (3.5)
Hence (3.3) finally becomes

wla = (o+Sa +Va

V = (¢p+A’0A-0A*(wl+0) 'oA) (3.6)

]

(p+a A"A/2)

in which o. denotes the average of the individual free
seamount oscillation frequencies 0, The terms neglected in
(3.5) would contribute minor modifications to V and S in
(3.6).

We now evaluate the elements of ¢ and of A'A appearing
in (3.6). We have

b = X I Sh) = Y0 -ifh S o)
5#0,/ 520,/ (3 . 7)
=Y (04’ ) L !
=01 (e, %, - i,y )P (e xg + i, )Y

and

Ag, = VY] = ~(ilo g S Soh)
(3.8)

AT o 1
=(ifa)f h, S =-di—
(/o)oh; JU; Wo) aoal( XoX, + 107y 7))
The evaluation of V in (3.6) thus requires evaluation of the
sum

Sofx.y)= E : !

3.9
Koy F Xy ( X=X,y _i(.y_y()) )2 ( X=X ‘i(}/ ’J’;) )2 ( )

This will be illustrated for the particular case y,=y,=0. It is
convenient to write (3.9) as
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1 1

S, =R™*S =R 3.10
o # wm w0 (n-v-im)® (n-p+im)’ (3.10)
Note that

ddy 11
W gy dvS (n-v-im) n-u+im)

:ii nv  np )( v-u 2im )

dv dvz((,,vv)hmz (n wem? I\ (v-py+dm> (3.11)

+( 1 B 1 )( 2im )
(n-vP+m?* (n wfem? v-pt2im

Since the summation indices exclude nm = v,0; 0, the
very last sum in (3.11) may be written as

(3.12)

2im 1 . i )
z,.:(vfp+2im)(,zu;, (n-pR+m? m® (v-pfm?

In this form it is clear that this sum exactly equals the next to
last sum in (3.11) so that the last two terms of (3.11) cancel.
The imaginary part of the summand in first two sums in
(3.11) is odd in m and hence the corresponding sum vanishes.
The remaining summands are odd in n-v and n-u. Since the
corresponding sums exclude nm = v,0; p,0, (3.11) may
finally be written as

d d 2 _ 12 (313)

dvdp m-v? @

so that the sum (3.10) 1s

12 12

= = 3.14
R4(P_V)4 (xo _x1)4 ( )

SOI

On account of the rapid decrease of S, with site separation,
we truncate the sum over all seamounts that is implicit in the
matrix equation (3.6) to a sum over nearest geographical
neighboring sites, and so finally obtain an approximate
version of (3.6);

wa, = (0, +Sa, + Via,+a,+a, +a,) (3.15)

V=60 (a/R)*

now notated in an obvious geographical manner in which site
eis eastofsiteo ... .

4. The Anderson Model

(3.15) has the form of model employed by Anderson
(1958) to discuss the nature of single electron wavefunctions
in a spatially random potential. In the numerical study of
MacKinnon and Kramer (1983) that model is studied in the
form

(w-0)a, =(6,+S,-0,)q,

(4.1

+V(a,+a,+a,+a,)

The effective individual site frequencies 0,+S, are supposed
randomly distributed over the range 0.+Ao. The interaction
potential V is taken constant. It is convenient to discuss the
results in terms of a disorder parameter W defined by

W= Aoy =20 1 4.2)
0. 6@R)

Over a given relief, the topographic Rossby normal modes
and their natural frequencies could in principle be found by
solving the eigenvalue problem (3.6) or its approximate form
(4.1). But we wish to study the properties of normal modes
over an ensemble of reliefs characterized by Ac or,
equivalently, W. What can be done is most simply illustrated
for the case of a one dimensional chain of seamounts labeled
1=1,2, ..., for which (4.1) becomes

(©-0)a, = (0,+5,-0.)a;+ V (@., +a,,) (43)

Rather than considering the eigenvalue problem, as part of
whose solution the natural frequencies  are determined, we
fix the frequency w near 0., specify a, and a,, and solve for
a, i=3,4,5 ... . If the individual site frequencies g +§ were all
the same, then the solution would be a plane wave whose
amplitude would neither grow or decay along the chain. But
if the normal modes of the chain are all evansescent, then
solutions of this 'Cauchy’ problem with o+S; specified
randomly within 0,+Ac will ultimately grow exponentially
along the chain for almost any initial values a, and 3. Such
exponential growth characterizes not only solutions of the
one dimensional problem, but also solutions of the two
dimensional problem of a long 'bar’ of lattice sites. Numerical
estimates of the growth rate must necessarily be made by
solving such a Cauchy problem for bars of finite width;
MacKinnon and Kramer (1983) carry out such studies and
explain how the results are to be extrapolated to a bar of
infinite width.
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Figure 1. Localization length &/R (units of laltice spacing R) vs
disorder W = (Ao/c.)/6(a/R)'].

They find that the exponential growth scale or 'localization
length’ £ (units of lattice spacing R) increases as W is
decreased. Their numerical results are summarized in Figure
(1). Thus if, for example, the ratio /R of seamount radius to
lattice spacing is 1/4, then a disorder Ao/o. of about 25%
leads to a localization length of about five lattice spacings. If
the lattice spacing is increased so that &R is 1/6, then a
disorder of about 4% results in a similar localization length.
Identification of this exponemtial growth rate with the
localization scale of the modes over the full lattice is
discussed in the one dimensional case by Crisanti et al.
(1993; the numerical results of MacKinnon and Kramer
(1983) in two dimensions correspond to the largest possible
horizontal localization scale of the modes over the full
lattice.

5. Discussion

The Anderson model (4.1) was the result of supposing that
the topographic Rossby modes over the entire seamount
lattice are primarily composed only of individual seamount
oscillations of angular order n=1. If the seamounts are not too
dissimilar, then there will also be topograhic Rossby modes
over the full lattice that are primarily composed only of
individual seamount oscillations of angular order n=2, 3 ...
as well. But for sufficiently high angular order or sufficiently
great seamount disorder, indivdual seamount oscillations of
different angular orders at different seamounts may have very
similar frequencies, so that coupling between different
angular orders can no longer be neglected. Thus, although
the foregoing analysis shows that the highest frequency
lattice modes are localized by disorder in seamount height,
the assumption of small seamount height disorder made in
going from (3.2) to (4.1) is violated at sufficiently small
frequencies. The ultimate consequences of this are not
presently understood.

The observation that the degree of localization induced by
a given disorder in seamount frequency increases as the
coupling V becomes smaller indicates that the inclusion of
stratification or a free surface would have increased the
degree  of localization because individual ~seamount
oscillations would then decay exponentially away from lattice
sites.

The foregoing results suppose that =0. If all the
seamounts are identical save one and if the natural frequency
of seamount oscillations of, say, angular order n=1 about that
seamount in isolation falls outside the bands within which
plane topographic Rossby waves propagate over the lattice of
identical seamounts, then a disturbance initially localized at
that seamount will not ultimately propagate entirely away. It
may be shown that this continues to be true for sufficiently
small but nonzero B. This suggests, but does not prove, a
similar result for more general relief.
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