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Abstract.

The orientation of an anisotropic topographic feature in a large-scale flow will affect the vorticity

production that results from the topography-flow interaction. This in turn affects the amount of form drag that
the ambient flow experiences. For quasi-geostrophic flow over a hill with an elliptical cross section in the horizontal,
it is shown that the strength of the form drag depends not only on the magnitude of the angle that the topographic
axis makes to the oncoming stream, but also on the sign of that angle. For sufficiently low topography, it is found
that a positive angle of attack leads to a stronger form drag than that obtained with the corresponding negative
angle. For strong topography, this relation is reversed, with the negative angle then resulting in the stronger form

drag.

Introduction

We explore how the local vorticity distribution over
topography changes as a function of the orientation
of the topography with respect to the ambient large-
scale flow. Our original motivation in this line of in-
quiry stemmed from recent work showing that the
Antarctic Circumpolar Current’s strength is strongly
affected by the underlying topography. The dynami-
cal balance of the Antarctic Circumpolar Current has
long been a mystery. Bottom friction and continen-
tal borders alone are insufficient to absorb the mo-
mentum input from wind forcing. The simulations
of McWilliams, Holland and Chow (1978), Wolff and
Olbers (1989) and Treguier and McWilliams (1990)
have gone a long way toward proving the hypoth-
esis that the input from wind stress is ultimately
balanced through form stress involving submerged
ridges. The ridges under the Antarctic Circumpolar
Current are not oriented meridionally, perpendicular
to the mean current, but rather are at oblique angles
(e.g., Macquarie Ridge, South East Indian Ridge, Pa-
cific Antarctic Ridge, etc.). Treguier and McWilliams
(1990) included randomly generated topographies in
their studies, and Wolff, Meier-Reimer, and Olbers
(1991) included a realistic representation of the Mac-
quarie Ridge Complex. Another reason for interest in
the effects of changing the flow-topography orienta-
tion follows from the fact that local flow over topog-
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raphy will depend on this orientation, and this local
flow will be important in determining the distribution
of temperature, nutrients and, hence, biology over the
topography. For example, in the Southern California
Bight there are several banks of elliptical shape (e.g.,
Nidever Bank). When the direction of the large-scale
current in this region changes, one expects the current
regime over the bank to change (including the distri-
bution of the regions of strongest upwelling). The
local flow then determines the distribution of plank-
ton and predators over the bank (Genin 1987). Simi-
lar comments could be made about seamounts which
have an elongated structure (e.g. Horizon Guyot) (cf.
Genin, Noble and Lonsdale 1989).

The general question of large-scale flow over to-
pography in a rotating environment has been subject
to very intense investigation due to the many pos-
sible applications to both the atmosphere and the
oceans. In particular, the flow over bottom irregu-
larities such as seamounts is an important source of
eddy variability in the oceans. Also, the interaction
of the flow with the topography produces a reaction
on the flow called form drag that can, in both at-
mospheric and oceanic applications, significantly re-
tard or block the oncoming flow. Numerous studies
of flow-topography interaction have been performed
with analytical, numerical and laboratory methods.
For purposes of analysis and intuitive understanding,
many of these studies have focused on models using
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isolated, circularly-symmetric hills. Excellent histori-
cal reviews of that work can be found in Huppert and
Bryan (1976), Johnson (1978), Bannon (1980), and
Verron and Le Provost (1985). For such simplified
models, the question of orientation of the topogra-
phy with respect to the flow does not come into ques-
tion. However, those models point out a basic asym-
metry of the flow over topography problem, in that
vortex tube compression always produces an anticy-
clone above a hill and this advects the fluid around
the hill in the anticyclonic direction. We will see be-
low, that for non-circularly symmetric topographies,
the basic asymmetry of the flow interacts with the
asymmetry of the topography in a way that produces
a dependence on the orientation of the topography
for vorticity production and for form drag. Consider,
for example, Figure 1. Two configurations are shown
(from above) in which a large-scale flow crosses an
elliptical topography. The situations look symmetric,
but, in fact, the form drag is different in the two cases.
This will be explained in detail below.

Of course, there are already many notable works
that examine flow-topography interactions with a
model of topography more complicated than the cir-
cularly symmetric hill. Merkine and Kalnay-Rivas
(1976) consider an elliptical topography with two ori-
entations, cross stream and along stream. Pierrehum-
bert and Malguzzi (1984) consider a dipolar topo-
graphic forcing (but with a single orientation). Cook
and Held (1992) have investigated flow over an el-
liptical topography, with a single orientation, in a
general circulation model. We should also note that
there have been many excellent studies of flow over
elongated topography in the form of ridges. In most
cases, however, the ridge is of infinite extent and ori-
ented perpendicular to the flow. An exception is the
study by Boyer (1971) who considers flow over a ridge
of infinite extent at an angle to the large-scale flow.
This list of examples does not even begin to mention
all of the studies with irregular or random topogra-
phy or those with actual representations of features
on the earth’s surface. On the whole, however, there
have not been any systematic studies of the effects of
orientation of anisotropic topography of finite extent.

For flow in a rotating environment, the simplest
model that captures the essential effects of vortex
tube compression/stretching is the quasi-geostrophic
model. Within the context of that model, in section
2, we set up the basic equations for the problem of
determining how the local flow around the topogra-
phy depends on the orientation of that topography
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Figure 1. Schematic of large-scale flow over elliptical
hills. In which case will the drag be greater, for the (a)
positive angle of attack or for the {b) negative angle of
attack?

with respect to the large-scale flow. In section 3, we
give the results of simulations that show how the vor-
ticity distribution over the topography depends on
the orientation of that topography in the current. In
section 4, we examine the dependence of the form
drag on the topographic orientation, and relate the
results to the vorticity distributions described previ-
ously in section 3. We develop the perturbation the-
ory for the case of weak topography, and compare the
predictions to results from the simulations. Further-
more, we present a simple point-vortex model that
helps to explain the transition from the behavior of
the form drag as a function of the angle of attack, as
observed in the weak topographic regime, to the very
different. behavior observed in the strong topographic
regime. This report is a greatly expanded version of
Carnevale, Purini, Orlandi and Cavazza (1995).
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The Model

The variation of the flow with topographic orien-
tation is captured, in simplest form, by the quasi-
geostrophic model for a single homogeneous layer un-
der a rigid lid. For this model to be appropriate first
requires that the rotation rate of the environment is
sufficiently high so as to dominate local advective pro-
cesses. The relative importance of rotation can be
measured by the Rossby number, which is defined by

U

fL’
where L is a typical horizontal scale for the topog-
raphy, f is the Coriolis parameter, which is twice the
rotation rate, €, and U is the velocity of the oncom-
ing stream. For ¢ sufficiently small, the flow will be
in geostrophic balance, that is, the pressure force, in-
cluding the centrifugal force, is balanced entirely by

the Coriolis force in the momentum equation. Thus
we have

1)

€ =
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where u is the velocity of the flow and p is the fluid
density, which we will assume is constant, and p is
the thermodynamic pressure plus the potential for the
centrifugal force. Taking 2 to be in the z-direction,
we can write the components of the geostrophic flow
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in the z and y directions respectively, and the pressure
is constant in the z-direction. Further, assuming that
the rotation rate does not vary with position, and us-
ing incompressibility, it follows that if there is no flow
through the upper surface, the flow is entirely two-
dimensional (the Taylor-Proudman theorem). The
streamfunction for this flow can be taken as propor-
tional to the pressure:
p
v 73 (5)

Furthermore, we assume that the layer thickness
variation is a small fraction of the mean depth. The
essence of the quasi-geostrophic model then is the hor-
izontal advection of potential vorticity defined by

q= V32U +h. (6)

h is the scaled topography given by A = fAH/H,,
—Hy is the average depth, and AH is the height of
the bottom above the mean bottom level. Thus the
quasi-geostrophic evolution equation is given by

3—3+J(\Il,q):—rC+VV2C, (7N

where J is the Jacobian defined as usual by
J(A,B) = A;By, — AyB;. (8)

This is the simplest model which captures the effect
of vortex tube stretching due to passage over topo-
graphic features. Besides the advection, we have also
included two viscous effects: a bottom drag due to Ek-
man pumping, and a horizontal diffusion of relative
vorticity. For a systematic derivation of the quasi-
geostrophic evolution equation, see Pedlosky (1987).

We need to define a model of a confined asymmet-
ric topography. The studies of Verron and Le Provost
(1985) were performed with a Gaussian shaped topog-
raphy, which in our notation would be

h(z,y) = hoe= "+, ()

with R a constant. As a simple generalization of this
form to elongated structures, we take

h(z,y) = hoe™ & 1°H 10 (10)

where the coordinates 2’ and ' are just the old coor-
dinates & and y rotated by the angle of attack of the
topography with respect to the oncoming stream, as
defined in Figure 2. Specifically

2 = rcosa—ysina (1

Yy = zsina + ycosa, (12)

where a and b define the major and minor axes of
the contour of topography at the level with value
h(z,y) =e L.

This topography is confined in the sense that its
height a few lengths R from the origin is negligible
for our purposes. This is the topography used for the
discussion in the next two sections. It will be conve-
nient to designate specific terms for the two ends of
the ellipse representing the topography. Accordingly,
the upstream end of the ellipse will be referred to as
the nose of the topography, and the downstream end
as the tail. Also we will refer to the line of highest
points along vertical cross sections parallel to the mi-
nor axis as the crest of the topography.
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Figure 2. Schematic defining the angle of topographic
orientation with respect to the flow. The scaled topo-
graphic height, defined in the text, is given by h(z,y) =
hoezp(—z'2/a* —y"?/b?), in coordinates = and y’ that are
aligned with the topographic principal axes in a horizontal
cross section. The lengths of the major and minor axes
of the contour of topography at level h(z,y) = e~ ! are
a and b. The angle of attack, o, is defined as the (coun-
terclockwise) angle from the major axis to the axis of the
large scale-flow. A positive angle of attack, a = 45°%, is
illustrated here.

Verron and Le Provost (1985) define a nondimen-
sional parameter that measures the importance of to-
pographic terms relative to the pure advective terms
in equation (14). This parameter is given in our no-
tation by

L
B= hoﬁa (13)

where I is a typical horizontal length scale for both
the topography and variations in the flow. Verron
and Le Provost (1985) consider only the case of cir-
cularly symmetric topography in which our param-
eters a and b are both equal and take the value %L.
For sufficiently small viscosity, Verron and Le Provost
identified two distinct flow regimes separated by the
critical value ptg = 11. When p < pgq, i.e. when the
topography is ‘weak’ or the flow is strong, the flow is
close to the inviscid solution given by { = —h. For
@ > pg, trapping of the positive vortex can occur, at
least temporarily, forming a dipole, which is unstable
in the purely inviscid case. Unless there is substan-

tial viscosity, the positive vortex is eventually shed
downstream.

For our case, the definition of y is somewhat am-
biguous since there are now two length scales as-
sociated with the topography. In what follows, we
have chosen to nondimensionalize all length scales by
L = 2a where a is the larger of a and b. Thus the
length of the major axis is fixed at a = 0.5. We
choose to fix the length of the minor axis at & = 0.1
as a representative value giving a topography which
is far from circular but yet not in the realm of long
thin bodies. Furthermore, we nondimensionalize time
with the advective time scale, /L. In all of the sim-
ulations with fixed, U, its value is taken to be 1, and
so, the value of hg in these units is the same as p.

As for the boundary conditions on the streamfunc-
tion ¥, we consider the case in which the flow is uni-
form at infinity. Thus we can put ¥ =t — Uy, where
the boundary conditions are that ¢ vanishes at infin-
ity. These boundary conditions present some difficul-
ties in deciding on the appropriate numerical simu-
lation scheme. From previous studies, we know that
if we impulsively start a large-scale flow over a hill,
the zero vorticity flow originally situated over the hill
will be pushed off and become a cyclone, which may
be completely or partially shed downstream. For our
problem, we need to allow such shed vorticity to pass
out of our limited computational domain. We have
actually performed our simulations with three differ-
ent codes with different boundary conditions to check
that the effects discussed here are independent of the
exact specifications of the boundaries. In one case, we
have a finite difference code in a rectangular domain.
Slip boundary conditions are used on the two walls
aligned along the flow direction. The velocity on the
inflow side of the channel is specified to be exactly
U in the z-direction and zero in the y-direction. The
outflow boundary has a radiation condition based on
the Orlanski (1976) scheme. [n the second case, we
replaced equation (7) with the following

I~ Un ) = =rCH OV (1)
where we have explicitly introduced the decomposi-
tion ¥ = ¢ — Uy. We solve this advection equa-
tion spectrally assuming 1 is periodic in both z and
y directions. We used the dealiased pseudospectral
method as described in Patterson and Orszag (1972).
The problem of the shed vorticity is dealt with by
adding to this code a physical space filter on the vor-
ticity. Specifically, the local vorticity, ¢, is set equal
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to zero every time step at all points beyond a cer-
tain radius, which is taken to be larger than L, the
representative horizontal scale of the topography. In
the third case, simulations were also performed with a
doubly-periodic spectral code. Here the shed vorticity
re-enters the domain, but when we are considering the
long term limit, when all transients have died out, this
does not adversely affect the results. All the results
reported below were found for all three types of codes
and thus appear, at least qualitatively, to be indepen-
dent of the details of the boundary conditions. This
was also checked by doubling the domain size and the
filter radius while keeping the resolutions fixed. Thus
the phenomena reported below appear local, limited
to the region where the confined topography is cen-
tered. Also, questions of sensitivity to computational
resolution were tested by running all simulations both
at resolutions 64 x 64 and 128 x 128, with additional
key tests at resolution 256 x 256.

Finally, we must specify the values of the viscous
coefficients in the evolution equation (14). When
considering stationary flow, the inviscid solution is
somewhat uninteresting from the point of view of
form drag because, in a manifestation of D’Alembert’s
paradox, there turns out to be no drag at all in that
case, as has been pointed out in Bannon (1980) and
elsewhere. In other words, if the perturbation flow is
stationary and confined (so that there is no possibility
of transferring energy into the flow or to infinity), then
there can be no energy input for there is no energy
sink (see Batchelor, 1967). Thus we have to decide
on what non-zero values to give for the viscous coeffi-
cients r and v. To limit our search of parameter space,
we have decided to set v = 0.01 and r = 0.2, taking
these values from the parameter range explored by
Verron and Le Provost (1985). In test cases we have
varied these values by over an order of magnitude in
each direction in order to verify that the phenom-
ena reported are not qualitatively sensitive to these
values; however, the results presented here, from se-
quences of simulations in which other parameters are
varied, all have kept these viscous coefficients fixed at
the values specified above.

Structure of the vorticity field

We consider flow over the elliptical hill with the
large-scale flow started impulsively. That is, the flow
is initially set at U/ = 1 everywhere. The large-scale
component of the flow is maintained at that value
thereafter. Initially there is no perturbation field, and

since there is no vorticity associated with the large-
scale flow, there is initially no vorticity anywhere in
the flow. As zero vorticity fluid is advected onto the
topography, it must develop negative relative vorticity
to compensate for the positive topographic contribu-
tion to the conserved potential vorticity, ¢ = ( + h.
Similarly, fluid advected off the hill must develop pos-
itive vorticity. Thus the earliest stage of evolution
involves the creation of negative vorticity on the up-
stream side of the hill and positive vorticity on the
downstream side. The later stages of evolution and,
in particular, the final stationary flow depend on the
strength of the topography. Here we shall take two
extreme cases, ho = 1 and hg = 100, to illustrate the
results for ‘weak’ and ‘strong’ topography, where the
magnitudes are suggested by the circularly symmetric
topography case in Verron and Le Provost (1985).

Weak topography

We illustrate the early evolution of the vorticity
field over the peak of the topography in the case
ho = 1 for positive and negative angles of attack
in Figure 3. In panels (a) and (c), the very earli-
est stage is shown. The time is ¢ = 0.1 after the
beginning of the evolution. Here we have zoomed in
on the flow over the topography, showing only the
central area of size 3 x 3 of the full 5 x 5 computa-
tional domain. The fluid particles have so far been
displaced approximately only a distance 0.1 in the
downstream direction. This results in a dipolar vor-
ticity distribution over the topography with roughly
elliptical structure for both components. As the large-
scale advection continues to have its effect, the core of
the trailing positive relative vortex is advected down-
stream to eventually leave the computational domain,
and this leaves primarily a negative vortex over the
topography. This is shown in panels (b) and (d) at
time ¢ = 1.4. By this time there has been advection
through distances greater than the topographic axes
lengths a and b. The peak amplitude of the fixed rel-
ative vortex at that time is —0.84, which is also the
final stationary flow value. Thus unlike the inviscid
case, the fixed vortex does not match the amplitude
of the hill, and so the potential vorticity over the hill
will not vanish. In this case, the relative vorticity is
also not perfectly elliptical. Instead, it is relatively
larger in magnitude on the upstream side than on the
downstream side. We can understand this as simply
the result of the fact that once the vorticity is created
on any fluid particle being advected over the topogra-
phy, the viscosity continually decreases the magnitude
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Figure 3. Vorticity contour plots showing the early evo-
lution in the weak topography case, ho = 1. The large-
scale flow comes from the left, and the top/bottom pan-
els represent the vorticity for the case where the angle of
attack is & = +/ — 30°. The left panels correspond to
time ¢t = 0.1, while the right are taken at t = 1.4. The
thick/thin curves correspond to positive/negative vortic-
ity levels. The contour interval is 0.05. The zero vorticity
level is not drawn. Only the central region of size 3 x 3,
of the computational domain of 5 x 5, is shown.

of that vorticity as the particle moves downstream;
hence, the vorticity will be stronger on the upstream
side. This asymmetry to the negative relative vor-
tex means that the potential vorticity field, ¢ = (+h
(not shown), over the topography will be dipolar with
negative potential vorticity on the upstream side and
positive on the downstream side, and this is also the
case in the final stationary flow.

In the long term, the core of the positive relative
vortex is shed downstream, eventually to be com-
pletely dissipated by viscous effects. However, a rem-
nant of this vortex is left with a peak situated down-
stream of the topographic peak. The final stationary
vorticity fields for cases representing four angles of at-
tack are shown in Figure 4. The angles represented
are @ = —90°, —30°, 0° and +30°. These results are
representative of the full set that we studied spanning
the range o = 90° in 5° increments. For all of these
cases, the local or perturbation flow due to the pres-
ence of the topography is weak in the sense that the
lines of flow or the contours of total streamfunction

(not shown) are all nearly parallel to the large-scale
flow direction.

For all angles of attack, there is a peak of positive
relative vorticity downstream of the negative vortic-
ity peak. It appears from these plots that the ampli-
tude of both the positive and negative vorticity peaks
depends strongly on the angle of attack. A quantita-
tive measure of this dependence for the whole range
of attack angles is shown in Figure 5a. We graph the
extremal values of relative vorticity as a function of .
The dashed curve corresponds to the absolute value
of the negative vorticity peak value, while the solid
curve is the value of the positive vorticity peak value.
The negative vorticity is strongest at o = 90° (coming
up to 95% of the value of the topography maximum)
and weakest for & = 0° and vice versa for the posi-
tive vorticity. To help understand these results, con-
sider the fluid element which comes from upstream,
crosses the peak of the topography, and then moves
downstream. A fluid element approaching from up-
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Figure 4. Contour plots of the stationary relative vortic-
ity field for the weak topography case, ho = 1, for various
angles of attack. These panels represent the stationary
vorticity field for flow over the elliptical topography for
the angles of attack @ = —90°, —30°, 0° and +30°, or-
dered from left to right, top to bottom. The thick curves
correspond to positive vorticity levels spaced 0.05 units
apart, while the thin curves correspond to negative vor-
ticity levels spaced 0.1 units apart. The zero vorticity level
is not drawn. Only the central region of size 3 x 3, of the
full computational domain of 5 X 5, is shown.
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stream has zero relative vorticity, and, for each ‘step’
that it takes going uphill, it acquires exactly enough
negative vorticity to balance the positive topographic
contribution in the conservation of the potential vor-
ticity. Thus for inviscid flow the stationary potential
vorticity is exactly zero everywhere with relative vor-
ticity being exactly anticorrelated with the topogra-
phy, ( = —h. With viscosity, however, the relative
vorticity generated on the fluid element by the to-
pographic effect also dissipates continuously. Thus,
when this fluid element reaches its highest point on
the topography, its relative vorticity will be weaker
in strength than it would have been inviscidly. Then,
as it descends the hill, the positive vorticity gener-
ated by the conservation of potential vorticity more
than cancels the relative vorticity remaining from its
climb with the destructive effects of viscosity acting.
Thus, net positive relative vorticity will result on the
descent. Of course, the positive relative vorticity on
the fluid element will continue to diminish as it moves
downstream. Furthermore, we see that the strength
of the positive vortex depends strongly on the angle of
attack. Of all the cases shown in Figure 4, the ascent
to the top of the hill by the fluid element is shortest
for a = 90°. In that case, there is little time for vis-
cosity to act during the ascent and descent. Hence,
the discrepancy between the total vorticity produc-
tion during those two phases is relatively small. In
contrast, in the case with & = 0°, the excursion to
the top is the longest, and hence the effect of viscous
decay on the vorticity is the greatest. Thus the posi-
tive relative vortex generated on the descent will the
the strongest of any angle of attack.

As we shall see in section 4, it is also of interest
to consider the position of the positive relative vor-
tex in relation to the topography. Clearly from Fig-
ure 4, the peak of positive vorticity will lie nearly on
the x-axis. A secondary advective effect, due to the
non-zero strength of the negative vortex, displaces the
peak of positive vorticity to a position below the z-
axis. The negative vortex over the hill induces posi-
tive velocity in the y direction (i.e., v = 99 /0z > 0)
on the upstream side of the topography and nega-
tive v on the downstream side. This secondary flow
tends to displace the positive vorticity in an arc in
the clockwise direction about the center of the topog-
raphy. In Figure 5b we plot the angle for the position
of the peak of the positive vorticity measured from
the direction of the nose of the topography. Also on
the same graph is a dashed curve showing the line of
no displacement. The fact that the observed displace-
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Figure 5. Position and amplitude of relative vorticity ex-
trema in the weak topography case, ho = 1. (a) The solid
curve shows the angular position of the peak of positive
relative vorticity. This angle is measured from the direc-
tion of attack, that is, from the direction along the long
topographic axis facing in the upstream direction. The
dashed curve shows the angular position, measured in the
same way, of a point on the z-axis (i.e. the curve of no dis-
placement). (b) The solid/dashed curve shows the mag-
nitude of the vorticity at the extremal positive/negative
value.

ment angles lie on a line that is predominantly above
the dashed line is due to the clockwise displacement
of the positive vortex.
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Figure 6. Contour plots showing the early evolution for
the relative vorticity field in the strong topography case,
ho = 100. The large-scale flow comes from the left, and
the top/bottom panels represent the vorticity for the case
where the angle of attack is « = +/ — 30°. The left
panels correspond to time ¢ = 0.1, while the right are
taken at ¢ = 1.4. The thick/thin curves correspond to
positive/negative vorticity levels. The contour interval is
4 in panels (a) and (c) and 2 in panels (b) and (d). The
zero vorticity level is not drawn. Only the central region
of size 3 x 3, of the full computational domain of 5 x 5, is
shown.

Strong topography

The structure of the vorticity field in the strong to-
pography case contrasts greatly with that in the weak
case. At the earliest times, when the large-scale flow
is first applied, the structure of the generated vortic-
ity field must be the same as in the weak topography
case since the same arguments for its generation ap-
ply again. However, that early phase is very short
lived because, for sufficiently strong topography, the
vorticity generated over the topography can induce
flows comparable in speed to the large-scale flow. In
Figure 6, we show the early evolution for the exam-
ple corresponding to ho = 100, at the same times as
shown in figure (3) for the weak topography case. Al-
ready at time ¢ = 0.1, when the fluid has only been
advected a short distance, the induced vortices are
strong enough to make their mutual interaction as im-
portant as the advection by the large-scale flow. By
this time, the early simple structure like that shown

in Figure (4), has already been disrupted by the dy-
namics of the induced vortices. Intuitive arguments
are much more difficult in the strong topography case,
and less trustworthy, so perhaps it is best just to at-
tempt a description at this point. In the o = +30°
case shown in Figure 6, panels (a) and (b), we see that
local vortex dynamics has already strongly distorted
the symmetric dipolar field. The positive and nega-
tive vortices have both developed two centers. Later
these interact in a complicated way and the positive
vorticity temporarily breaks into several pieces. The
strongest positive vorticity center is eventually shed
downstream and is just barely visible at the edge of
the region shown in panel (b), and the rest of the
positive vorticity joins together to form an elongated
patch. Alsoin panel (b) we note that the negative vor-
ticity has become concentrated at the ‘forward end’
or ‘nose’ of the topography, while the residual part of
the negative vortex has become elongated along the
upstream side of the topography. In the @ = —30°
case shown in Figure 6 panels (¢) and (d), the t = 0.1
vorticity structure has not departed as severely from

\_/

Figure 7. Contour plots of the relative vorticity field for
the strong topography case, ho = 100. These panels repre-
sent the stationary vorticity field for flow over the elliptical
topography for the angles of attack a = —90°, —30°, 0°
and +30°, ordered from left to right, top to bottom. The
thick/thin curves correspond to positive/negative vortic-
ity levels spaced 2.0 units apart. The zero vorticity level
is not drawn. Only the central region of size 3 x 3, of the
full computational domain of 5 x 5, is shown.
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the weak topography case. However, note the ten-
dency for the negative vortex to peak over the ‘tail’ or
downstream end of the topography, while the positive
vortex concentrates at the ‘mose.’ Later, the positive
vortex forms a secondary peak of weaker amplitude as
seen in panel (d), but this is then shed downstream.

The final stationary configurations for these two
attack angles are shown in Figure 7, along with the
a = 0° and « = 90° cases. The negative vortex is no
longer elliptical. For all the attack angles, the neg-
ative vortex is more concentrated at one end of the
topography, and the positive vortex is now no longer
simply trailing on the x-axis. Even though the neg-
ative vortex is now, at its most intense point, only
30% of the peak amplitude of the topography, the to-
pography is so strong that the nonlinear term J(#, {)
competes with the large-scale advection. The nega-
tive vortex here is intense enough to strongly displace
the trailing positive vortex from the positive z-axis.
For —90° < a < —15°, the negative vortex is concen-
trated at the tall of the topography, while the pos-
itive vortex is concentrated at the nose, although it
also has a broad tail elongated in the downstream
direction. As « increases, a secondary negative vor-
ticity peak develops. This is just beginning in panel
(b) at @ = —30°. From —30° < & < (°, the negative
vorticity has two peaks, the one near the tail, induced
primarily by the large-scale advection of fluid, and the
second induced by the influence of the positive vortex
advecting fluid off the peak and upstream along the
crest of the hill. At o = —15°, the negative vortic-
ity peak near the nose dominates, comprising, with
the primary positive vortex, a dipole at the nose. At
a = 0° (panel c), we see a secondary positive vortex
has also developed, and by o = +30° that trailing
positive vortex peak has higher amplitude than the
one at the nose. For moderate positive angles «, the
two distributions are broad forming a dipole with pos-
itive vorticity on the leading edge of the topography
and negative vorticity concentrated on the nose and
along the crest. The transitions from the dominance
of the original vortices present at o = —90° to the sec-
ondary vortices that develop are shown by the graph
in Figure 8b. The angle is measured from the direc-
tion of the nose, so the transition from 180° to 0°, on
the dashed curve, corresponds to the transition from
the trailing negative vortex at the tail to the leading
vortex induced by the positive vortex. The transition
from 0° to —180°, on the solid curve, corresponds to
the transition from the leading positive vortex at the
nose to the trailing positive vortex.
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Figure 8. Position and amplitude of relative vorticity
extrema in the strong topography case, ho = 100. (a)
The solid/dashed curve shows the angular position of the
peak of positive/negative relative vorticity. This angle
is measured from the direction of attack, that is, from
the direction along the long topographic axis facing in the
upstream direction. (b) The solid/dashed curve shows the
amplitude of vorticity at the extremal positive/negative
value.

In Figure 8a, we show the magnitude of the vortic-
ity extrema for the full range of attack angles. The
dependence on attack angle is somewhat more com-
plicated than in the weak topography case (note es-
pecially the minimum in the amplitude of the peak
positive vorticity at a = 30°). Nevertheless, like the
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Figure 9. Contour plot of the stationary total stream-
function for the strong topography case, ho = 100. In
panel (a), o = —30°, and in panel (b) o = +30°. The
contour interval is 0.1. Only the central region of size
3 x 3, of the full computational domain of 5 x 5, is shown.

weak topography case, the negative vortex is weak-
est/strongest for small/large angle of attack, and the
positive vortex is strongest for small angle of attack.
Note that the maximum negative vorticity extremum
is only 30% of the peak topographic amplitude as op-
posed to the 95% that is reached in the weak topogra-
phy case. Also, looking at the vorticity contour plots,
we see that the strong topography case is far from the
inviscid solution, { = —h.

In Figure 9, we show the total streamfunction for
the flow. Here we see that the induced negative vortex
is strong enough to reverse the flow locally and pro-
duce closed contours. We should mention that such
closed contours, or recirculating regions, would not be
possible for the stationary flow if the only dissipation
acting was Ekman bottom drag. This follows from the
fact that on any closed contour the fluid element cir-
culating over and over again on the same path would
have no way to replenish its decaying vorticity; how-
ever, the presence of Laplacian friction allows these
closed contours because there is then diffusion of vor-
ticity across them. As for the border between values
of topography for which these closed contours do or
do not form, this will depend on the attack angle as
well as the strength of the topography.

Remarks on the position of the cyclone in the station-

ary flow

The discussion above strongly suggests that in the
stationary flow there is always a cyclone to be found
near the hill, even if this is just a remnant of the orig-
inal transient cyclone. This is fairly straightforward
to prove in the case in which the bottom drag param-
eter, 7, is non-vanishing. The equation for the steady
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state is, from (14),
J(p = Uy, ¢+ h) = —r( + vV (15)

If we assume that the that ¢ and A vanish sufficiently
rapidly as the distance from the center of the hill in-
creases, then on integrating over the whole plane. we

obtain
r//(d:cdy: 0. (16)

Thus the circulation must vanish. Since { vanishes
at infinity, this means that there must be both pos-
itive and negative extrema somewhere on the plane.
Unfortunately, this proof tells us nothing about the
case in which » = 0. Qur experience with a few test
cases shows that even in that situation there is still a
remnant cyclone in the stationary flow as long as v is
nonvanishing.

At an extremum of ¢, its gradient vanishes. Hence,
from (15), we have

J(@ - Uy, h)e = —rCa + (vV°(z. (17

where all the terms are evaluated at the position, ry
of the maximum or at r_, the position of the mini-
mum. At the maximum, we have { = {4 > 0 and
(V¥)+ < 0, and thus J(y — Uy, h); < 0. This im-
plies that the position of the peak must lie on the
topography. Similarly, one can show that the mini-
mum ¢ must also lie over the topography. Now with
the Gaussian hill, the topography technically covers
the plane, but for compact topography, the extrema
of vorticity would clearly be restricted to lie in the
compact region defined by the hill. In the case of
strong flow, in which U dominates 1, we further have
that

U g—h— <0 (18)

Tl

implying that the cyclone must in that case (weak
topography) be on the downstream side of the hill.

Form drag in the stationary flow

Topographic form drag is the net force exerted on
the flow by the topography along the direction of the
large-scale flow. Consequently, the drag is the nega-
tive of the net force acting on the topography in flow
direction. To calculate the total force, F, acting on
the topography, we integrate the pressure force over
the entire surface of the topography: F = — [ [ pnda,
where n is the outward unit normal vector from the
surface of the topography, and da is the element of
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area on the surface. Since the surface of the topogra-
phy is defined by z = —Hy + AH(&,y), we have the
standard results:
oo (—O0AH [0z, —OAH [0y, 1)
1+ (0AH [0z)? + (0AH [0y)? ’

(19)

and

da = \/1+ (0AH/0z)? + (0AH [dy)?dzdy. (20)

Thus, the total force, F, in the z-direction is

. 0AH _ OAH
f~x_//p e da:dy_fp//\ll 32 dzdy,
(21)

where we have introduced the definition of the stream-
function in terms of the pressure in the last line. Con-
sider, for example, the case of flow in the positive
z direction impinging on a hill. If the pressure is
higher on the upstream side of the topography, where
OAH /dz is positive, than on the downstream side,
where A H /Oz is negative, then there is a net force
on the topography in the direction of the flow, as we
would expect. If we integrate by parts, we can ex-
press these results in terms of the pressure gradient
or, equivalently, the velocity field. Using the defi-
nition of the scaled topography, and integrating by
parts, we obtain

. o
F-x= —pHO//th dzdy. (22)

Thus we see that an enhanced pressure gradient on
one side of the topography relative to the other, yields
a net force on the topography.

The drag on the flow is the negative of the force on
the topography. The product pHy is just the mean
mass per unit area, and it is convenient to factor this
out of the definition for drag. Thus we shall define
this normalized drag as

D://h%‘fdxdy (23)

(¢f. Bannon 1985, Carnevale and Frederiksen 1987).

Considering the drag in the case of stationary flow,
we first check that the drag in the inviscid case is zero
as discussed above. The solution to the inviscid prob-
lem is given by ¢ = 0, that is, V24 = —h. Substitute
~V24 for h directly in the expression for D and inte-
grate by parts. All that remains after the integration
is a boundary term at infinity that vanishes. Next,
we -turn to numerical results for the stationary states

with viscosity. Asin the case where we considered the
structure of the vorticity field, we will see that the be-
havior of the drag is rather different in the weak and
strong topography limits.

Weak topography

To obtain the stationary flows for given topography
and large-scale flow velocity, we simulated the evolu-
tion, from an initial condition of uniform flow, long
enough in time for all transients to die down. In Fig-
ure 10, we show the results from a series of such simu-
lations performed with the periodic boundary condi-
tion code with spatial filter. In this series, the angle
of attack of the topography was varied from —90° to
490° in 5° increments. As in the previous section,
the weak topography case is represented by using the
topographic amplitude hg = 1. Since the form drag
is always negative, opposing the large-scale flow, we
consider only its magnitude. In Figure 10a, we plot
the form drag in the stationary state as a function
of the attack angle. The form drag is greatest when
the long axis of the topography is perpendicular (i.e.,
a = £90°) rather than parallel (o = 0°) to the flow.
As we might have expected from the discussion in the
previous section on the vorticity structure, the curve
is not symmetric about o = 0°. It appears that the
form drag is stronger for a positive angle of attack
than for a negative angle of the same magnitude. In
Figure 10b, we plot the relative variation of that dif-
ference, that is, we plot (|D(a)| — |D(=a)|)/|D(x)|,
where D(a) is the form drag for a given angle of at-
tack. The Figure shows that the difference is greatest
when the size of the attack angle is about 20°, with
a 2% variation at that angle. For somewhat higher
topographies (hg & 20), the relative variation reaches
about 20%, as we shall see below.

For the weak topography case, form drag depen-
dence on attack angle can be predicted from pertur-
bation theory. To examine the effects of weak topog-
raphy, we begin by rewriting the stationary form of
equation (14) as

U% +r{—vVH = —Ug—’; —J(@,C+h). (24)
We assume the primary balance for weak topography
is between the terms on the left, which are linear in
the vorticity, and the first forcing term on the right,
—U0h/dx. This permits us to treat the quadratically
nonlinear Jacobian term as a small perturbation. t
also means that at lowest order the streamfunction is
linear in the topography, and all succeeding terms are
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Figure 10. Form drag for the weak topography case,
hg = 1. This data is taken from simulations using the
spatially cutoff code. (a) The absolute value of the sta-
tionary form drag is plotted as a function of attack angle.
(b) The percent of relative variation of the difference be-
tween the drag at positive and negative angles of attack is
plotted versus attack angle. Specifically, the graph repre-
sents 100(D(e) — D(—«a))/D{a), where D(a) is the form
drag for a given angle of attack, o.

of higher integral order. Thus we write
=90 +9® 4@ (25)

C=¢@W 4@ +(® 4., (26)
where () = V2y(") = O(R}).

To evaluate the terms in the perturbation series, we
first take the continuous Fourier transform in both z
and y to obtain

05 G = —ikoUby — (W, ¢+ ). (20)
Here the linear Green function gy is given by

1

g 2
%= U+ d (28)

where d; = r+vk?, and Jy (A, B) is the Fourier trans-
form of the Jacobian of fields A and B. An explicit
formula for Jy (A, B) in terms of the Fourier trans-
forms of A and B is given in the appendix.

The first and second order solutions can then be
written as

gf(l) = ik, Ugyhy, (29)

and "
¢7 = g S (¥, ¢ + h). (30)

The form drag can now be calculated order by order.
Directly from the formula (23) for the form drag and
the fact that the streamfunction at lowest order is
linear in the topography, we see that the form drag
is quadratic in the topography at lowest order. Thus
the perturbation series for the form drag will be

D=D®4+D® 4 DW 4 (31)

Using the Fourier transform within the formula for
the form drag, we have

B oY B 1k, d%*k
D——//ha—xdxdy_—//ﬁ-ckh_kmw)z.
(32)

Then by direct substitution of (29) into (32), we ob-
tain

k2 d%k
(2) — _ Zz 2 2"
D U//kzgklhk| @) (33)

k2(—ikyU + d)|h |2 d%k
k2(U2k2 +d2)  (2m)2

Notice that the last expression is decomposed into a
real and imaginary part. But the form drag is a real
quantity. The vanishing of the imaginary part of the
integral can be checked by considering the change of
sign k — —k for the dummy integration variables.
Since the topography is real we have the Hermiticity
constraint, hi”( = h_k, and so ‘hk[2 is unaltered by
this sign change. Thus we see that the imaginary part
of the integrand changes sign under this sign reversal
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and so must vanish on integration over the range from
—o0 to +oo for k; and ky. Finally we have

K2dlh |2 d%k
(2) _ _ k1K
= [ [ e ey ®
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Figure 11. Form drag from weak topography perturba-
tion theory for ho = 1. (a) The solid curve is the form drag
from the fully nonlinear simulation. The dashed curve
is the prediction of the lowest order perturbation theory,
D3 (here in units of 107%). (b) The open circles mark the
results for the relative variation of the difference between
the drag at positive and negative angles of attack for the
fully nonlinear simulations. The sohd curve shows the
prediction of the perturbation theory truncated at next
to lowest order, that is with D &~ D(®) 4+ D),
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It is difficult to apply this perturbation theory,
meant for the infinite domain, directly to the simula-
tions with the channel and radiation boundary condi-
tions or the spatially filtered simnulation. However, for
simulations with periodic boundary conditions, the
result is simply a discretization of the continuous for-
mulas. We used a quasi-geostrophic doubly periodic
code to calculate the stationary solutions for the same
set of experiments used to make Figure 10. In Fig-
ure lla, we compare the actual result for the depen-
dence on « for the full nonlinear doubly periodic cal-
culation with the lowest order result. Although the
quantitative values are somewhat different than for
the case with the spatial filter, qualitatively they are
alike. In Figure 11a, we see that the lowest order per-
turbation theory does account for most of the form
drag. The small difference is essentially due to the
next order term in the theory, but before proceeding
to show that, let us first note that the lowest order
form drag, D(®) is symmetric in the attack angle. In
fact, this will be the case for any topography with a
reflection symmetry. Let us include the dependence
on the attack angle explicitly. We can define the at-
tack angle either with reference to the angle between
the line of symmetry or perpendicular to it. Then
we can write h(z,y;a) = ¢(2',y'), where 2’ and y
are just the rotated coordinates defined previously in
equations (11) and (12). A reflection symmetry cor-
responds to the fact that either ¢(z,y) = ¢(—z,y) or
é(z,y) = ¢(x, —y). We shall write the Fourier trans-
form of h{xz,y;«) as fzk(a). By using the fact that
rotations do not change area, this Fourier transform
is found to be

hy () = Gk}, k), (36)

where @(kz, k,) is the Fourier transform of ¢(z,y),
and
ki = kycosa + kysina, (37)

ky = —kgsina + ky cos . (38)
By direct substitution in equation {35), we have

k2di|p(kL, k5)[2 d2k
(2) - _ AR
b U// k2(U2k2 + d?) (2m)? (39)

k2 Zdy
4
- | [ mmier @
d*k

(22
(41)

X |¢(kz cos o + ky sin @, —k, sin @ + ky cos )|
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Thus,

k2d
D(—a) = “U//k2(U2k2k+d2) (42)

2L

% |p(ky cos a — ky sin o, kg sin a + ky cos a)|? (2732 .

(43)
If ¢(x,y) = #(—x,y), which implies (—kz, ky) =
qg(k'x, ky), then the substitution k; — —k, shows that
D) (—a) = D®)(a). If ¢(z,y) = ¢(z, —y), then the
same point is demonstrated by the change of variables
ky — —ky.

These results show that the asymmetry in the form
drag, as seen in Figure 10, must come from higher or-
der terms in the perturbation theory. We shall next
demonstrate that for hg = 1 the second term in the
perturbation series captures the observed deviation
from symmetry very well. That term, D®) is de-
rived in general form in the appendix. If the topog-
raphy has the point reflection symmetry h(z,y) =
h{(—z,—y), as is the case for the elliptical topogra-
phy, then the expression for D®) simplifies and we
have

D(3) = —U3/dedqqgkszq:vbkbpbq'DkPQ’ (44)

where

hy
% = mm v @ 2y’ (45)

and

&2k d2p &2q

as shown in the appendix.

If, in addition to the symmetry of reflection in a
point, the topography is also symmetric to reflection
through a line, then we can show that D(®(a) =
—D®)(—q). For example, if the topography is sym-
metric about the y/-axis, then hg_ i (o) = U A

21y

é(~ Icz, ky) = h_i k,(—a). Thus, a change of vari-
ables in which all k., p;, ¢, change sign in the ex-
pression for D()(~a) shows that the integrand is
simply the negative of that in the expression for
D®)(a) (note that 2 - p x q changes sign). Similarly
if hg, 1, (o) = by, 1, (—a), then a change of variables
in which all &y, py, ¢, change sign, in the expression
for D3 (—a), shows again that the integrand is sim-
ply the negative of that in the expression for D®)(q).
By rotation, this result can be further extended to
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Figure 12. Antisymmetric contribution to the form drag
from the next to lowest order in perturbation theory,
D®)(@). The calculation is made for the doubly peri-
odic boundary condition case. This contribution accounts
almost entirely for the difference between the dashed and
solid curve in Figure 1la. D(g)(oz) is measured here in
units of 107%.

the case for topography with reflection symmetry in
any horizontal line. For the periodic boundary condi-
tion case, it is again an easy matter to calculate the
theoretical drag by discretizing the Fourier represen-
tation. In Figure 11b, we show the relative difference
between the form drag for positive and negative an-
gles of attack (open circles) calculated from the fully
nonlinear simulations with periodic boundary condi-
tion. These values are compared to the predictions
(solid curve) from the perturbation theory truncated
at the D®(a) contribution. For this weak topogra-
phy case, the match is almost perfect. The form drag
contribution coming solely from D®)(a) is shown in
Figure 12, and is antisymmetric as anticipated.

Strong topography

As we increase the amplitude, hg, of the topogra-
phy, the perturbation theory can be expected to fail.
In two series of experiments, in which the angle of at-
tack was fixed at £30° respectively, the topography
amplitude was varied from 1 to 150. The absolute val-
ues of the stationary form drag for these experiments
are plotted in Figure 13a. The solid/dashed curve
corresponds to the experiments with attack angle
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Figure 13. Form drag as a function of topographic
height. (a) Two series of experiments are represented,
with the angle of attack, w, fixed in each series at +30°
and —30° respectively. The solid/dashed curve shows the
absolute value of the stationary form drag from the exper-
iments with o = +/ — 30°. Note that at b == 15 there
is a cross-over between the regime in which the positive
angle of attack gives a stronger form drag to the regime
with just the reverse relationship. b) The relative differ-
ence in form drag strength between the plus and minus
30° cases is plotted as a function of topographic strength
(the dashed line is simply the zero level).

+/—30°. Firstly, we note that for the range of topog-
raphy roughly from ho = 1 to hg = 15, the form drag
for both curves is approximately a quadratic function

of hy. This is what one would expect in a weak to-
pography regime where D) the lowest order approx-
imation to the form drag, would dominate. Also note
that, in this region, the strength of the form drag for
the positive angle is stronger than that for the nega-
tive angle. Near hq = 15 there is a transition to a new
regime where the scaling with topography no longer
follows the quadratic law. In the strong topography
regime, the drag seems to increase with topography
amplitude roughly as h3-3. Also in the strong topog-
raphy regime, the relation between the form drag for
positive and negative angles has reversed, with nega-
tive angles of attack corresponding to stronger form
drag than positive angles. This last point is empha-
sized in Figure 13b, where the relative difference in
form drag strength between the plus and minus 30°
cases is plotted as a function of topographic strength.

As an example of the functional dependence of the
form drag on angle for a case of strong topography,
we plot this relation for the case of hp = 100 in Fig-
ure 14a (solid curve). There have been several papers
which discuss in part the theory of strong topographic
forcing (cf., Pierrehumbert and Malguzzi, 1984); nev-
ertheless, we have not been able to predict the shape
of this form drag curve. We note that this curve is
somewhat broader about o = 0° than the correspond-
ing curve for hg = 1 in Figure 10a. As an aid to judg-
ing the symmetry and smoothness of the curve, we
have also plotted the symmetric dashed curve corre-
sponding to Asin? o + B cos® a, where A and B were
chosen so that the two curves would have the same
extremal values. In Figure 14b, we plot the relative
difference in strengths between positive and negative
angles of attack. The shape of the curve is similar to
that shown in Figure 10b except, of course, for the
sign since in this regime the negative angles corre-
spond to stronger form drag. Here we see that the
maximum difference is about —18% at around attack
angle |a] = 20°. This is a great deal stronger that
the hg = 1 case, but similar to the results for hg = 15
(see Figure 13b), which is still in the regime where
the positive attack angle leads to the stronger form
drag.

The crossover from the weak to the strong topog-
raphy regime seems, from Figures 13a and 13b, to
occur roughly near hg = 15. As we noted above, in
section 3, when hg = 1 the total streamfunction is
only slightly perturbed from that for uniform fiow,
but for topographies as strong as ho = 100, a Taylor
column, i.e. a region of recirculating, closed stream-
lines is evident (cf. Figure 9). It is tempting to try
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to attribute the transition of the form drag behavior
in the weak and strong limits with the occurrence of
the Taylor column. However, the formation of Taylor
columns occurs in these simulations for topographic
amplitudes above roughly hy = 50, depending some-
what on the angle of attack, and not at hy = 15.
Of course, in the regime from hy = 15 to hy = 50,
the streamlines are strongly distorted from the un-
perturbed case of uniform flow even though closed
contours do not form. The behavior of the form drag
as a function topographic height, as well as its depen-
dence on attack angle, are better understood in terms
of the structure of the stationary vorticity field, as we
will now consider further.

Effects of the structure of the vorticily field

In order to try to build some intuitive understand-
ing of these results on the form drag, we shall examine
the vorticity field associated with the stationary flow
for the weak and strong topography cases. Consider
the o« = —90° case in Figure 4a along with the formula
(23) for the form drag. The negative vortex over the
hill induces a positive pressure gradient, v = d/0z,
on the upstream side of the topography, and a nega-
tive v on the downstream side. If these pressure gradi-
ents on each side were equal in strength, then the form
drag would vanish as in the inviscid case. The pres-
ence of the positive vortex, on the downstream side of
the hill, will increase the magnitude of v on that side
relative to the upstream side. Thus, on multiplying v
by h and integrating, the net effect is a negative form
drag. The same analysis applies in the o = 0° case
(panel 3c). In both the & = —90° case and the o = 0°
case, there is an enhanced gradient of pressure on the
downstream side that accounts for the negative net
form drag. In the & = —90° case, this enhanced pres-
sure gradient lies along the whole downstream side of
the topography, while in the o = 0° case, the region
of enhanced pressure gradient is aligned perpendicu-
lar to the long topographic axis. The result is that
so only a smaller portion of the region of enhanced
pressure gradient effectively contributes to the form
drag in the o = 0° than in the o = —90° case.

Now we turn to the question of why, in the weak
topography case, the drag is stronger for the positive
angle of attack than for the negative angle of the same
magnitude. In the perturbation theory, we noted that
the lowest order form drag does not have this asym-
metry, and it is necessary to go to the next order to
capture this effect. This higher order effect results
from the nonlinear advection produced by the Jaco-
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Figure 14. Form drag for the strong topography case,
ho = 100. This data is taken from simulations using
the code with spatial cutoff. (a) The absolute value of
the stationary form drag is plotted as a function of at-
tack angle. This is compared to the fit to the symmet-
ric curve Asin2(a) + Bcosz(nf) with A and 3 chosen
to give a good fit at the extremal values of the data.
(b) The relative variation of the difference between the
drag at positive and negative angles of attack is plot-
ted versus attack angle. Specifically the graph represents
100(D(a) — D(—a))/D(a), where D(a) is the form drag
for a given angle of attack, a.

bian, J(¥, h+ ¢{). In the appendix, we show that the
interaction, J(¢,h), does not coutribute at the or-
der of D®) for elliptical topography. Thus it is only
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through the vortex-vortex interaction, J(,(), that
D®) contributes to the drag. Physically this term is
related to the tendency of negative vorticity over the
topography to displace the positive vortex in an arc
in the clockwise direction about the center of the to-
pography. In the & = —30° case, in panel 3b, the
negative vortex is displaced away from the crest of
the topography and away from the region of negative
vorticity. This results in a weaker induced pressure
gradient compared to what it would have been with-
out this angular displacement. In the o = +30° case,
in panel 3d, the negative vortex is displaced toward
the crest of the topography and toward the region of
negative vorticity. This results in a stronger induced
pressure gradient compared to the lowest order case.
Thus the form drag is stronger for the positive « case
than for the negative o case. If we imagine steadily
increasing « from o = —90, we see the positive vortex
first on the left side (looking upstream) of the crest
of the topography, then at o = 0 lying right over the
crest, and then on the right side for a > 0. Thus for
a < 0, the nonlinear advection displaces the negative
vortex away from the topography, while for « > 0
the displacement is toward the topography. This ac-
counts for the result that the form drag is stronger
for positive angles of attack than negative angles of
the same size.

Given the above analysis for the weak topography
case, how can we understand the transition to what
we have called the strong topography regime in which
the form drag is stronger for the negative angle of at-
tack than for the positive angle? As noted above, this
effect is not directly related to the formation of Tay-
lor columns. Instead, the answer will be found in the
relative positions of the vortices with respect to each
other and to the topography. Figure 15 displays data
gathered from a series of experiments representing to-
pographies with amplitudes from hy = 1 to kg = 50,
and to angles of attack o = £30°. The positions of
the peak of positive relative vorticity (triangles) and
negative relative vorticity (dots) are shown over el-
lipses which represent the topography. First of all,
note that for the hg = 1 case, the negative vortex
peak is located almost directly over the center of the
topography, and as hq increases, it is displaced along
the crest, toward the nose of the topography in the
o = +30° case, but toward the tail in the o = —30°
case. For hg = 1, the positive peak vorticity is lo-
cated slightly below the z-axis, directly downstream
of the center of the topography. As hg increases, the
displacement of the positive vorticity peak is rather
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Figure 15. Positions of vorticity extrema for different
values of the topographic height, ho. The flow is in the
positive z-direction, and the orientation of the topogra-
phy is indicated by the ellipses, with & = +30° in panel
(a) and @ = —30° in panel (b). The position of the pos-
itive (negative) vorticity peaks are indicated by the solid
triangles (circles). The topographic heights represented
are ho = 1, 10, 15, 20, 25, 30, 40, and 50. In each panel,
for ho = 1, the negative vortex is located approximately
over the center of the ellipse, and the positive peak is just
slightly below the z-axis, dircctly downstream of the cen-
ter of the ellipse.

different for the two topographic orientations. For the
a = —30° case, the peak of positive vorticity simply
moves further and further toward the nose of the to-
pography but always remaining on the downstream
side. For the @ = +30° case, the positive vorticity
peak is displaced in an arc. Between hy = 10 and
ho = 15, this peak crosses over the crest of the topog-
raphy, moving from the downstream to the upstream
side. From hg = 15 to hg = 40, the peak 1s displaced
more and more toward the nose of the ellipse, remain-
ing always on the upstream side. There then appears
to be a discontinuous jump with a large displacement
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putting the hy = 50 position back downstream but
still on the upstream side of the ellipse. Actually this
discontinuity in the graph is related to the fact that,

in the positive o cases, with very strong topogra-
phy, there are two peaks of positive relative vorticity,
as we can see in Figure 7d. Between hg = 40 and
ho = 50 the trailing positive vorticity peak becomes
stronger than the leading one, resulting in the jump
in the graph in Figure 15a. The value of hg for which
this jump occurs is also approximately the value of
topography for which Taylor column formation first
occurs. However, as we noted before, the transition
to what we have called the strong topography regime
occurs at the much smaller value of kg &~ 15. This
shows that the relevant effect is that for hg & 15 the
positive vortex peak crosses over from the trailing side
of the topography to the leading side in the o = 430°
case, while no such transition occurs in the o = —30°
case.

We have found that a simple point vortex model
based on the idea that it is the position of the pos-
itive vortex that determines whether we are in the
strong or weak topographic regime can capture the
transition between these regimes. Consider replacing
the actual positive and negative vortices by two point
vortices, one of each sign. Note that if the negative
vortex was exactly at the center of the topography,
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Figure 16. Drag due to a positive point vortex. The
solid (dashed) curve shows the value of the drag, D, for
the angle of attack @ = +30° (@ = —30°). The drag is
given as a function of the angular position, #, measured
from the positive z-axis, of the point vortex. The distance
of the point vortex form the center of the topography has
been fixed at ro = 0.4. The drag is normalized by hoT,
where h¢ is the topographic height and T is the strength
of the point vortex.

then, by symmetry, it can have no contribution to
the form drag. For topographic strengths less than
ho ~ 15, the negative vortex is only displaced by a
relatively small amount from the center of the topog-
raphy; hence, as a first approximation, we neglect its
contribution to the form drag and consider only the
contribution coming from the positive vortex. Let us
further assume that the only effect of increasing the
strength of the topography is to change the angular
position (f measured from the z-axis) of the positive
vortex. Accordingly, in the model, the positive vor-
tex is taken to be a fixed distance rg from the center
of the topography. Thus, we evaluate the contribu-
tion to the form drag from a point vortex placed in
the position (rg cosf, rosin @) as a function of #. The
streamfunction for a point vortex of strength T at this
position is given by

b= % In(jr — ro|). (47)

The resulting form drag is

D=L / / T pdedy. (48)
27 —

|r I‘o]2

Performing the integration numerically, and varying
only the angle 8, we obtain the plots shown in Figure
16. The solid graph is the drag, normalized by I'hq,
for the topographic orientation o = +30°, and the
dashed graph is for a = —30°. Keeping in mind that
for this model the magnitude of the angle # corre-
sponds to the height of the topography, we note that
for small @ the drag is stronger (i.e. more negative)
for positive « than for negative «, and vice versa for
large |#|. Thus, this point-vortex model does capture
the same behavior, at least qualitatively, that we ob-
served in the simulations. Here we have used ry = 0.4
in the calculations of the drag. The angle § at which
the model passes from the weak to the strong regime
is about § = —30°, which corresponds to placing the
point vortex right over the crest of the topography.
However, the cross-over point does depend somewhat
on the value chosen for ry. Furthermore, note that
as the angle § becomes very large, a point will be
reached at which the point vortex contributes posi-
tively to the form drag, as may be intuitively obvi-
ous. But, of course, the total drag must be nega-
tive, so it is clear that for very large displacements,
6, the contribution of the negative vortex cannot be
neglected. To properly capture all aspects of the de-
pendence of form drag on topographic orientation and
height would require a far more elaborate model than
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our one point model. Nevertheless, this model does
capture the essential feature of the form drag’s asym-
metric dependence on the sign of « in the weak and
strong topography regimes.

Conclusion

We have explored how the drag that an elongated
hill exerts on a flow, in a rotating fluid, depends on
the orientation of that hill with respect to the flow
direction. As might be expected intuitively, the drag
is strongest when the hill’s long axis is perpendicular
to the flow direction, and it is least when that axis
is parallel to the flow. A somewhat less intuitive re-
sult was that the strength of the form drag, even for
hills with a horizontal cross section which is symmet-
ric about its long axis, depends not only on the size of
the “angle of attack,” but also on the sign of that an-
gle. We related this asymmetric dependence on angle
to an interaction between the basic asymmetry in the
mechanism of vortex tube compression and the break-
ing of the circular symmetry of the topography. The
advection of zero relative vorticity fluid up onto the
topography always results in an anticyclone over the
topography and this tends to shift the downstream
cyclone in an anticyclonic direction, which puts the
cyclone either closer to or further from the topogra-
phy depending on the topographic shape and orienta-
tion. Whether a positive angle of orientation results
in more or less drag than the corresponding negative
angle depends on the height of the hill. We defined
a weak and strong (i.e., low and high) topography
regime. For weak topography, the drag is stronger
for a positive angle of attack than for an angle of the
same size but opposite sign. For strong topography,
this relationship is reversed, with the negative angle of
attack giving the stronger form drag. It is often con-
venlient to associate Taylor column formation with a
strong topographic regime. However, in this study, we
found that the formation of Taylor columns did not
signal the transition from the qualitatively different
behaviors of the form drag in the weak and strong
regimes. Rather, we found that these regimes were
defined by the qualitatively different distributions of
vorticity over the topography. The weak topography
regime corresponds to the case in which the positive
vortex is located on the downstream side of the to-
pography for both the positive and negative angle of
attack, while, in the strong topography regime, the
positive vortex is on the downstream side for the neg-
ative angle of attack, and on the upstream side for the
positive angle of attack. We also provided a simple

point-vortex model which captures these same effects.

In these studies, we have explored a wide range of
values of the topographic height. The values of the
viscosity were also varied in test cases designed sim-
ply to insure that the phenomena reported do exist
over a range of over an order of magnitude in each di-
rection for v and r. There are, of course, many other
physical effects that we have not included in the sim-
ple model used here, and some of these could modify
our results. Perhaps the most interesting eflects to
consider would be those that would allow the propa-
gation of waves. Recall that, as we noted above, in
the absence of viscosity, in our simple model, the in-
viscid stationary flow suffers no form drag due to the
presence of the hill; a manifestation of D’Alembert’s
paradox. Ilowever, the possibility of radiating energy
infinitely far away, allows for a finite drag even in the
inviscid case (see Batchelor, 1967). Two very natural
candidates for such radiation would be Rossby waves
and internal gravity waves. Rossby waves will result
either from a large-scale bottom slope or a variation
of rotation rate with latitude. Internal gravity waves
require density stratification.
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Appendix: calculation of D®

The basis for small topography perturbation the-
ory was developed in equations (24)-(35). Since the
drag,

= - —— | 2o h oy ——
D / e dzdy / 02 Ckh_x Tk

explicitly contains the topography to the first power,
and since the vorticity,

<:<(1.)+<(2)+C(3)+_”’

is at lowest order proportional to the topography, it
follows that the lowest order contribution to the form
drag, as given in (35), denoted by D®) is second
order in the topography. The next order term D®) is
given by

'ikl- (2) de.
DB = -] =% kg (A1)
and since
G0 = —a (¢ ), (30)

this is the lowest order term to involve the nonlinear
self-advection. The Fourier transform of the Jacobian
can be represented as

Jx (4, B) :/e'ik'r(a—A?ﬂ - B_AE)_B)er (A2)

- / FRTHPTHAT) g, — pyg,)

2, 2
X Aqudzr(%;-)% (7d7;§—2
d’p d%q
(2m)? (2m)?’
where % -p x q = (pzgy — Pyqr) and 6(-) is the multi-

dimensional Dirac delta function.

- /z b x aApBq(27)*5(~k+p+q)

Now we can calculate the D) term. Begin by
changing the sign of the dummy integration variable,
k, in (A1), and substituting for ¢'*) from (30) to ob-
tein ® L p®

3) _ 3 3
D® = D + Dy,
ik d’k
=— | ZZg 3 J (@) (D) 4 hYhy ——=.
Here we consider the two components, DLJS;L and Dy ¢,
which correspond to vortex-topography and vortex-
vortex interactions separately. After introducing the
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expression for J and the definition (28) for the
linear Green’s function, we obtain, for the vortex-
topography contribution, the result

3) . kepe
Dt(/),h =h= _U/ k2p? 9-kIphkhphaPkpq
(A3)

=—U/thwJﬂ+ﬂ¢H4wm%—m@H

(A1)
where
kaqz(i-pxq)
&2k dPp d%q
2
XSk 4P+ ) s ol (49
and L
_ k
h = ———sr. 4
k= B2(02%2 + d7) (45)

Note that since the Dirac delta function forces k +
p +q = 0, it follows that k x p = —k x q = q x k,
and so ka qa is symmetric under cyclic permutation
of the wavevectors {k,p,q}, and it is antisymmetric
under their pairwise interchange.

The first term in the integrand of the integral
sz;} = I, integrates to zero. To see this, note that
this term is antisymmetric under the interchange the
dummy variables k and p. since kaq = _Dpkq
while the rest of the factors are symmetric in these
variables. Subsequently, integration over k and p
eliminates this antisymmetric term, leaving

I = —il? / kopo(kodp — pedi)brbphyDy g (A5)

In general, I; need not vanish; however, it will vanish
if the topography has the point reflection symmetry,
h(z,y) = h(—=,—y), as is the case for our elliptical
topography. The point reflection symmetry implies
hy = h_g. If the topography has this symmetry,
then changing the signs of all three wavevectors of
integration changes the sign of the integrand (note
Dxpq = D—k,-p,—q)' Thus, the vortex-topography
interaction contributes to the form drag, D) only if
the topography does not have point reflection sym-
metry.

Next we turn to the vortex-vortex interaction. For
this we have

3 kxp:v .
Dy ==U / kzpzg—kgphkhI)hQ('“IxUg(l)kaq
(A6)

=—U/hmwwﬂﬂ+@%Hdmm%—m%H

(AT)
ig:U(=1gz + dy)
e 1 ) .
x( (q2U% + d2) )by Phqupq

Expanding this integral further leads to an integrand
containing several terms, but most of these can be
shown to vanish by using the symmetry properties of
’kaq. There are five different kinds of terms which
appear in the expansion. We will name these I; for
i =2-6, and discuss cach separately.

The next integral to consider is
I, = z'UZ/qzk'rpqudkdpdqbkbpbﬂ)kpq. (A8)

This integral vanishes for any topography. To demon-
strate this, we first note that the fact that ’kaq =

_Dkqp allows us to write

I = %U2/(q2 — P )kepegs didpdgbibpby Dy pg-
(A9)
Then, by using the cyclic permutation symmetry of
’kaq, we obtain

i ,
I = gU? /[(q2 —p) + (K = p") + (P’ — ¢*)]
x kePatzdidydgbibpby Dy p g (A10)

This last expression is seen to vanish identically on
noting that the terms within the square brackets sum
to zero.

The next contribution is the integral

I = iU* / ¢Pdk2p2asbibyb Dypq- (AL

This integral also vanishes for all topography as can
be seen by interchanging the dummy variable k and
p and noting that the integrand then reverses sign.

Continuing, we have

I, = iU4/q2(kwdpq:v - pz'q:cdk)krprJ:bkbpqukpq-
(A12)
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This expression can be simplified by interchanging k
and p in the second term in the integrand and then
adding the result to the first term. Thus

Iy = 2%U° /qzdpkzpqubkbpqukpq.

As in the case of I, the resulting integral vanishes
if h = h_g. This can be seen by noting that the
changing the signs of all three wavevectors of integra-
tion simply changes the sign of the integrand. Thus
I; only contributes to the form drag if the topography
does not have point reflection symmetry.

The next integral 1s
Iy = U5/q2k§pf,q§bkb,,bq7)kpq. (A13)

We can see that this integral vanishes for all topogra-
phy by using the same steps that we used in the case
of IZ .

The final integral is
Ie = ~U3/q2(krdpdq — prdydy — qudidyp)

X kePrqebrbpbeDyp - (Al4)

The third term in the parenthescs will not contribute
to the integral since for that term the integrand is
antisymmetric under interchange of k and p. Then
by interchanging k and p in the second term in the
mmtegrand, we obtain

Is = —QUB/qzk'zdpquxpxqzbkbpbqvkpq (A15)

Fven for topography with point reflection symmetry,
this term need not vanish. Hence it is the only third
order term that will contribute in the case of our el-
liptical topography.

To summarize, we have shown that in general
D® = I + I4 + I, but in the case of topography
with point reflection symmetry, as is the case of the
elliptical topography, both I; and 14 vanish. Also we
have shown that for elliptically symmetric topogra-
phy, there is no contribution to D3 directly from
the vortex-topography interaction, except indirectly
through the vortex-vortex interaction.




