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Abstract. A numerical g-coordinate ocean circulation model is used to investigate the strength and spatial
structure of rectificd flow at the flanks of a tall and steep isolated seamount. This study is closely related to and
motivated by the studies of flow around Fieberling Guyot in the northeast Pacific; however, an idealized form of
the topography, both smooth and with irregularities, is prescribed. A series of experiments with varying resolution
and geometrical/environmental parameters is analyzed for mean flow generation. A regime is found where the
presence of the rectified flow influences the wave amplification. The efficiency of the rectification mechanism is
quantified for a wide range in parameter space. The along-isobath flow is generally bottom intensified, with its
maximum very close to the seamount's summit. Finally, the model results are briefly compared to simple
theoretical concepts for parametrization of flow-topography interaction effects.

Introduction

Isolated submarine topography is known to be the
source of mesoscale variability in the ocean and therefore
of great importance for the local and regional
environment. Time-dependent forcing will generate
transient density perturbations and flow intensifications at
the seamount which propagate in form of “seamount
trapped waves” clockwise (on the northern hemisphere)
along closed depth contours. In particular, periodic
forcing is capable of producing a strong wave response by
resonant amplification. In addition to these time-variable
phenomena, steady solutions of flow around isolated
seamounts exist: both are due to the steady part of the
forcing (uniform far field “climatological” flow) and to
the nonlinear rectification processes at the seamount itself.

There is a large body of literature on the influence of
such isolated topography on the circulation in the ocean
and atmosphere. Hogg (1980) gives a comprehensive
overview of early theoretical studies. Recent observations
(Eriksen, 1991; Brink, 1995), advanced analytical
treatment of quasigeostrophic flow past obstacles (Fennel
and Schmidt, 1991), and laboratory realizations of
stratified seamount trapped waves (Codiga, 1993) are
evidence for continued and even increased interest.

The purpose of numerical modeling is to extend these
prior studies to more realistic (fully non-linear) regimes.
Progress with primitive equation modeling of steep and
tall topography was made only very recently (Chapman
and Haidvogel, 1992, 1993; Haidvogel et al.,, 1993). In
idealized configurations smooth, symmetric seamounts in
a fluid with linear or exponential stratification and forced
by steady or diurnally varying barotropic ambient flow are
studied.

In an attempt to prepare us for models featuring real
bathymetry, some of the following questions will be
addressed:
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— the role of resolution;

— the role of individual processes (nonlinearity,
stratification); and

— the role of topographic scale changes and
irregularities.

Finally, the implications for parametrization of the
mean flow rectification will be considered briefly.

The Spatial Structure of Trapped Flow
at Seamounts

Seamount Trapped Waves

Theoretically, an infinite set of trapped waves exists at
isolated seamounts, at discrete sub-inertial frequencies
and azimuthal wavenumbers (Brink, 1989). In practice,
only the gravest modes have been observed in reality and
found in numerical models. The linear waves have one up-
and one down-welling lobe; most of the flow crosses the
seamount's summit and returns at the flanks (see Brink,
1989). These waves were found to occur broadly in
parameter space, both as a function of stratification and
forcing frequency (Haidvogel et al., 1993). Trapped
waves of near-diurnal frequency are of particular interest,
because the forcing at the tidal periods K; and O, are
dominant in many parts of the open ocean.

In previous studies on the influence of stratification, the
Burger number

* NH

fR
has been used as a combined measure of stratification and
rotation, where N is a vertical average Brunt-Viisild

frequency, H the maximum water depth, f the Coriolis
parameter and R the horizontal scale of the seamount.
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Acknowledging that seamount trapped waves are in
most cases limited to the upper flanks of the topography,
the choice of N and H as representative of the whole water
column seems inappropriate. Consequently, for this study
the Burger number was defined as the first internal Rossby
radius of deformation rp at the seamount's summit relative
to the seamount radius R,

§=2

R’ (1b)

thus representing an integral measure of the stratification
at the location of the maximum of the seamount trapped
wave. We will look at values of S of order 1. For
comparison, the Burger number range in the Haidvogel et
al. (1993) study is S=0to 0.2.

Time-Mean Flow

The time-mean flow at isolated seamounts can reach
0O(10 cm s7) (e.g., Brink, 1995 at Fieberling Guyot), about
50% of the observed wave amplitude. This mean flow is
thought to be the result of non-linear momentum and
density advection of the seamount trapped wave. The
strength of the mean circulation depends first and
foremost on the amplitude of the generating wave, which
in turn is a function of the environmental parameters (like
stratification, rotation, forcing). The rectification
efficiency (defined as mean flow amplitude relative to
wave amplitude) found in numerical models (see
Haidvogel et al., 1993) is a few tens of %, even at
maximum resonance.

The dynamical balance for the dominant azimuthal
component of the mean flow consists of radially inward
(upslope) directed horizontal eddy fluxes of momentum,
compensated by radially outward (downslope) mean
advection. Correspondingly, the net inward mean
transport of heat is balanced by outward eddy heat fluxes.
This leads to a cap of dense water on top of the
seamounts.

The time-mean secondary circulation is directed
clockwise around the mean flow, featuring downwelling in
the center of the vortex.

Although substantial mean flows were found in
previous idealized models of flow around seamounts,
effects of the presence of the mean flow on the wave
propagation and/or resonance were not observed: the
rectified flow seemed to be linearly superimposed on the
propagating wave.

A Model of Flow at Fieberling Guyot

Preliminary results are available from a high resolution
simulation of the response to tidal forcing of the stratified,
non-linear ocean at Fieberling Guyot (Beckmann and
Haidvogel, 1994). Their numerical model is a variant of
the semi-spectral primitive equation model SPEM
(Haidvogel et al., 1991) with a terrain-following vertical

(“sigma”) coordinate and a spectral approach in the
vertical.

The experimental configuration is very similar to the
idealized studies of Haidvogel et al. (1993): the
computational domain is a periodic f-plane channel. The
horizontal grid is “stretched,” focussing on the seamount;
the grid spacing is less than 1000 m in the seamount
vicinity. The topography was derived from a high
resolution data set and linearly interpolated to the
numerical grid. No further smoothing of the bottom relief
was applied.

The model is initialized with an exponential
background stratification (fitted to measurements in the
vicinity of Fieberling Guyot) and driven by a diurnal
period barotropic current. The 1 cm s amplitude and
north-south orientation of the forcing are idealizations
made from observations (Brink, 1995). A weak
biharmonic lateral viscosity/diftusivity of 10" m*s™, linear
bottom friction of 310* m s’ and a bottom-intensified
vertical viscosity are used.

The model is spun up for 25 days before the model
fields are averaged over one wave period. Both the
instantaneous and the time-mean flow fields show several
of the observed characteristics: A trapped wave of 12.6
cm s’ amplitude is generated, setting up an anticyclonic
time-mean flow at the upper flanks of the seamount of 6.2
cm s' (rectification efficiency of about 50%). The depth
dependent vertical viscosity was found to improve the
vertical structure of the simulated mean flow. Other
characteristic properties of the model results compare less
favorably with the observations. The vertical phase
gradients and the secondary circulation of the mean flow
are not yet reproduced realistically. More detailed
analyses of these and future model results will be
published in a forthcoming paper.

A comparison run with a smooth Gaussian fit to the
topography give slightly smaller values of wave and mean
flow. This is a first indication that topographic
irregularities can alter the wave and mean flow response;
it is unclear, though, whether this happens for purely
geometric reasons (large scale asymmetries; locally
steeper slopes) or by the presence of an additional
rectification mechanism (form stress, see Haidvogel and
Brink, 1986; Holloway et al., 1989) on these smaller
scales.

This simulation with realistic topography represents a
major step beyond previous idealized studies and it is far
from straightforward to interpret the results. The runs
differ in various respects: The forcing amplitude is larger
by a factor of 5, and we expect both larger absolute values
of wave-related currents and a more intense mean flow. At
the same time, the higher horizontal resolution (by a factor
of 8) and the correspondingly smaller values of
diffusivity/viscosity (by a factor of 2/100) might also
increase the response of the waves. The more realistic
(i.e., generally stronger) stratification will have an
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influence on the vertical decay scale of the trapped
response.

The real geometry is characterized by a smaller radius
and steeper flanks than used in previous studies; their
effects on wave amplification and mean flow generation
has not been investigated. The geometric and
environmental situation yields a Burger number regime
that has never before been explored and simple
extrapolations into this parameter range are not very well
justified. Finally, the asymmetries of the real seamount
and the background bottom roughness on various scales
may contribute in various ways: Both a net damping effect
on the waves and an enhancement of the mean flow via
the form stress mechanism seem plausible.

Parameter Studies

In this section we try to answer the question “Which
factors contribute in what way to the generation of mean
flow at real seamounts?” In order to investigate these
issues, a series of some 60 experiments were carried out,
exploring the sensitivity to various environmental and
geometrical seamount properties.

The Model Configuration

The model used here is the latest version of the terrain-
following sigma coordinate model SPEM (Haidvogel et
al. 1991), which is formulated with finite differences on a
staggered vertical grid. The model employs a fourth order
algorithm (McCalpin, 1994) to reduce the spurious flow
generated by the truncation errors of the pressure gradient
terms. Models of this type have now been repeatedly and
successfully applied in configurations with large
variations in depth (Chapman and Haidvogel, 1992, 1993;
Haidvogel et al., 1993; Beckmann and Haidvogel, 1994).

The basic shape of the seamount was chosen to
accommodate several features of real seamounts, which
are found to be tall and steep, and relatively flat on top. In
particular, the seamount was not assumed Gaussian, but
rather of a tanh-shape. As a consequence, the diameter
and the slope can be prescribed separately. The functional
form is

H=H, +AHtanh((r-R,)/ R) 2
with
H,=2500m
AH =2000m

R, =20000 m
R=8000m

The resulting maximum slope (VH )| = 25 % is close to
observed gradients.

This seamount was placed in the center of the periodic
~ channel domain of 256 x 256 km. To account for the
expected bottom trapped nature of both the seamount
trapped wave and the mean flow, the vertical grid is

stretched quadratically towards the bottom, as depicted in
Figure 1. In comparison to an equidistant discretization
this improves the resolution at the lower boundary of the
model dramatically: the minimum grid spacing is 3.5 m at
the top of the seamount and 35 m in the deep ocean; the
maximum grid spacing just below the surface varies
between 80 and 800 m. The horizontal resolution was
chosen to be 2 km uniformly across the model domain; the
Coriolis parameter of f, = 1.03:10* s corresponds to
45°N.
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Figure 1. Coordinate lines form the quadratically stretched
vertical grid as a function of radial distance from the seamount's
center.

An exponential initial stratification of realistic strength
was prescribed as

p=28.0-25.¢ 1000 3)
with a corresponding Rossby radius of 9 km over the
seamount's summit and 36 km in deep water, typical for
mid-latitudes in the North Pacific. The Burger number for
this experiment is

s=2-05 )
(for comparison, $* = 11).

Similar to previous idealized studies, the model is
forced with diurnal barotropic tidal forcing of the form
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up = U, tanh(t / 3T) sin(2nt / T) 5)

with U,= 1 cms™ and T= 1 day.

The viscous and diffusive terms are of particular
importance for the amplification and rectification process.
A standard linear bottom friction of 7, =310 'ms ' was
chosen in addition to a weak background biharmonic
lateral viscosity/diffusivity v, =v, =10 “m s *.The
experiments were run for 20 days with a time step of
43.2 s; the last day was averaged to obtain the time-mean

fields.

The Central Experiment

The central experiment serves as the standard solution
and is used to illustrate the spatial structure of the wave
and the mean flow. Table 1 lists the maximum point-wise
velocities for the central experiment and, for comparison,
identical experiments with linearized dynamics or
homogeneous fluid.

Table 1. Maximum point-wise velocities for the central
experiment and two additional runs with different physics.

central linearized  homogeneous
reference dynamics fluid
total
YWAVE 55.61 28.87 -
V MEAN 31.37 0.35 -
ratio 56% 1.2% -
barotropic
\:/WAVE 4.73 4.67 14.61
V MEAN 1.68 0.06 0.90
ratio 36% 1.2% 6%

The wave and mean flow amplitudes are quite large,
and although wave amplifications of O(50) have been
reported before, a mean flow of this strength has not been
found in previpus numerical models. It is interesting to
note that the barotropic part is only a small fraction (9 and
6 %) of the wave and mean flow fields, respectively.

Figure 2 shows a snapshot of the density perturbation at
various depths. At the upper flanks of the seamount (600
and 700 m) the first azimuthal mode seamount trapped
wave is clearly visible. Right above the seamount's
summit the additional cap of denser water dominates the
density perturbation. The highly bottom trapped nature of
both the wave and the mean flow becomes clear at the 400

m level, where only a weak indication of the wave is
visible.

The mean flow in Figure 3 shows a similar structure as
found in Haidvogel et al. (1993), but with much more
pronounced bottom trapping. The mean flow is along
isobaths for the most part, but even the secondary
circulation in the radial-vertical plane is quite substantial:
a radially outward current of up to 7 cm s at the bottom
returns in a thin layer of fluid above. The circulation is
closed by downwelling in the center of the seamount of up
to 100 m/day and a somewhat weaker upwelling motion
above the upper flanks.

Unlike in the studies by Haidvogel et al. (1993), where
the wave amplitude differed only insignificantly between
linearized and non-linear dynamics (cf. their experiments
1B and 3B), the rectification process is strong enough to
have a significant feed-back on the wave. This can be
deduced from the wave amplitude of the linearized
experiment, which is smaller by a factor of 2. There is a
significant amount of vorticity ¢ in the time-mean Taylor
cap, exceeding -f at the top. We are in a regime where the
existing mean flow reduces the ambient vorticity f + ¢ for
the wave in a shallow layer above the seamount and
thereby leads to an increased wave response.

The weak residual time-mean flow for the linearized
dynamics can be attributed to the weak remaining trend in
the forcing and the remnants of transients from the
initialization process.

Finally, it should be noted that removing the
stratification results in much weaker point-wise velocities;
the barotropic response, however, is enhanced.

Resolution Dependence

The issue of horizontal resolution and its influence on
the modeling of seamount trapped waves was previously
investigated in a more technical paper by Beckmann and
Haidvogel (1993). It is obvious that the spatial scales set
by the seamount need to be resolved properly, but how
stringent are these constraints?

The combination of the terrain-following model
concept and the stretched vertical coordinate gives an
exceptionally good vertical resolution of the wave and
mean flow fields. It is unknown, however, how much
horizontal resolution is needed for convergence of the
solution and whether there is significant degradation of
the result for less resolution. For this reason, a first series
of experiments varies the horizontal resolution without
changing any other model parameter: identical dissipation
and time step are used for all five experiments.
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Figure 2. Snapshot of the horizontal structure of the density perturbation for seamount trapped wave in the central experiment: (a)
400 m; (b) 500 m; (c) 600 m; and (d) 700 m. Only the inner quarter of the domain is shown.

Figure 4 summarizes the results: while the wave
response and mean flow generation increase with
increasing resolution down to about 2 km grid spacing,
further increase results in slightly reduced wave
amplitudes; the rectified flow seems to have reached
convergence.

An explanation involves the fact that the rectification
process requires a finite amount of friction to break the
symmetry of the seamount trapped wave. Too much
friction, however, will damp the wave and reduce the
rectified flow. The non-uniform convergence is an

indication that the implicit diffusion/viscosity in the
numerical model still dominates over the explicitly
prescribed values for 4, 3 and 2 km resolution but is
below that level for 1.5 and 1 km resolutions.

It should be noted that the results for the least resolving
case differ from all others by the apparent existence of a
higher vertical mode, a circulation pattern which might be
used as evidence for insufficient numerical resolution.
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Figure 3. Spatial structure of the time-mean flow in the central experiment: (a) radial velocity; (b) azimuthal velocity; (c) vertical
velocity; and (d) density perturbation. Shown is the radial-vertical plane focussing on the upper 1500 m of the inner quarter of the

model domain.

Variations of Shape and Topographic Irregularities

While changes of the fractional seamount height and
functional form had been considered in previous studies
(e.g., Chapman and Haidvogel, 1992), there is no
systematic investigation of seamount radius and slope,
azimuthal asymmetries and small-scale bottom roughness.

Examples from these three categories of topographic
variations are considered in this study. The basic form of
the topographic obstacle (2) was modified in the following
way:

R, =R+ R,sin(n-6+8,) (6)

Radial Shape of the Seamount

In this class of variations, the influence of seamount
diameter and slope is investigated. The radius of the
seamount (R;) was varied between 15 and 25 km (Fig. 5).
The maximum resonance was found for a radius of 20 km,
this is for a Burger number of S = rp / R, = 0.5, which
coincides with the central case reported in the previous
section.
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Figure 4. Wave amplification (solid line) and mean flow
rectification (dashed line) as a function of horizontal resolution:
the maximum point-wise velocity.

The rectified mean flow is directly proportional to the
wave amplitude for most of the parameter space, except
for very wide seamounts, where the lobes of the seamount
trapped wave are separated and cannot interact
effectively. Very thin seamounts, on the other hand, seem
to have a smaller perturbing effect on the barotropic tidal
flow, thus resulting in generally weaker resonance.

In a next step, the slope of the seamount (R;) was
varied between 6 and 12 km (Fig. 6). This represents a
change in maximum slope from 16.7 to 33.3%. Again,
there is a maximum, in this case at around 9 km, where
maximum resonance occurs. Steeper slopes suppress the
wave amplitude and essentially eliminate the mean flow
generation.
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Figure 5. As Fig. 4, but as a function of seamount radius R;.
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Figure 6. As Fig. 4, but as a function of seamount slope R;.

Azimuthal Asymmetries

Variations in the azimuthal direction were added in the
form of sinusoidal changes in radius of varying mode
number. A first series of experiments investigates the
effect of amplitude changes for mode 2 asymmetries;
subsequently, higher order perturbations were investigated
and possible effects of the angle of attack for an
asymmetric seamount were tested.

The introduction of an azimuthal asymmetry with n = 2
generally reduces the wave and mean flow response (Fig.
7). Obviously, a symmetric seamount has to be regarded
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Figure 7. As Fig. 4, but as a function of the amplitude of the mode
2 asymmetry.
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Figure 8. As Fig. 4, but as a function of azimuthal mode number
n. Solutions exist only at discrete points: asterisks denote the wave
amplification, circles the mean flow rectification.

as the optimal geometry for resonant amplification and
rectification. Azimuthal pressure variations of the wave
correlated with the topographic asymmetries do not
contribute enough to compensate the reduction of wave
amplification due to the geometrical changes.

Higher order azimuthal variations (Fig. 8) tend to
decorrelate the non-linear interaction between the wave
lobes even more. The rectification efficiency drops from
50% to less than 25%.

The orientation of the asymmetric seamount with
respect to the main axis of the forcing was varied between
0, = 0° and 180° (Fig. 9). This “angle of attack” was
found to be of only minor importance for the trapped flow
response: 10% difference in the wave amplitude is found,
with a maximum at 0, = 0° , when the mean flow hits the
obstacle on the larger flanks in prograde direction.

Bottom Roughness

Lastly, the smooth seamount topography was modified
by adding a random bottom roughness of varying rms-
value. The random perturbations are weighted by the
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Figure 9. As Fig. 4, but as a function of seamount orientation 6,
relative to the forcing flow.
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Figure 10. As Fig. 4, but as a function of rms-amplitude of the
random bottom roughness.

deviation from maximum water depth, thus being largest
on top of the seamount and essentially zero in the deep
ocean away from the obstacle. This way, even relatively
small rms-values should have an influence on the resonant
and rectified flow. The general tendency of added bottom
roughness is to act as a sink of wave energy (Fig. 10).
Similar to the azimuthal asymmetries, bottom roughness
destroys the systematic non-linear interaction of the wave
and thus reduces both the amplification and rectification.

Latitudinal Dependence

In addition to the changes in seamount geometry the
Coriolis parameter f was varied between 30°N and 65°N
to obtain an idea of the sensitivity to environmental
parameters.

The dependence on latitude was found to be immense:
Figure 11 covers the latitudinal range between 30°N, the
critical latitude for trapped diurnal waves, and 65°N and
shows large differences in the maximum point-wise
velocities across the parameter range. As expected from
the studies of Haidvogel et al. (1993), a larger Coriolis
parameter (reducing the Burger number) gives much
larger response at high latitudes. It is noteworthy, though,
that a variation of f by a factor smaller than 2 can account
for a change in amplification by a factor of 6.

Implications for Parametrizations

Arguments from statistical mechanics can be used to
derive a simplified form of the systematic flow along
topographic depth contours caused by interaction between
fluctuating flow and topographic variations. A
parametrization of this “fifth force” for coarse resolution
models was proposed by Holloway (1992): the lateral
viscous terms should be modified to drive the barotropic
part of the horizontal flow field towards a state of cyclonic
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Figure 11. As Fig. 4, but as a function of latitude.

circulation around ocean basins. It was shown that this
approach can give results closer to observations (Eby and
Holloway, 1994).

In principle, the time-mean flow around a seamount is
based on the same physical process. It is therefore obvious
to ask whether we can learn from these experiments about
the structure of mean flows and how to parameterize
them?

According to Holloway (1992) the barotropic time-
mean “climatological” velocities can be derived from a
streamfunction of the form

v =—1*fH )
As a result, the azimuthal component of the mean flow
would be approximated by

*

1 . , H
Vie—yl=—fI22L 8
7Y f H ®

Figure 12 compares the azimuthal time-mean flow at
the bottom and its barotropic part from the central
experiment with the V" from theory.

First of all it is obvious that the barotropic part
represents only a small portion of the flow field; the
rectified response is mainly baroclinic. But even a look at
the barotropic component shows significant differences:
while V* has its maximum at the location of the maximum
H, / H, the model concentrates its time-mean momentum
at a smaller radius. As a consequence, maximum
velocities and transports do not match. If L = 1200 m is
chosen (as for Fig. 12), the velocities are comparable, but
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Figure 12. Azimuthal time-mean velocities as a function of radial
distance from the seamount center: total bottom flow, barotropic
part, and the climatological velocity from eq. (8) with L = 1200 m.

the transport is too large by a factor of 4. If this is
compensated by the choice of a smaller L, the resulting
velocities are too small.

It is not clear whether or not we should expect the mean
flow structure at seamounts to be fundamentally different
from the form stress rectified flow at straight continental
slopes, due to the geometric peculiarity of the radially
symmetric topography. Further detailed studies are
needed.

Similarly, attempts to introduce vertical structure in the
parametrization need more attention; they would have to
take into account a corresponding density perturbation

fo; =-gp, ©)

but this extension is not straightforward.

Summary and Conclusions

Geometrical and environmental parameters are varied
in a series of numerical experiments featuring a tall, steep
and isolated seamount forced by diurnal barotropic flow.
Several classes of topographic changes and irregularities
are investigated for their influence on wave amplification
and mean flow generation. Changes of the radial shape of
the seamount are found to be the most crucial in
determining the actual amplitude of the trapped flow. All
azimuthal irregularities tend to reduce the wave response
and the amount of rectification.
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The results of Haidvogel et al. (1993) are found to be
robust through the parameter space. The instantaneous
near seamount response is dominated by the first
azimuthal mode seamount trapped wave; higher modes
could not be detected. However, a regime was found in
which the vorticity of the mean flow modified the local
environment of the wave enough to cause an enhancement
of the wave amplitude through non-linear feed-back.

Returning to the comparison of the real Fieberling
Guyot topography and its smooth Gaussian fit we have to
conclude that the slightly increased flow amplitudes for
the real Fieberling Guyot bathymetry are likely to be the
joint effect of steeper slopes that increase and
asymmetries combined with bottom roughness that
decrease the response.
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