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Abstract. The barotropic, wind-driven circulation in a basin bounded at the south by the equator and for
which the ocean depth varies smoothly between a constant deep ocean value and zero at the coasts is
examined numerically to analyze how inertia and topography affect theoretical models of the general
circulaton. As is well known, the inclusion of topography aligns the boundary currents along f/H contours.
Increasing the wind forcing leads to unsteady inertial circulations that consist of periodic, modulated, and

irregular eddy generation.

1. Introduction

The effects of topography on the general ocean
circulation have long been recognized as important. The
majority of theoretical ocean general circulation models,
however, have been confined to flat bottom oceans or
have invoked the quasi-geostrophic approximation. One
assumption central to the quasi-geostrophic approximation
is that variations in the fluid depth are small. As a result,
the ocean depth typically is discontinuous at coastlines in
these models. While many useful insights about ocean
boundary currents have been gained from these theoretical
models, open questions remain about how the boundary
currents affect the gyre-scale circulation and about model
sensitivity to frictional parameterizations (c.f. Killworth
[1993], Boning [1986], Cummins [1992]). It may be that
the sensitivity of these model circulations is in part due to
the singular nature of the topography. We also remark that
these models may not readily be extended to incorporate
the important effects of finite amplitude topography.

A few theoretical studies have shown that the boundary
currents obtained in an ocean with finite amplitude
topography differ significantly from those obtained in an
ocean with infinitesimal topographic variations (e.g.
Salmon [1992]). These studies, however, largely have
neglected the effects of inertia. In this note, we consider
how inertia affects the barotropic circulation in an ocean
for which the depth undergoes O(1) variations to vanish
smoothly at the coastlines. In section 2, we present the
dynamics and review the steady linear circulations and in
section 3, we determine how inertia modifies the linear
circulation using numerical simulations.

2. Shallow water equations

We consider here the barotropic ocean circulation
governed by (in nondimensional form)
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and the condition that the normal component of the
transport vanishes on the coastal boundaries. In (1-3),
(uvw) = u,w) is the velocity in the (eastward, northward,
vertical) direction with coordinates (x,y,z); f = yk where y
is the Coriolis parameter and k the vertical unit vector;
O = p + gz where p is the pressure; T= (tx,’ty,O) is the
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stress; is the Rossby number and

friction. Here, we choose to balance the vorticity input by
the wind with Rayleigh friction.

The nondimensional variables in (1-3) are scaled
conventionally with horizontal/vertical length scales of
04000 km/4 km), a representative flow speed U of

0(0.2 km/day) and f, =BL=10"sec™. We next define
the transport stream function
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which follows from (2-3) and combine the depth
integrated versions of the horizontal components of (1) to
form the vorticity equation

which is subject to y = 0 on the coastal boundaries. In (5),
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For a flat bottom ocean with H(x,y) = 1, the steady,
linear circulation of (5) is described in the classic work of
Stommel [1948] and consists of an interior wind driven
(Sverdrup) flow that is closed by a frictional western
boundary current of width €. For an ocean in which the
depth goes to zero smoothly at the coast, the western
boundary current system is asymptotically independent of
the friction and the flow on the continental slope is
determined by y/H and by the interior flow (e.g., Salmon
[1992, 1994]). We also remark that the circulation in a
basin bounded at the south by the equator (for which y/H
lines converge at the equatorial point on the western
boundary) differs significantly from that in a basin with a
southern coastal boundary (for which closed contours of
y/H exist) (c.f. Kawase [1993]). Here, only the more
realistic equatorial case is considered.

The steady, linear (Ro = 0) circulation described by (5)
is presented in Figure 1 for a flat bottom ocean and in
Figure 2 for an ocean with western and northern
continental shelves. The topography, H(x,y), used in all of
the experiments (except Figure 1) is presented in Figure 3
(left). Ini this initial study, the wind stress curl simply is
taken as
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in all experiments. The coefficient of Rayleigh friction
corresponds to a Stommel layer of one grid point. In the
absence of topography, the circulation consists of two
symmetric, counter-rotating gyres (Figure 1, left) and the
vorticity field (Figure 1, right) consists of two isolated,
oppositely signed layers concentrated at the western
boundary. In contrast, the linear circulation in the basin
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Figure 2. (left) The transport stream function y and (right)
vorticity (multiplied by the ocean depth, see footnote 1) H for the

conditions of Figure 1, but with the H(x,y) of Figure 3.

with topography is asymmetric and may be understood by
viewing (5) as an advection-diffusion equation for y with
advecting velocity k x V(y/H) and -W the source (c.f.
Salmon [1992]). The “streamlines” of this “flow” are
presented in Figure 3, right. The difference between the
linear topographic and flat bottom circulation is clearly
exhibited in the vorticity! field. In the flat bottom ocean,
the vortex layers are symmetric and isolated, while in the
ocean with topography, the layers are asymmetric and
aligned along y/H contours.
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Figure 3. (left) The ocean depth H(x,y) which varies smoothly
from zero at the western and northern coasts to unity in the
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Figure 1. (left) The transport stream function Y and (right) . ...00 (tight) The corresponding contours of y/H. ‘
vorticity ¢ that satisfy (5) for Ro=0, € = 0.01, H(x,y) = 1 and the |
wind stress curl given by (6). In all figures, the solid/ dashed/dot- |
dash contours correspond to positive/negative/zero values and the

contour interval for y/HE is 0.1/100.

|
! Due to large values of the vorticity in the southwest corner of ‘
the basin, contours of H{ are presented here.
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Figure 4. Steady, inertial circulation. (left) y and (right) HC for the
conditions of Figure 2 but with Ro = 0.0002.

3. Numerical Model

To determine how inertia affects the linear, topographic
circulation described above, we solve (5) numerically
using a finite-difference method. We time-step (5) to
analyze unsteady dynamical processes and to determine
the stability of the steady circulations.

Inertial numerical models of the general ocean
circulation require a subgrid-scale closure scheme to
parameterize the effects of the scales of motion not
resolved by the numerical grid. Here, we use an implicit
closure scheme to finite difference the advective terms in
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Figure S. Time-series of the basin integrated total energy E, (7) for
the conditions of Figure 2 but with Ro = 0.0005. The period of
eddy formation is O(100 days).

(5) for which the truncation error corresponds to a
biharmonic operator on { in the interior, but requires no
additional boundary conditions (third-order upwind
differencing, Leonard [1984]).

The numerical solutions of (5) are presented for a
rectangular ocean basin contained in 0 £ x <1, 0 < y L2,
As discussed above, the southern boundary of this model
ocean is the equator where the boundary conditions of
cross-equatorial symmetry of the dynamics, forcing and
topography are applied. The form of the wind stress curl,
(6), is chosen for simplicity and to reduce the computing
time necessary to obtain steady-state, nonlinear solutions.
For all runs shown, the resolution is 100 x 200 and € =
0.01 (but see below).

The effects of weak nonlinearity may be understood by
considering how advection affects the steady, linear
circulation presented in Figures 1 and 2. For the flat
bottom ocean, the effects of weak nonlinearity are well
known, and, for example, for the subtropical gyre,
negative relative vorticity is advected from the south to
the north. Then, to dissipate their excess negative relative
vorticity, fluid parcels overshoot the latitude where they
rejoin the Sverdrup interior. For a two gyre circulation in
a flat bottom ocean, inertia results in the isolated,
symmetric vortex layers being pulled off the western
boundary and aligned along the latitude of zero wind
stress curl where vortex interactions then may occur. For
an ocean with finite amplitude topography, however, we
emphasize that the asymmetric vortex layers are aligned in
the linear approximation. Then, the introduction of inertia
causes the vortex layers to advect each other
northeastward (along the axis of alignment), and
additionally, to draw the weaker layer around the stronger
layer. This behavior is exhibited by the steady inertial
solution presented in Figure 4 for which Ro = 0.0002.
Advection of vorticity has reduced the southwestward
extent of the tails of the gyres and the asymmetry in the
strength of the vortex layers has resulted in the bending
observed at the northern limit of these layers.

By increasing the magnitude of the wind (Ro = 0.0005),
the advection becomes strong enough to wrap around and
pinch off an eddy from the weaker (positive) vorticity
layer. This eddy formation occurs periodically as may be
seen in a time-series of a finite difference approximation
of the basin integrated total energy

1
E= jﬁvw-va (7N

for Ro = 0.0005 (Figure 5). We note that the period of the
eddy formation is O(100 days). Figure 6 presents
snapshots of this process at quarter period intervals. The
pinching off of an eddy occurs near an energy maxima.
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Figure 6. The periodic pinching off of an eddy for the conditions of Figure 5. Snapshots of W (left) and Hg (right) at times
corresponding to (top left) maximum energy, (top right) approximately one quarter period past the maximum, (bottom left) minimum

100

energy, and (bottom right) approximately one quarter period past the minimum.

A further increase in the wind (Ro = 0.001) results in
aperiodic eddy formation.2 Here, in addition to an eddy
of positive vorticity being entrained in the subtropical
gyre, an eddy of negative vorticity is entrained
subsequently in the subpolar gyre. A time-series of E for
Ro = 0.001 (Figure 7) consists of a high frequency carrier
signal modulated by a lower frequency envelope. The

2we emphasize that a spectral analysis of this process has not yet been
conducted and will be presented in a future work.

minima in the low frequency envelope appears to
correspond to the two eddies pinching off nearly
simultancously. Snapshots of the circulation exhibiting
the formation of the positive and negative vorticity eddies
are presented in Figure 8. Increasing the wind further
results in more complicated unsteady behavior (not
shown).




INERTIAL MODEL OF GENERAL CIRCULATION 129

18
17.5F
17+
16.51
161
E
15.5¢
151
14.5¢
14 , . . R
0 500 1000 1500 2000 2500
t (days)

Figure 7. The time-series of E , (7) for the conditions of Figure
2 but with Ro =0.001.

We remark that the qualitative character of the results
presented above appear to be independent of the model
resolution in the sense that for coarser or finer resolutions,
the sequence of steady circulation, periodic, modulated
and irregular unsteady eddy formation still occur, but for
different Rossby numbers (i.e., for Ro = 0.001 and 50 x
100 resolution, the eddy formation is periodic while for
200 x 400 resolution, the eddy formation is irregular). A
future study will report model sensitivity studies in more
detail.
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Figure 8. Snapshots of y and H{ for the conditions of Figure 7 at these times: (upper left) 1184 days (approximately a local maxima
of the energy), (upper right) 1201 days, (lower left) 1220 days, and (lower right) 1238 days (approximately a local minima of the

energy).




