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ABSTRACT

Fisheries for akule and opelu are important throughout their circumtropical range and are among
the most productive nearshore fisheries in Hawaii. Commercial, community, and government
interests have raised concerns of overfishing. In this study, a 30-year fisheries database is used
for time series and spatial analysis. A model is developed which successfully diagnoses
overfishing in an idealized scenario. This model indicates that both akule and opelu are
exploited below maximum sustainable yield and are not threatened by the fisheries. Correlations
with environmental time series show that the akule may be influenced by precipitation. Spatial
analysis shows that the majority of the catch is taken from a small number of areas that receive
the most effort, This analysis also indicates that the akule has sufficient site fidelity to allow
localized reduction in CPUE due to fishing, while the opelu likely does not.
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1 INTRODUCTION

This study presents an analysis of the commercial fishery for two small pelagic fishes in the main
Hawaiian Islands. For each species, a literature review is conducted and a fishery catch and
effort database is analyzed. The biology and fisheries of each species is described and analyzed.
Spatial patterns in each fishery are identified, a search for correlations with climatic parameters
is conducted, and the population dynamics are modeled. The health of each stock is assessed,
based on biological parameters estimated from modeling.

Selar crumenopthalmus (akule) and Decapterus macarellus (opelu) have circumtropical
distribution and fisheries for these species are important throughout this range (Dalzell and
Penaflor 1989). In Hawaii, the fisheries for opelu and akule are among the most productive
nearshore fisheries in the state. Between 1966 and 1997 (the period of available records) the
annual catch of akule in the State of Hawaii averaged 612,000 pounds (wet weight), and the
opelu catch 302,000 pounds, as calculated from Department of Land and Natural Resources data.
Since 1991, the value of the Hawaiian catch of akule has exceeded $US | million (Iwai et al.
1996). For comparison, about 750,000 pounds of bottomfishes were landed from the archipelago
in 1997 (DLNR 1999).

Concerns of overfishing have been raised by the commercial and recreational fishing interests,
native rights representatives, the Hawaii Department of Land and Natural Resources (DLNR)
Division of Aquatic Resources (DAR) and the Western Pacific Regional Fishery Management
Council (WPRFMOC).

For each species, the objectives of this study are to

¢ review biology and ecology (Chapter 2);

e develop time series of relevant fishery variables from the databases (Chapter 3);

e document the history of the fishery based on the fishery time series and available literature
(Chapter 4);

e analyze spatial patterns and their biological and fishery significance (Chapter 5); and
estimate biological parameters from the database and use these to assess the health of the
stock (Chapter 6).

The term “variable” is used to refer to quantities that are empirically measured, and of which the
“data” is comprised. In this study, the fishery data is comprised of the variables catch, effort,
and catch per unit effort. The term “parameter” refers to quantities that cannot be empirically
measured, and are estimated from the data. Both fishery and biological parameters are used.
“Biological parameter” is used to refer to characteristics of the fishes and the ecosystem. There
are stock-level biological parameters such as biomass, population growth rate, and carrying
capacity as well as individual-level parameters such as maximum size, somatic growth rate, and
fecundity. “Fishery parameter” is used to refer to characteristics of the fishery, such as the
vulnerability of the target species to the particular methods used (the catchability).






2 BIOLOGY AND ECOLOGY OF AKULE AND OPELU

2.1 Introduction

Akule and opelu are members of the Carangid family, which have achieved broad success in
nearshore tropical and subtropical marine environments worldwide. These species have
circumtropical distribution and fisheries for them are important throughout this range (Dalzell
and Penaflor 1989).

2.2 Morphology and Ontogeny

Detailed information of the early ontogeny of the akule is reported in two studies in which fish
are reared in captivity from spawned eggs (Iwai et al. 1996, Podosinnikov 1990). No such
research has been conducted for the opelu. Spawned eggs of the akule average 630 um in
diameter and are transparent and buoyant in salinities of 32-35 ppt. Newly hatched prolarvae are
1.3 to 1.5 mm in length, with no pectoral fins and a yolk sac protruding anterior to the head. The
prolarvae hang suspended from the surface of the water and drift passively. Swimming ability
presumably develops with growth, but the time required is unknown. It is thought that the larval
phase lasts about four months. This conclusion is based upon two pieces of information. First,
the spawning season for akule generally begins in April, and the first juveniles usually enter
coastal waters in July, an interval of 4 months. Second, the estimate of t, in the Von Bertalanffy
growth equation is -4 months (Kawamoto 1973). This parameter represents the age of the fish at
length zero if it had the growth trend shown from the age of the first individuals for which data
exists (i.e., new recruits). The Von Bertalanffy growth equation is discussed further in section
2.1. It is possible that a third estimate of pelagic larval duration could be obtained from the
inspection of otoliths, although the settlement marks present in benthic fishes may not be present
in a pelagic fish such as akule or opelu.

As shown in Figure 1, both species have fusiform bodies, small mouths, and scutes characteristic
of the carangid family. Figure 1 also shows detail of important morphological characteristics. A
detailed morphological description of the akule is available from Schultz et al. (1953) for
Trachurops crumenopthalmus. A description of the opelu is available from Gushiken (1983).
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22,1 Growth

Akule and opelu have high growth rates, although the estimates made in this study indicate that
the growth of the akule is about three times faster than the growth of the opelu. Figure 2 shows
von-Bertalanffy growth curves (von Bertalanffy 1957) for the two species. For the akule, the
parameters L infinity (maximum asymptotic average length for the population in mm) and K
(somatic growth constant, month') were calculated by Kawamoto (1973) using growth-time
increments from tagging experiments fitted to the von Bertalanffy equation. Tag-recapture
experiments allow measurement of growth in the natural environment for the same individuals.

The only published work to estimate somatic growth rates for opelu (Yamaguchi 1953} used the
Petersen method (Petersen 1895) in which modes in the population are followed through time
and assumed to be cohorts. The growth occurring between sampling times for a mode is then
assumed to be the growth occurring for a cohort. Since the growth measurements occur on
different individuals at each time, the Petersen method contains an additional source of error and
is less reliable than tag-recapture methods.

Yamaguchi’s work preceded the development of the von Bertalanffy equation, so I have used his
growth-time increments to fit a von Bertalanffy growth equation and estimate the parameters L
infinity and K.

Growth Rate Estimate for Selar Crumenopthalmus, using Von Bertelartfy Growth Equation

T T 1 T ¥ T T T T

g

[\=]
[=]
(=]

L=Linfirity {1-{exp{-K 90
L infinity = 276 mm
- K =0.21485

L.ength {mm)

—_
o
[=3

O 1 1 1 1 1 1 1 1 13
0 5 10 15 20 25 30 35 40 45 50

Growth Rate Estimate for Decapterus macaretius using Von Bertelanify Growlh Equation

T T T ¥ T T T T T

300+ R 3
= o

Eoool L=Lirfinity*(1-(exp(-K"th) _
ES) L infinity = 330 mm

oy K =0.075

B 100+ .

- fitted V-B growth curve
) - - data
0 5 10 15 20 25 30 35 40 45 50
Age (months)

(=]

Figure 2. von Bertalanffy Curves for S. crumenopthalmus and D, macarelius, These curves show the S
crumenopthalmus grows faster than D. macarellus, and has a shorter asymptotic length.

The plots in Figure 2 agree closely with others available in the literature (Froese and Pauly
1998). The growth rate for akule (K = 0.21/month, or 2.58/year} is very high and indicative of a
highly productive species. That obtained for the opelu is lower (K = 0.075/month). The akule
approaches 95% of asymptotic length in one to two years, the opelu in two to three years.



2.2.2 Life Cycle

The two species have somewhat similar life cycles. They are heterosexual, iteroparous, and have
spawning aggregations during which promiscuous breeding occurs with external fertilization.
They spawn pelagic eggs that hatch to larvae with a four-month pelagic phase (as discussed
under Larval Stage, above). At the end of the pelagic larval phase, the juveniles migrate inshore
and recruit into the adult schools that live in nearshore waters (Kawamoto 1973). During these
migrations, juvenile akule, or hahalalu, form schools that run along the shoreline. Although the
adults live in shallow water, they are considered pelagic because they do not maintain close
association with substrate. The range of movement of akule is limited based on tagging studies
(Kawamoto 1973). The opelu is found further offshore than the akule.

The gonads of the akule are generally mature or spent during April through November, which is
thought to be their spawning season. The akule becomes sexually dichromatic during spawning
season on the soft portion of the anal fin, which is black in males and white in females (Clarke
and Privitera 1995). Spawning in captive fish occurs during the night with the majority of the
spawns occurring in the pre-dawn hours (Iwai et al. 1996). Mass spawning in the Gulf of Aden
generally occurs at night (Podosinnikov 1990).

The akule is a multiple spawner as evidenced by the bimodal size frequency of oocytes observed
during ovarian biopsies (Clarke and Privitera 1995, Iwai et al. 1996) as well as by the multiple
recruitment size classes appearing during one year (Dalzell and Penaflor 1989, Kawamoto 1973).
A bimodal size distribution of oocytes indicates that the fish is preparing the next batch even as
the current batch is ripening.

The opelu spawning season lasts from March or April to August (Clarke and Privitera 1995,
Yamaguchi 1953). It is believed to spawn in the same areas regularly occupied by adults. Large
schools or ‘bait-balls’ may occur during spawning season, in which the fish rub each other’s
undersides with a flickering motion that is believed to be a spawning behavior. Catches from
such aggregations are dominated by ripe or spent males; Yamaguchi (1953) attributes the
absence of females to their non-response to bait or chum rather than their movement to spawning
grounds without the males, but no evidence supports this. The spawning frequency of the opelu
1s uncertain. Yamaguchi (1953) states that the cocyte size distribution was unimodal; however,
Clarke and Privitera (1995) provide inconclusive evidence that the distribution may be bimodal.



The relevant biology of the two species is summarized in Table 1.
Table 1. Biology of Akule and Opelu

Akule Opelu
Size at Maturity 200 mm SL 245 mm SL
170 mm®
Age at Maturity 7 month™ 18 months™
Spawning Season April-October April-August
Spawning Frequency 1 per 3 days unkrown
5-10 times per year™
Batch Fecundity 92,000 136,000
96,000 to 121,000 82,000 for 200 mm fish™
Growth (k) 0.21/montk™ 0.075/month™
Maximum size 270 mm™ 330 mm"

(L infinity)
Clarke and Privitera 1995, unless otherwise noted
(1) Yamaguchi 1953
(2} Iwai er af. 1996
(3} Kawamoto 1973
(4} Estimnated with von Bertalanffy equaticn

2.3 Distribution and Habitat

2.3.1 Akule

The akule is circumtropical. In the Pacific, it is found from southern Africa to southeast Asia;
northeast to southern Japan and Hawaiian Islands; south to New Caledonia and Rapa; and
eastwards from Mexico to Peru, including Galapagos Islands (Chirichigno 1974). In the Western
Atlantic, it is found from Nova Scotia, Canada and Bermuda to Rio de Janeiro, Brazil; and
throughout the Gulf of Mexico and the Caribbean Sea (Cervigén 1993). In the Eastern Atlantic,
it occurs from Cape Verde Island to southern Angola (Smith-Vaniz et al. 1990).

The akule is generally found in inshore waters and shallow reefs to 170 m (Smith-Vaniz 1986).
The species prefers clean, clear, insular waters (Cervigbn 1993) but is occasionally found in
turbid waters (Smith-Vaniz 1995). The akule travels in compact groups of hundreds of thousands
of fish (Cervigén 1993). Observations based on current speed and direction and lunar phase
indicate that these fishes school and remain in areas where abundant zooplankton food resources
are concentrated in lee eddies (Tobias 1987). Tagging experiments indicate that there is very
little movement between populations in the northern, western, and southern waters of Oahu,
Hawaii (Kawamoto 1973). The larvae of these species are pelagic (Kawamoto 1973). Ina study
of ichthyoplankton vertical distribution, larvae of these fishes were caught at all stations of east-
west transects off Kahe Point and Kaoio Point (Oahu, Hawaii) at depths of 0-80 m. Stations
were at 1, 5, and 15 km offshore and sampling occurred to a depth of 200 m (Boehlert and
Mundy 1996).

2.3.2 Opelu

The opelu is also circumtropical. In the Western Atlantic, it is found from Nova Scotia, Canada
and Bermuda to approximately Pernambuco, Brazil. It appears to be absent from the Guif of
Mexico (Cervigén 1993). In the Eastern Atlantic, it occurs in St. Helena, Ascension, Cape Verde
Islands, and Gulf of Guinea (Smith-Vaniz et al. 1990); and in the Azores and Maderia Islands
(Smith-Vaniz 1986). In the Indian Ocean, the opelu is found in South Africa, Seychelles,



Mascarenes, Red Sea, Gulf of Aden and Sri Lanka (Smith-Vaniz 1984). In the Eastern Pacific, it
ranges from the Gulf of California and Revillagigedo Islands in Mexico to Ecuador (Smith-
Vaniz 1995).

The opelu forms schools in mid-waters of deep lagoons, coastal bays, or offshore waters and
generally stays away from coral reefs. It is sometimes encountered near the surface (Smith-Vaniz
1995). The larvae of opelu are pelagic and have been found 80 miles from the shore of Oahu,
Hawali (Yamaguchi 1953). In a study of ichthyoplankton vertical distribution, larvae of these
fishes were caught at all stations of east-west transects off Kahe Point and Kaoio Point (Oahu,
Hawaii) at depths of 0-80 m. Stations were at 1, 5, and 15 km offshore and sampling occurred to
a depth of 200 m (Boehlert and Mundy 1996).

2.4 Trophic Relationships

The akule and the opelu occupy intermediate niches in the marine ecosystem because they are
predators of macrozooplankton and important prey of larger pelagic fishes.

2.4.1 Akule

Primarily a nocturnal fish, the akule feeds on shrimp, other invertebrates, and forams when
inshore and zooplankton and fish larvae when offshore (Cervigén 1993). In Hawaii, small fishes
{anchovies, holocentrids and others), copepods, crab megalops, stomatopods, shrimps, and other
planktonic crustaceans comprise the majority of the akule’s adult diet (Kawamoto 1973). The
akule is preyed upon by tunas, large carangids, and billfishes that are in nearshore waters
(Kawamoto 1973).

2.4.2 Opelu

The adult opelu feeds mainly on macroplanktonic crustaceans such as hyperiid amphipods, crab
megalops, various crustacean larvae, chaetognaths, and fish larvae (Yamaguchi 1953). The
opelu is prey for yellowfin, skipjack, and bigeye tuna; wahoo (ono), dolphin fish (mahimahi),
kawakawa, striped marlin, and rainbow runner (Yamaguchi 1953). The adult opelu is commonly
found in the stomach of the yellowfin tuna in the vicinity of islands, but has not been so recorded
for tuna captured in the remote pelagic environment. However, juvenile opelu commonly occur
in large schools in the pelagic ocean, where schools of skipjack tuna feed on them (Yamaguchi
[953).

2.5 Summary

The akule and the opelu are members of the Carangidae family and support important
commercial and subsistence fisheries throughout their circumtropical ranges. Both species are
heterosexual, iteroparous, and have spawning aggregations during which promiscuous breeding
occurs with external fertilization of free-floating pelagic eggs. Detailed study of the early
ontogeny of the akule has shown rapid embryonic development and a four-month pelagic larval
phase prior to recruitment to nearshore adult stocks. Both species spawn in spring, summer, and
fall. The akule spawns multiple times per season; this frequency is unknown for the opelu. Both
species are highly fecund and have high somatic growth rates, the akule’s being faster than the
opelu’s. The akule and opelu occupy an intermediate position in the marine ecosystem, being



predators of macrozooplankton and prey of larger pelagic fishes. As such, these small pelagic
species form a trophic link between the nearshore environment from which they feed, and the
offshore pelagic environment occupied by many of their predators.






3 DERIVING FISHERY VARIABLES FROM THE DATABASES

3.1 Introduction

The databases used in this study allow the calculation of catch, effort and catch per unit effort
(CPUE), which are the basic fishery variables from which biological and fishery parameters are
estimated. This chapter describes the methods used to calculate these variables, along with the
quality control methods used to filter out records that introduce bias and error. The initial
calculation of variables results in the time series referred to as “raw,” while the time series
calculated with various quality control criteria are referred to as “refined.

3.2 The Databases

The primary data sources for this project are the daily time series of catch collected by the DAR
over the past 30 years. The databases for opelu and akule contain the fields described in the
table below.

Table 2. DAR Database Fields

Inputs
DAR Database from 1966-1997
~ 180,000 records
Boat license An individual license number for a boat. This allows calculation of the number of boats in
the fishery.
Year
Month
Day Allows the caleulation of an index of effort based upon boat-days of fishing.
DAR Area All nearshore waters in the Main Hawaiian Islands have been divided into areas, to which
catch is assigned. This allows spatial analysis of catch, effort and CPUE,
Method HANDLINE and NET. The NET category includes purse seine, surround net, gill net, and
hoop net.
Species AKULE or OPELU
Catch (Ib.)

3.3 Methods

3.3.1 Raw Fishery Variables

Time series of catch, effort, and CPUE can be calculated from the original DAR databases. The
time series calculated with the methods described in this section are referred to as raw. The
method of calculating refined time series is described in Section 3.3.2.

I3



Summing the individual catch records into annual bins creates an annual time series of catch.
Effort is not explicitly defined because DAR did not include a field in their reporting forms for
fishing effort. Therefore, it is assumed that each report (i.e., each record in the database)
represents a single fishing trip. Such an assumption is reasonable because the fishery operates in
nearshore waters with predominantly single day trips. Errors are likely to occur due to non-
reporting or reporting of multiple trips at once, rather than from the occurrence of multi-day
trips. Given this assumption, the number of records can be summed to produce and index of
effort, the “boat-day.” Counting the number of records in each year of the time series gives the
boat-days of effort exerted during the year. CPUE is calculated by dividing catch by the effort.

The catch and effort can also be summed or averaged over the management areas used by DAR
to categorize spatial distribution of the fishery. DAR has defined management areas for
nearshore Hawaiian waters (see Chapter 5).

The number of licenses issued each year can be summed to produce a time series of the number
of boats in the fishery.

3.3.2 Refined Fishery Variables

The above time series may suffer from biases introduced by the data collection methods of DAR
or the reporting habits of fishermen. A number of refinements are immediately apparent from
the data, while others are discerned only after closer inspection. The various refinements are as
follows.

» Zero license number fields—DAR does not use zero as a license number so these records are
not traceable to a particular boat. Therefore, they are considered to be suspect and removed
from the refined time series.

» Zero day and month fields—These records were recorded without a time and are considered
suspect. Therefore, they are removed from the refined time series.

o Abnormal daily CPUE~The CPUE for each day of the month, averaged over all years and
all areas, is higher at the end of the month than in all other days. This pattern is likely to be
due to the reporting of multiple trips at the end of the month as fishermen catch up on
backlogged reports.

These refinements remove only 3% of the total number of records for akule and 6% for opelu.
They remove error and bias but do not greatly reduce the size of the database.

3.3.2.1 Zero License Numbers

In addition to the suspect days, some records in the original database have license numbers of
zero. These records are not connected to any particular boat and are therefore considered to be
suspect. Such records are filtered out in the time series produced.

3.3.2.2 Zero Day, Month and Year Records

For both akule and opelu, the database contains records with date fields having a value of zero.
The records accumulate all reports for which the date was not specified. These reports are
considered biased and are excluded in calculating the refined time series.
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3.3.2.3 Abnormal Daily CPUE—Backlogged catches

Fishermen sometimes fall behind in reporting catches and then report multiple days catch at the
end of the month to catch up (Chris Boggs, National Marine Fisheries Service, personal
communication). If this is the case, we expect the CPUE for these days to be higher than other
days. There is not an obvious biological reason that CPUE would increase at the end of the
month. Therefore, the CPUE for each day of the month, averaged over all years, is analyzed.
The daily CPUE for akule is slightly higher on day 31. The distribution of days 1 to 30 is
normal, with day 31 being an outlier (defined as 1.5*IQR beyond a quartile).

The daily CPUE for the opelu showed a peak for the last two days of the month. A normal
distribution exists for days 1-29, with days 30 and 31 being outliers as defined above. Based on
these distributions, days with abnormal CPUE are considered to be biased data and are excluded
from the refined version of opelu CPUE.

3.3.3 Time Series from High Catch Areas

The full database (including refinements above} contains records from all areas, whether they
make important contributions to the fishery or not. To eliminate variability caused by reports
from less productive areas, which may not be important in the fishery, time series are generated
from the DAR areas showing the highest caich levels only.

3.4 Results

The data products produced for this study using the DAR database are listed below.

e Annual time series of catch, effort, and CPUE for each species integrated over all DAR
arecas.

e Spatial distribution of catch, effort, and CPUE within DAR areas for the entire period on
record,

* Annual time series of number of boats in the fishery for all DAR areas.
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3.4.1 Raw Time Series
The time series for akule and opelu using the raw data are shown in Figures 3-6.

3.4.1.1 Akule
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Figure 3. Time Series of Akule Effort and Catch
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3.4.1.2 Opelu

Opelu - Time Series of Caich and Effort for All DAR Areas
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Figure 5. Time Series of Opelu Effort and Catch
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Figure 6. Time Series of Opelu CPUE

The opelu CPUE time series in Figure 6 shows an extreme peak in the year 1978.

3.4.2 Refined Time Series
Figures 7-12 show time series produced with the following filtered out.

abnormal CPUE days
days, months, years or licenses of zero
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Figure 7. Refined Akule Effort and Catch
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Time Series of Akule CPUE
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Figure 9. Comparison of Akule CPUE Refinements
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Figure 10. Refined Opelu Effort and Catch
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Refined Time Series of Opelu CPUE
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Figure 11. Refined Opelu CPUE
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Figure 12, Comparison of Opelu CPUE Refinements

CPUE raw
CPUE_r only days of zero, 30, 31 filtered out
CPUE_r2 all suspect records filtered out

Figure 12 illustrates that the only large change is caused by filtering out days zero, 30, and 31 of
the month. Other suspect points have very little effect on the time series. Note that the extreme
peak for 1978 is removed by the refinement.

3.4.3 Time Series from High Catch Areas

These time series did not differ markedly from those using the full database, so they are not used
in further analyses.
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3.5 Summary

The DAR database allows the calculation of the basic fishery variables of catch, effort, and
CPUE. While there is not an explicit measure of effort in the database, it is possible to derive
one, the “boat-day,” that represents a single day of fishing effort. Various quality control criteria
are applied to the data in order to remove sources of bias and error. The resulting refined time
series are used in the later stages of this study.
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4 DESCRIPTION OF THE AKULE AND OPELU FISHERIES
IN THE HAWAIIAN ISLANDS

4.1 Introduction

Akule and opelu fishing has occurred in Hawali since ancient times, and has undergone
considerable changes since the early 20" century. This section describes the fishing methods and
the growth in the fisheries during the past 30 years.

4.2 Akule

4.2.1 Methods

Beach seining is one of the traditional akule fishing methods used by the Native Hawaiians. The
nets are called hukilau, and are used to take akule schooling very near shore. The proportion of
the catch taken with beach seines has declined since about 1920 as other methods have become
available. Japanese immigrants introduced hand lining in the early 1910°s. It is generally
conducted at night from small boats using about 5 baited hooks or lures per line, Lights are used
to attract plankton, which are the akule’s prey, thus attracting schools of akule to the boat
(Kawamoto 1973). Purse seining uses two boats to surround a school with a net. This method
has harvested the largest proportion of akule in the latter half of this century. In the late 1940,
purse seine operations began using spotter planes to search for schools and judge whether the
boats should be deployed (Kawamoto 1973).

Commercial fishers take the majority of the akule catch. There is no data on the harvest for
subsistence and recreation but these catches are thought to be significant. The primary
market for akule is Honolulu, which is the largest city in the state. For this reason, there is
higher effort exerted around Oahu and the catch from other islands is generally landed in
Honolulu.

4.2.2  Size of the Fishery

The number of boats engaged in the akule fishery has varied considerably during the past 30
years, with an overall increase. The time series in Figures 13 and 14 are obtained by
summing the license numbers within each year. Records having a zero or blank in the
license field are excluded.
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Number of Boats and Effort
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Figure 13. Size of Akule Fishery
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Figure 14. Size of Akule Fishery (2)

In general the number of boats and the effort have changed in parallel, although the first third of
the akule fishery shows a higher effort per boat than the remainder. Note that the number of
boats using each fishing method cannot be determined because the DAR database does not

distinguish between the various kinds of net.

4.2.3 Protection and Management

Since 1929, nets used in akule fishing have been required to have a mesh size greater or
equal to .5 inches. Since 1968, during the period from July through October, akule less
than 8.5 inches total length cannot be netted. This regulation is designed to protect the
hahalalu during their recruitment to the adult populations. The Compendium of 1998
Hawaii Fishing Laws regulates akule fishing in §188-29 nets and traps, setting the
minimum eye size for nets in various gear types and seasons.
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4.3 Opelu

4.3.1 Methods and Their Catch Levels

The opelu is taken by hand line and hoop net (Powell 1968). Hoop netting is an opelu
fishing method developed in Hawaii consisting of a net with a stiff ring at the mouth,
deployed vertically from a boat, along with a chum bag and a glass-bottom viewing box.
The fisherman observes the operation through a view box and uses the chum bag to attract
the school above and into the net. The net is then raised through the school (Gillett 1987).

Honolulu is the primary market for opelu.

4.3.2 Size of the Fishery
Figures 15 and 16 show the time series of the number of boats along with effort and catch.
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Figure 15, Size of Opelu Fishery
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Figure 16. Size of Opelu Fishery (2}
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In general, the number of boats and the effort have changed in parallel. Like the akule fishery,
the number of boats using each fishing method cannot be determined because the DAR database
does not distinguish between the various kinds of net.

4.3.3 Protection and Management

The Compendium of 1998 Hawaii Fishing Laws regulates opelu fishing as follows: §/88-29,
Nets and traps, sets minimum eye sizes for nets as 1-V2 inches; §188-40, Minimum sizes of fish,
sets nine inches as the minimum size; and §/88-46, Opelu fishing regulated, closes parts of the
Kona coast of Hawaii to methods other than hook and line.

4.4 Summary
This chapter describes the methods used in the fisheries for akule and opelu, the regulations that
apply, and calculates the changes in the number of boats in the fishery. In general, the number of

boats and the effort have changed in parallel, although the first third of the akule fishery shows a
higher effort per boat than the remainder.
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5 SPATIAL ANALYSIS OF AKULE AND OPELU FISHERIES

5.1 Introduction

5.1.1 Distribution of Catch, Effort and CPUE

Spatial distribution of catch and effort around the main Hawaiian Islands is described in this
section. The spatial distribution of catch and effort is important in monitoring a fishery, and in
its management and regulation, should this become necessary.

Areas that are important in terms of total yield and CPUE are identified in this chapter. Areas
with high catch are important regardless of CPUE because catching fish is the purpose of the
fishery. Areas with high CPUE are only important if they also have high catch and contribute
significantly to the total yield of the fishery. Areas of high effort are considered important
regardless of their CPUE because these are the areas of peak activity, and because high effort
and low CPUE can result from a degraded resource.

5.1.2 Site Fidelity and Localized Depletion

The spatial data is also used to investigate two seemingly divergent, yet interconnected
questions: whether the fishing intensity is causing noticeable alteration to natural population
dynamics; and the degree of movement the fishes undergo.

In a lightly exploited fishery, the fishing mortality is too small to have a noticeable effect on
population dynamics and CPUE is unlikely to be strongly reduced. If fishing mortality is
significant in relation to natural mortality, CPUE will be reduced. If the fish show low site
fidelity within the range of a fishery, then any reduction in CPUE should occur throughout this
range. Alternately, if the fish have high site fidelity within this range, then CPUE will be
depleted according to the spatial distribution of fishing mortality. Note that low effort areas will
not necessarily have high CPUE. Low effort areas may be bad fishing spots (low CPUE), or
good fishing spots that are inaccessible (high CPUE). As such, low effort areas will likely show
high variability in CPUE. Figure 17 shows the expected distribution of points on a plot of CPUE
vs. effort for low and high site fidelity.
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Figure 17. Interpretation of CPUE-Effort Distribution The left panel shows the expected shape of the point
cloud for a species of low site fidelity. The right panel shows the expected distribution where high site fidelity
allows depression of CPUE in areas that are intensively fished.

Regardless of site fidelity, the spread of points is expected to decrease as effort increases,
because this represents an increase in sampling density. Therefore, the point cloud for both cases
is a wedge narrowing towards areas with high effort (i.e., higher sampling density). For a
species with low site fidelity, mean CPUE is the same for all levels of effort and the wedge is
centered on the mean CPUE. For a species with high site fidelity, fishing effort can cause local
depletion, so CPUE is lower in those areas receiving higher effort. Hence the wedge is
depressed below the mean CPUE as effort increases.

Because site-specific reduction in CPUE can only occur with site fidelity, the outcome structure
for this analysis is asymmetrical. A positive result indicates that fishing mortality is significant
in population dynamics and that site fidelity exists. A negative result allows for the possibility of
insignificant fishing mortality, low site fidelity, or both. If an independent method shows that
fishing mortality is high, then a negative result for this spatial analysis would indicate low site
fidelity.

5.2 Methods

5.2.1 Distribution of Catch, Effort, and CPUE

Maps for effort, catch, and CPUE are generated for akule and opelu using the refined data
developed in Chapter 3. DAR has divided all waters surrounding the main Hawaiian Islands into
areas for use in recording the location of catch and effort. The nearshore waters are divided into
two bands—a narrow band bordering the coast and a wider band offshore of this. These areas,
and the numbers used to label them, are shown in Figure 18. The databases reference all catches
to the areas within these two bands. Because areas vary in size, there is a bias against smaller
areas, which is removed by surface-area normalizing. Note that the CPUE maps are not surface-
area normalized because the areal dimension cancels in the CPUE calculation.

26



T I
579 | 580 | ggy 5 83| c8a | 5es | 463 | 464 | 465 | 466 | 467 | 373 | 844 | 845 | 846 | 847 15422
623
s22
574 | 57 sz | ae2 | o 459 | a4s8 | arz | an a0 | 368 | a2es | a4
460
526 2 0.888 5pd oo
57 571 s 428 457 361 a2 g3 364 aes 386 367 840 841
520 424 a2g,
S 527 427
— ase
6 5es | sea | 562 455 azs 5.998 - 8 | gor | 3% | 25 | 984 | 22 | e
5420 [ 535 293
558 .
556 | 557 sso | sea | ser | asa | ank 42z [0, ] A g 322 oo | 953 | 2as | 20 | 25
831 3z3
554 850 540 648 547 448 449 450 451 452 3 - 2.998 248 247 246 245
7
saz | 643 | 644 | a5 | 646 | 447 | 4 | 445 | aas | 443 1 350 b 92 3 197 108 | 19% | 240
226 325 123
886 887 L 889 890 291 a0 | aam 442 345 | e | 347 &h\ 196 ! 124 . 194
122 125
344 343 342 187 18 1 189
9,999
16,018 15,919 15,819 350 | 341 186 | 185 184 . 126
121
ss2 | 893 176 177 178 179
127
1
170
884 895 178 174 173 a7 120 120 Y17 169
16018 15.918 15,818 sss | ss7 | Bes 157 | 158 189 | 1e0 1 19 162 163 164

Figure 18. DAR Areas and reference numbers for Hawaiian Waters

Plotting all the spatial data results in maps that show very little variability. The reason for this is
that the distribution of the fishery variables in both data sets is heavily skewed to the left (low
values), as shown in the histograms in Figures 19 and 20.
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Figure 19. Distribution of Catch (Ib) by Area for Akule. The top panel is a histogram showing the strong left-
skew of catches. The lower panel shows the cumulative caich achieved at catch bin. Note that a small number of
productive areas account for a large portion of the total catch.
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Histogram of Opelu Catch by Area
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Figure 20. Distribution of Catch (Ib) by Area for Opelu. The top panel is a histogram showing the extreme Jeft-
skew of catches. The lower panel shows the cumulative catch achieved at catch bin. Note that only two areas
account for about half of the total catch,

The areas were placed into 50 bins of equal size. For the akule, the lowest bin contains records
with catch below 41,000 Ib. per area. For opelu, the lowest bin contains records with catch
below 62,550 Ib. These areas with very low values impede the display of more useful
information for other areas. The cumulative catch plots that accompany the histograms in Figures
19 and 20 show that the smallest catch bins have far more areas than any other, but do not
contribute significantly to the catch of the fishery. Therefore, data for these areas is removed in
the maps presented here.

5.2.2  Site Fidelity and Localized Depletion

Data for all areas and all catch levels is used in this analysis, because the full range in each
variable is desired. To effectively display the highly skewed variables they are Ln-transformed,
This yields normal distributions and allows the variables to be standardized (subtract mean,
divide by standard deviation). The plots of CPUE vs. effort can then be performed. The
distribution is compared to the distributions shown in Figure 17 to analyze the effects of effort on
local CPUE. The CPUE in high-effort areas is compared to the CPUE in all areas. The
definition of high-effort areas is determined by looking for natural breaks in the distribution of
the effort data. The significance of any difference between the two mean CPUE values is
determined using the Student’s t test.

5.3 Results

5.3.1 Distribution of Catch, Effort, and CPUE

The following maps (Figures 21-26) present the spatial distribution of effort, catch, and CPUFE
for akule and opelu. The number in brackets after each line in the legend gives the numbers of
areas falling within the bin.
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Figure 21, Surface Area—Normalized Akule Effort (boat-days/NM’)
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Figure 22. Map of Surface Area—Normalized Akule Catch (Ib/NM’)
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The maps allow areas with higher levels of effort, catch, and CPUE to be identified. Some areas
with high CPUE may not be important in the fishery because they have low catch and effort.
Therefore, tables 3 and 4 highlight areas with catch and CPUE in the upper quartile range.

Table 3. High Catch and CPUE Areas for Akule

area carch {Ib) effort (boat- CPUE {lb/boat-
day) day)

300 | Maui 1057162 1089 970,764
310 pMoiokai 486125 481 1010.655
301 | Maui 458869 426 1077.157
506 | Niihau 390113 77 5066.403
505 | Kauai 337176 121 2786.579
521 | Kauaj 318162 454 700.7974
305 | Maui 260772 109 2392.404

Table 4. High Catch and CPUE Areas for Opelu

area catch (Ib}  effort (boar-day)  CPUE (lb/boat-day)
01 | Hawaii 3127782 25267 123.7892
12F | Hawaii 1333087 14172 94.0648
102 | Hawaii 4306074 3575 121.9787
100 | Hawaii 228475 1791 127.5684
122 | Hawaii 196269 1898 103.4083
120 | Hawail 155980 [473 105.8927
300 | Maui 129378 1155 112.0156
500 | Kauai 129107 890 143.6118
503 | Kauai 101494 195 520.4821
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5.3.2 Site Fidelity and Local Depletion

5.3.2.1 Akule
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Figure 27. Akule-Effort vs. CPUE for All DAR Areas. Compare to Figure 17, right panel. As expected, the
point cloud shows highest variability at low effort, and a decrease in CPUE at the highest effort values.

Figure 27 plots CPUE against effort for the akule; each point represents a DAR area. Note that
the values are surface-area-normalized and Ln-transformed. All DAR areas in the two nearshore
bands (see Figure 18) are represented. The wedge shape shows a decrease in CPUE variability
as effort increases. It also shows a downward trend in CPUE towards high values of effort.
Therefore, the CPUE of high-effort areas is less than the CPUE of low-effort areas,

Akule Effort vs. CRPUE for alt DAR Areas
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Figure 28. Akule Effort vs, CPUE for all DAR Areas. A small number of areas receive much greater effort than
the remainder.

Is the difference between these two means significant? Before a formal statistical test can be
performed, the meaning of “high-effort” must be determined. Inspection of a plot of effort vs.
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CPUE (Figure 28) shows that there is a natural break in the data. Those areas greater than 100
on the effort scale fall outside of the region occupied by the majority of areas.

Given this break in the distribution, these areas are defined as high-effort areas. In Figure 27,
this definition is used to distinguish high-effort areas (plus-signs) from low-effort areas (circles).
My hypothesis is that the mean CPUE of the high-effort areas (i,,,) is significantly less than the
mean CPUE of the remaining low-effort areas (g,,). This hypothesis is stated formally as
follows.

HO: Mpigh = Hiow
Ha: Hnigh < Liow

This hypothesis is tested using a two-sample Student’s ¢ procedure. Because the alternative
hypothesis is that u,., is greater, a one-sided test is appropriate. The two populations have
different variability so a separate variance will be used for u,, and My The test shows that the

difference between 1, and u,,, is significant at the 99% confidence level (P = 0.0025). The
results are summarized in Table 5.

Table 5. Akule CPUE of High and Low Effort Areas

N  Mean  Standard Standard
Deviation Error
low-effort areas 75 5500 1.320 0.15
high-effortareas | 7 4.584  0.587 0.22

99% CI for W, - W, (0.10, 1.74)
T-Test: p, 0=, {vs, <) T=342 P=0,0025 DF= |2

5.3.2.2 Opelu
Spatial Variation in Effort vs. CPUE
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Figure 29. Opelu-Effort vs. CPUE for Al DAR Areas. Compare to Figure 17, left panel. There is no evidence
for depression of CPUE at the highest effort values.
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Figure 29 plots CPUE against effort for the opelu; each point represents a DAR area. All DAR
areas in the two nearshore bands are represented. The opelu data do not form a well-defined
wedge pattern, although variability does decrease at higher effort levels.
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Figure 30. Opelu Effort vs. CPUE for all DAR Areas

As with the data for akule, a plot of effort vs. CPUE within each DAR area (Figure 30) is
inspected for a natural break in the distribution between high-effort areas and all other areas.
Note that one area with very high CPUE and very low effort is not shown to allow better display
of the remaining data. Areas greater than 100 on the effort scale are greatly removed from the
region occupied by the remaining points, and are defined as high-effort areas. Using this
definition, u,., > 4,,.. However, there are only two points in this range so meaningful statistical
tests cannot be performed.

5.4 Discussion

5.4.1 Spatial Distribution

The majority of the catch of both species is taken in a small number of areas. The opelu fishery
is particularly concentrated, with more than half of the catch for the entire fishery coming from
two areas on the Kona coast of Hawaii (areas 101 and 121). This effect is clearly seen in the
cumulative catch plot in Figure 20. Area 121 does not show strongly on the catch map because it
is a large area and the value is surface-area-normalized.

5.4.2 Site Fidelity and Local Depletion

Site fidelity is of great interest in fisheries management because it strongly affects the kinds of
management issues that occur in a fishery. For a species with low site fidelity, an entire stock
can be fished despite the effort occurring in only part of its range. Highly migratory and
straddling fish stocks can be severely impacted by overfishing in one region or country, to the
detriment of fisheries elsewhere. For such a species, fishery closed areas can reduce fishing
mortality but cannot afford complete protection to any individual, because the typical adult range
will likely exceed the size of the closed area.
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For a species with high site fidelity, fishing an entire stock requires fishing over its entire range.
Hence, such stocks are often locally depleted where high fishing effort occurs and have normal
abundance elsewhere. Such species can be protected with closed areas, which are briefly
discussed here. The impacts of fishing on fish stocks are outlined and the amelioration of these
impacts by closed areas is discussed as follows.

e Decreased fish stocks. Closed areas may export recruited fish into open areas, depending on
the typical adult range of a species (Polacheck 1990, DeMartini 1993).

*  Reduced spawning stock. If fishing decreases the ability of a stock to replenish itself, catch is
less than maximum sustainable yield (i.e., an economic loss) and, at some point, the stock
will crash due to recruitment failure. Closed areas harbor an “untouchable” spawning stock,
and due to the pelagic larval phase of many marine fishes (including akule and opehu), may
support recruitment over a considerable region through larval dispersal (Roberts 1997).

e Removal of large, high-fecundity individuals. The fecundity of most fishes is proportional to
a power function of the size of the female. Therefore, the harvest of larger individuals can
have a dramatic effect upon the total supply of eggs. For example, a single 61 cm female red
snapper produces the same number of eggs as 212 females of 42 cm each (Birkeland, 1997).
For a given species, closed areas generally harbor larger individuals than fished areas (Alcala
and Russ 1990).

o [Lvolutionary pressure towards smaller individuals. Fishing removes the most desired fish,
generally the biggest. This selects for smaller, earlier maturing fish which, over time,
degrades the value of the species to humans. A closed area may harbor individuals that are
not subject to this pressure, depending on the movement of individuals across its boundary
(DeMartini, 1993, Bohnsack 1996).

e Decrease in target species, increase in non-target species. Loss of valuable species makes
the system less valuable for fisheries and ultimately leads to the serial depletion of species
(Pauly et al. 1998).

e Coincidence of fishing with natural pressures on a fish stock may cause collapse. The ocean
is dynamic and fish populations go up and down in the absence of fishing. Therefore, a level
of fishing that was sustainable yesterday may not be tomorrow. The spawners in a closed
area may be able to carry a stock through a protracted period of recruitment failure. In
addition to single-species effects, the changes in community structure caused by fishing may
cause system-wide effects. The coincidence of high fishing pressure and hurricanes is
thought to have precipitated a phase-shift from a coral reef-based to an algal-based system in
Jamaica (Hughes 1994). Closed areas with natural community structure can provide a full-
community seed stock for the recovery of nearby degraded areas.

These benefits of closed areas will only accrue for species that spend enough time on the inside
to gain protection from fishing. The reduction of akule CPUE in high effort areas is significant
at the 85% confidence level when accounting for variance in both means. Site fidelity for the
akule is consistent with the nearshore habitat preference of the akule; tag-recapture experiments
around Oahu, Hawaii (Kawamoto 1973); and observations of fishermen that “piles” of akule
have regular locations. If the akule shows site fidelity, closed areas may be an effective
management tool should this become necessary.

Opelu CPUE in high-effort areas is not significantly different from CPUE in all areas, indicating
low site fidelity, low fishing mortality, or both. The results from modeling (Chapter 6) indicate

36



that fishing mortality for the opelu is low, and therefore offer no guidance in the interpretation of
the opelu’s effort-CPUE relationship. However, low site fidelity for the opelu is consistent with
its habitat, which is more offshore than that of the akulie.

5.5 Conclusions

This spatial analysis shows that a relatively small proportion of nearshore waters receive the bulk
of fishing effort and produce the bulk of the catch for both the akule and the opelu.

The analysis of CPUE with respect to fishing effort shows that akule CPUE is reduced in those
areas receiving high effort and that opelu CPUE is not. This indicates that the akule fishery is
significantly affecting population dynamics and that the akule shows site fidelity. The opelu
generally lives further offshore than the akule and thus may have lower site fidelity.

Knowledge of site fidelity is critical for the development of spatial management schemes, and is
a subject of considerable interest in the literature regarding the use of closed areas for fishery
management. Closed areas can effectively protect species with high site fidelity and may be an
effective tool for the management of the akule, should this become necessary.
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6 MODEL OF POPULATION DYNAMICS

6.1 Introduction

A biomass-dynamic model originally developed by Schaefer (1954) uses the fishery variables
developed from the catch and effort databases to estimate biological and fishery parameters for
akule and opelu. The term “variable” refers to measured quantities (catch, effort, and CPUFE)
and “parameter” refers to quantities that are estimated from variables.

The Schaefer Model is an ordinary differential equation (ODE) composed of the logistic growth
equation, limited by carrying capacity, and coupled with a mortality term that represents fishing.
Two versions of the model are developed, one with constant carrying capacity (scalar-k) and one
with time-varying carrying capacity (vector-k). The permitted temporal variability of k can be
controlled, and three runs are reported at low, medium, and high variability. Both versions of the
model employ an equation with semi-implicit time-stepping to prevent chaotic behavior.

The parameters of interest are estimated by time series fitting with maximum likelihood
estimation, employing automatic differentiation in a Bayesian statistical framework. Values for
the population growth parameter () are calculated based on published information. The status of
a stock is based upon the biomass in relation to carrying capacity, and the stock-production
relationship. The behavior of the model under an idealized fishery confirms its ability to
diagnose overfishing, given sufficient contrast in the data. The Bayesian framework allows the
use of posterior probability distributions as a means of expressing uncertainty in the results.

6.2 Biomass-Dynamic Modeling

The goal of this exercise is to determine the status of the fisheries for akule and opelu. To do
this, we need to know the ecological mechanism of the system and values for parameters in this
mechanism that cannot be measured. The mechanism of the fishery is assumed to be that of the
Schaefer Model. Estimating relevant parameters necessitates modeling. The database provides
effort and catch, allowing biomass-dynamic modeling. The database does not contain caich-at-
age data so age-structured models are not an option.

A successful model is one that makes a prediction similar to our observations of nature. When
prediction and observation coincide, we can be confident that our mechanism and parameter
values are consistent with the data.

A biomass-dynamic model is constructed after Hilborn and Walters (1992). The data required

for such models generally include effort, catch, and population growth rate. Length-frequency
and catch-at-age data do not exist for these species so age-structured models are not possible.
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Hilborn and Walters (1992) provide ODEs for two biomass-dynamic models—the Schaefer
model and the Pella-Tomlinson model, summarized in Table 5. The Schaefer model is
composed of the logistic growth equation, limited by carrying capacity, and a mortality term
that represents fishing. Note that natural mortality is incorporated into carrying capacity in this
context. The fishing mortality term, i.e., catch, is calculated with the product of fishing effort
and stock biomass. To allow equivalence between catch and biomass, a scale factor (¢) is
included. This represents the catchability of the stock. By assuming that ¢4 is constant, we can
use CPUE as an index of biomass.

Table 6. Mathematical Forms of Biomass Dynamic Models

Schaefer 4B B B Biomass
(Differential = rB(E - ") -Clr Intrinsic rate of population growth
equation) di k Parameter corresponding to equilibrium stock size
Catch rate
C Time
t
Assumpticns:
C = gEB E Fishing effort
q Parameter for effectiveness of each unit of effort
(catchability)
U=C/E=¢gB v Catch per unit effort
Properties: Surplus production (see Section 5.2) and biomass have
symmetric relationship; generally there s no
information to test this assumption.
Pella- 4B Fom m Parameter for skew of surplus production-stock size
Tomlinson I =B - ;(“ B -C relationship
All others as in Schaefer model
Froperties: Allows skew of surplus production-stock size
relationship, thereby obviating the Schaefer model
assumption of symmetry. Where m<2 — left skew;
m>2 — right skew; m=2 — = Schaefer Model
This model should be used only where skew can be
reasonably estimated, which is rarely the case.

The Pella-Tomlinson equation is an extension of the Schaefer equation that allows the stock-
production curve to be skewed where such a condition is indicated by data (controlled by the
exponent, m). As noted in the above table, the Schaefer equation is equivalent to the Pella-
Tomlinson equation where m=2, In practice m can rarely be estimated. No such information is
available for the akule and opelu fisheries, hence, the Schaefer model is used.

In order to allow for automatic computations, the ODEs must be written in difference form. The
difference form of the Schaefer model is given in Table 6.
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Table 7. Difference Form of the Schaefer Model

Schaefer B, B, Biomass at time t

Difference | B,y — By = PB;(I ——J— Cr | € Catch during time t

Equation k

where C, = gBE, E,  Fishing effort during time ¢

Properties: 1, k, g as in Schaefer model

Where r and gE are low, behavior is the same as for
the differential equation Schaefer model. Chaotic
behavior occurs for high r-values, “but this is of no
real interest in fisheries stock assessment” (Hilborn
and Walters 1992: 304) because fish populations do
not have high r-values. For an additional margin of
safety, a modified form is developed here which
prevents this instability.

The logistic equation allows rapid changes in biomass, depending on values for » and may
exhibit chaotic behavior. Therefore, it is necessary to determine the resulting behavior of the
Schaefer Model. A number of versions of the Schaefer difference equation are run to determine
their numerical stability. The explicit version from the table above allows isolation of the B,
term on one side, -

B, =B+ rB,[lw—%]— gE,B,

and it is seen that each value of B depends upon past values of B and E. This version exhibits
instability, which is evident when the equation is expressed as

Br+l =Br(l+r(lm%]qurJ

and if the fishing mortality term gE, becomes large, the right hand side (RHS) may become
negative.

The fully implicit form of the equation
B,
B =B _ +7rB, l—_k -qE B,

cannot be easily solved, because the value of B at the current time step depends upon values of B
and E at the next time step (i.e., in the future). This dependence is evident when the equation is
written as

B
B, :1—r+r-}c’—+qE,B,.

4]



A partially implicit version of the equation is written,
BH-]
Br+l - Br = rB.' I_T _qErB.'+l

in which B on the RHS is at times ¢ and #+/. This change of time dependence is called semi-
implicit time-stepping. In this equation, the value of B at the current time step is dependent upon
the values of B at the current and previous time step, and E at the previous time step. This
equation is numerically stable, and this is evident when it is rewritten as

s __ Bl+r)

1+l

1+r%+qEr

Note that the numerator and denominator will both be positive since all the components must
individually be positive.

Figure 31 shows the behavior of the logistic portions of the explicit and partially implicit
equations (the fishing mortality has been removed).
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Figure 31. Stability of Explicit and Partially Implicit Logistic Equations. Both versions perform well as low r-
values (upper panel). At high r-values the explicit version exhibits chaotic behavior while the partially implicit
version remains stable (lower panel).
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The top panel shows the behavior for a low value of the growth parameter ». The lower panel
shows the behavior for a high value of . Note that when r is large, the explicit equation is
unstable and exhibits chaotic behavior, whereas the partially implicit one is stable. This partially
implicit Schaefer equation is used as the scalar-k version of the model (constant carrying
capacity), The vector-k version is discussed below under Section 3.3.

6.3 Methods

6.3.1 History of Methods for Fitting a Model to Data

Three methods have generally been used by fishery scientists in fitting biomass-dynamic models
to available fishery data: the assumption of equilibrium conditions; transformation of the
equations to linear form and using linear regression; and time series fitting (Hilborn and Walters
1992). Of these methods, time series fitting is generally accepted as the most robust (Hilborn
and Walters 1992) and is used in the present study. Pella and Tomlinson (1969) first developed
this method. Initial values of relevant parameters are chosen and the model is used to predict the
data. The initial parameters are changed and the model is run again. Based on the differences
between runs, the initial parameters are adjusted to achieve a closer fit, and so on, until the best
estimates are found through iteration.

6.3.2 Methods for Time Series Fitting

6.3.2.1 Maximum Likelihood Estimation

Time series fitting is accomplished in this study by using maximum likelihood estimation
(MLE). MLE is described in many sources, such as Brownlee (1965). In order to estimate
values for the model parameters (1, g, K, B,) based on the closest fit of the model to the data, we
minimize an objective function that is based on the deviation of the predictions away from the
data. The function should be appropriate to the distribution of the estimates around the data. For
instance, where the estimates are normally distributed around the data, a sum-of-squares function
1s appropriate. This likelihood function, L, is then a dome-shaped function of the parameter(s),
8. To find the maximum value of L, the partial derivative of L by 8 is set to zero (the slope of
the function is zero at the maximum). In practice it is easier to use the logarithm of L. Where
there is more than one parameter, the partial derivatives of L by each 8 are set to zero, thus

8logL= dloglL _.. _9dlogLl _
96, 06, J6,

0.

If there was a single parameter, 0, then the likelihood function would be searching for the peak
on a line. If there were two parameters, it would be searching for the peak on a curved surface.
Because there are more than two parameters, the likelihood function is searching for the peak of
an n-dimensional space. In this case there is no simple visual analogy such as a line or surface.

For simple likelihood functions, analytic, closed form expressions for 0, are feasible. For the
more elaborate likelihood functions encountered in the present study, numerical searches are
necessary. The software AD Model Builder (Fournier 1996, 1999) is used for maximum
likelihood estimation. This software uses a quasi-Newtonian numerical minimization algorithm
with analytical gradients determined by automatic differentiation (see Section 3.2). The
objective function that is minimized by this algorithm is chosen to reflect the relevant quantities
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from the core equation, in this case, the partially implicit Schaefer equation. For the scalar-k
version of the model, the objective function is

A 2
logL= 2{ log(C)~ mg(o)

where C is the predicted catch and C is the observed catch (data). The sum-of-squares term
decreases the function as deviations between C and C decrease, thereby leading to a closer fit as
log L is minimized.

The objective function for the vector-k model is discussed in Section 3.3.

6.3.2.2 Automatic Differentiation

In order to determine the gradient of the partial derivatives, software packages such as AD
Model Builder employ a technique called automatic differentiation. The basic principles behind
automatic differentiation are simply the fundamental rules of differential calculus. Using the
chain rule, the program takes the function and breaks it up into simpler components that can be
differentiated, then recombines the results into the solution to the original equation (Iri 1991).

6.3.3 Statistical Framework—A Bayesian Approach

6.3.3.1 Background

The models used in this project use a Bayesian approach, which differs from the classical
approach in that pre-existing knowledge or impressions of a parameter are quantified in the
analysis. Unknown parameters are replaced by known distributions for those parameters. Based
on this prior knowledge, and the available data, the statistical test determines how likely we are
to observe a given parameter value (Schmitt 1969). Formally, the pre-existing information is
represented in the prior probability distributions, the new information (data) is represented in the
likelihoods, and the combined result of the two is contained in the posterior distributions
(O'Hagan 1994).

Cause and effect are placed on the same conceptual level—both are treated as random variables,
which allows inversion in our statistical tests (Robert 1994). In effect, the causative factors are
treated as if they were caused by our observations. If a cause, C, gives rise to an observed effect,
O, then the probability distribution of the effect is given by

O=C+e¢

where € is an error term. The Bayesian makes the conceptual leap that an identical distribution
describes the probability distribution of the cause, given the observation of the effect,

C=0+¢€

(Robert 1994),
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Classical statisticians object to Bayesian techniques, arguing that unknown parameters cannot be
considered to be random variables as they do not arise from controlled experiments (O'Hagan
1994). Bayesians counter that, while it is true that a causative parameter does not arise out of a
random experiment, treating it as a random variable is often the best available method of
incorporating the available (or unavailable) informatidn regarding the parameter (Robert 1994),
Note that the “answer” is not a single value for the parameter of interest, but a probability
distribution of values for the parameter. The peak of the distribution is generally the value used,
and the shape of the distribution is a measure of confidence in this value. A narrow distribution
indicates high confidence, and vice versa. The probability distribution for a parameter is often
referred to as a likelihood profile.

6.3.3.2 Variable Carrying Capacity

It is widely accepted that the ocean is a dynamic system and can cause variations in carrying
capacity for many organisms. Therefore, we know that assuming constant k is likely to lead to
error. Assuming that carrying capacity does vary, in an unknown way, is a more reasonable
assumption (for further discussion see Fournier 1996).

This method does not attempt to directly determine the changes that carrying capacity has
undergone. Rather, it allows us to quantitatively explore the questions “If k does vary, then what
variation would yield the CPUE time series we observed, and how close would the model’s fit
be?” This is the basis for the second version of the Schaefer Model, in which carrying capacity
varies in time.

The equation used in the scalar-k model is modified by making & a time-dependent variable, as
follows

B
B.'+I = Br + I‘B',(l—fl*}" qErBH-I

where & is defined as
km»l = kr ’ GXp(T]r)

and 77 is N(0,0y), a normally distributed random variable with mean zero. oy is set to allow at
least the desired degree of variability in k. The model chooses values of 1 for each time step
such that the predicted catches approach the actual catches. In this way, the model generates a
time series of carrying capacity that improves the fit of predicted catch to observed catch (and is
not based upon empirical evidence of changes in k).

The form of the objective function ensures that & is not completely free to vary because variation
in k adds to the function, thereby penalizing such variation. Variation in k occurs only until the

benefit of improved fit is equal to the cost of variation in k. This balance is achieved with the
following objective function.

logL= Z|:log(&) —~log(C)} +wy N
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This function is the same one that is used for the scalar-k model plus wZ1’, a penalty term that
increases log L as oy increases. In order to improve the fit of C to C, the model varies 7,
causing k to change; the nature of this change is adjusted so that £[log (C")—log (C)]’ decreases.

The weighting term, w, is used to vary the size of the penalty so that the variation of £ can be

adjusted. Note that this model has a special case—when w is large 17’ is small and the variation
in k is minimal, so the model approaches the scalar-k model.

6.4 Model Inputs

6.4.1 Effort and Catch Data

For both akule and opelu, the refined time series discussed in Chapter 3 are used. For the test
case using an idealized fishery, monotonically increasing effort and a dome-shaped catch
function are used, which cause monotonically decreasing CPUE. Constant carrying capacity is
assumed. This scenario is an idealized form of the classic unmanaged fishery, with effort
increasing through time and catch increasing then decreasing as the stock becomes overfished.
This test case allows the behavior of the model to be observed in a scenario with a known
outcome.

6.4.2 Values for the Population Growth Parameter, r

The model does not estimate » with confidence, so values are calculated using a published
method and data from published sources. For the test cases, the value calculated for the akule is
used.

Sullivan (1991) provides an empirical equation for r as a function of K, based on estimated r and
K values for 44 stocks of commercially exploited fishes. This equation requires K and the
asymptotic weight, W.,, as inputs. Asymptotic length, L., can be converted to W. with the
relationship W = a-L’ where a and b are empirical constants. Weight is in grams and length is in
centimeters.

6.4.2.1 Akule

There are no published r-values for akule other than Kawamoto (1973). Nineteen published
sources provided K-values for the akule (compiled in Froese and Pauly 1998). W.. is available
only from Kawamoto (1973). Other sources provide L.. Using this information and the
relationships stated above yields an r-value of 1.94/year.

6.4.2.2 Opelu

Yamaguchi (1953) and two sources in Froese and Pauly (1998) give K-values for the opelu. L.
is provided in Gushiken (1983) and two sources in Froese and Pauly (1998). Using this
information and the equation of Sullivan (1991) yields an r-value of 1.86/year.

6.5 Model Outputs and Interpretation

The model provides estimates for various biological and fishery parameters, from which
additional parameters can be calculated. The model also provides various outputs quantifying its
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performance and the closeness of fit achieved. These parameters are used to assess the condition
of a stock. They can be used to infer whether the stock is overfished, optimally exploited, or
could support increased fishing.

6.5.1 Model Performance Diagnostics

The model measures the closeness of fit by the size of the objective function, which is defined in
Section 3.2.1. Note that the functions are different for the scalar-k and vector-k models, in that
the term which penalized variation in k for the vector-k model is absent (i.e., zero) for the scalar-
k model. Hence, while the vector-k objective function has an extra term adding to its size, the
ability of & to vary may allow the function value to be lower than that for the scalar-k model,
indicating a closer fit.

6.5.2 Stock Assessment Diagnostics

6.5.2.1 Biological and Fishery Parameters

The model estimates catchability, ¢, carrying capacity, & (or initial carrying capacity k,), and
initial biomass B,. Using these values and effort and catch from the data, the model calculates
predicted catch, biomass, carrying capacity, and maximum sustainable yield. For the vector-k
models, the penalty weight for variation in & affects the outputs. The results are presented with
three penalty weights and the confidence plots are presented for the medium penalty.

The most useful of these outputs are MSY and the ratio B/B,,. When catch exceeds MSY,
overfishing is occurring. When B/B,,, has a value of one, the stock is optimally exploited and
sustainable yield (or surplus production) is at its maximum. When B/B,,, is less than one, the
sustainable yield is less than it could be and the fishery is not in its most productive state. When
this is the case, allowing the stock to recover will result in higher yields.

The conditions of a stock can be visualized when the surplus production is plotted against the
stock biomass. The surplus production (analogous to sustainable yield) is the amount of fish
produced during a time step over and above what is required to maintain the population level.
The following equation is used to calculate surplus production.

surplus production,, , = biomass,,,, - biomass,, + catch,,
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Figure 32 shows how the stock-production relationship is interpreted.
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Figure 32. Interpretation of Stock-Production Relationship

There are three theoretically known points for the stock-production curve. The production is
zero at a biomass of zero, and when biomass has reached carrying capacity. MSY occurs at a
biomass of k/2. A line can be fit to the three known points (0,0), (k,0) and (k/2,MSY) and is
referred to as the theoretical stock-production curve. Note that a given surplus production can
occur at two levels of biomass either side of B,,,. The right end of the curve shows the stock at &
(i.e., saturated) where the environmental limits to growth have been reached and the surplus
production is zero. As fishing moves the stock left from % to k/2, fish are released from k-
limitation so they grow and reproduce faster, and higher surplus production is achieved. The
peak of the curve occurs at a biomass of k/2 and represents the optimal balance between the
release from k-limitation and the loss of spawning stock. As fishing moves the stock left from
k/2 towards zero, the benefit of release from k-limitation is eclipsed by the detriment of
decreased spawning stock, and surplus production declines. In general, recruitrent failure will
cause a population crash before fishing reduces the biomass to zero.

Note that a trend in CPUE is not enough to assess the condition of a stock. CPUE will decrease
as biomass decreases, but this only becomes a problem when biomass is less that k/2. Similarly,
CPUE may be constant but if biomass is less than k/2 the stock is overfished, and allowing
recovery would enable higher sustainable yields. The outputs of the Schaefer Model allow the
theoretical curve for the stock in question to be plotted, as well as the actual stock-production
values for each time. The distribution of these points in relation to the theoretical curve allows
the condition of the stock to be assessed. Fisheries with low contrast in the data will show points
that are narrowly distributed on a stock-production plot. The position of the point cloud allows
the status of the stock to be assessed, Note, however, that high confidence in the results is only
possible where high contrast exists in the data.
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6.5.2.2 Confidence

Confidence in the vector parameters is assessed by the width of their one standard deviation
bounds, a measure of spread requiring normality, which was confirmed. Confidence in the scalar
parameters is assessed by plotting their likelihood profiles, as discussed in Section 3.3. The sum-
of-squares likelihood function used in this model requires the distribution of the estimates around
the data to be normal, which was confirmed.

6.6 Results

The results are presented as time series plots for the vector parameters and number values for the
scalar parameters. In addition to the direct outputs of the models, surplus production is
calculated and used to analyze the stock-production relationship for each stock. For the vector-k
models, variation in k is controlled by a penalty factor, discussed in Section 3.3. Results are
provided for low, medium, and high penalty levels (except for the test case, which is provided at
a single penalty level). Confidence in the results is assessed with various guantitative measures
of statistical spread.

6.6.1 Test Case for Scalar-k Model

The test case uses data concocted to represent an idealized fishery, having monotonically
increasing effort and a dome-shaped catch function, which cause monotonically decreasing
CPUE. Constant carrying capacity is assumed.

Figure 33 shows that the model incurs minor error—the B/B,,, ratio equals one when the
predicted catch is maximized (year 78), prior to the time the actual catch is maximized (year 82).
However, the trend of the B/B,, ratio correctly describes the trend of the fishery. It actually
adds a precautionary margin because it prematurely indicates the point at which MSY is reached.
A precautionary approach to management has been advocated widely (e.g., Gordon 1994).
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Figure 33. Scalar-k Model Input and Output Time Series for Test Case. The model successfully diagnoses a
troubled fishery in this test (see text for details).
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Figure 34, Scalar-k Model—Stock-Production Relationship for Test Case. The full range of values shows the
transition of the stock from pristine (right) to extinct (left).

Figure 34 shows that the stock-production prediction is skewed from the theoretical relationship
because there is error in the model output, as discussed above. However, the error is small, and
the form of the relationship is shown. Note that almost the full range of possible values is
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represented because the concocted data follow the fishery from a pristine to an extinct condition.
This high contrast in the data, along with the absence of noise in the input data, leads to the high
confidence levels as reflected in Figures 35-37.

In Figure 35, the one standard deviation bounds on the output time series are very narrow,
reflecting the confidence that results from a high contrast data set.
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Figure 35. Scalar-k Model Output Time Series with 1-SD Bounds. The narrow 1SD bounds indicate high
confidence in the results.

Figures 36 and 37 show that the likelihood profiles for the scalar parameters are narrow. Note
that MSY is a direct function of k, and does not have an independent likelihood profile.
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Figure 36, Scalar-k Model—Likelihood Profile of ‘q’ for Test Case
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significance level lower bound upper bound
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Figure 37. Scalar-k Model—Likelihood Profile of ‘k* for Test Case

significance level lower bound  upper bound

0.9 3.47771e+06  6.0315e+06
0.95 3.27298e+06  6.28835e+06
0.975 3.1364%e+06  6.56115e+06

6.6.2 Test Case for Vector-k Model

The same idealized fishery input data are used as a test case for the vector-k version of the
model.

Figure 38 shows that the vector-k model incurs some errors, but it correctly identifies the trend of
the fishery. However, the time at which MSY is indicated (year 84) is after the time when
observed catch is maximized (year 82), meaning the model is late in diagnosing overfishing.
This error arises because the model’s ability to vary k is used to explain a portion of the
variability in CPUE. Because the test case uses a constant , this leads to error and the variation
of k& masks the reduction in CPUE for a pericd.
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Figure 38. Vector-k Model Input and Output Time Series for Test Case. The model successfully diagnoses a
troubled fishery in this test, although the variation in k causes a lag (see text for details).

Figure 39, the theoretical stock- plOdl.lCthI’l relationship, is based upon the mean values for the
three known points in a variable-k scenario. The predicted & falls below the output points that
are based upon the actual & at the time. This relationship also shows that the data have hlgh
contrast, with the full relationship represented in the output values. This leads to low variance in
the outputs, as shown in Figures 40 and 41.
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Figure 39. Vector-k Model—Stock-Production Relationship for Test Case. The full range of values indicates
the transition of the stock from pristine (right) to extinct (left).
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Figure 40. Vector-k Model—Qutput Time Series with 1-SD Bounds for Test Case.

indicate high confidence in the results.

The narrow 1SD bounds
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Figure 41. Vector-k Model—Likelihood Profile of 'q' for Test Case

significance level lower bound upper bound

0.9 1.4481¢7 1.7719
0.95 1.41534 1,79651
0.975 1.35046 1.82423

As for the scalar-k test case, confidence in the results of the vector-k model is high, due to the

high contrast data set,
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6.6.3 Scalar-k Model for Akule

0.6.3.1 Quitput Parameters

Figure 42 shows that biomass gradually declined with moderate inter-annual variations, but has
always been above B, Predicted catch approximately follows the shape of observed catch,
indicating a moderate fit. Note that some of the y-axes have been truncated to allow higher
resolution,

Objective function value, log L = 3.836
Catchability, g = 0.562

Carrying capacity, k = 1.343e+06
Maximum sustainable yield, MSY = 651292
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Figure 42. Scalar-k Model Input and Output Time Series for Akule. Trends are interpreted in the text.
Compared to the test case, the variability is higher and contrast is lower.

The theoretical stock-production curve for the stock is shown in Figure 43. The point cluster is
about 1/3 of the way from MSY to the zero exploitation point, indicating that the stock is
exploited somewhat below MSY. Note that some of the points are higher on the surplus
production axis than the theoretical MSY point, indicating overfishing during these times. The
surplus production is calculated as described in Section 5.3. In Figure 43, the calculated points
are marked with pluses and the theoretically known points, based upon data from the model, are
marked with circles (see Section 5.3 for details).
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x10° Stock-Preduction Relationship for Akule
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Figure 43. Scalar-k Model—Stock-Production Relationship for Akule. The points lie in a small portion of the
graph, showing the low contrast in the data, which leads to low confidence.

6.6.3.2 Confidence in Results

Figure 44 shows that B is not well determined in the data because the 1 SD bound is below zero
for part of the time series. B/B,, is better determined; however, the lower 1 SD bound also
approaches zero. The predicted catch is reasonably determined in the data, and it is this
parameter that is used in maximizing the likelihood function. The likelihood profiles
{probability distributions) for the estimated parameters quantify the model’s confidence in the
values (see explanation of Bayesian inference in Section 3.3). Figures 45-47 show that the
boundary constraints placed on these parameters in the model are constraining the likelihood
profiles as well. Because the curves do not decrease substantially until they approach these
bounds, we can conclude that these parameters are not well determined in the data. Note that
MSY is a direct function of &, hence it has a proportional likelihood profile.
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Figure 44. Scalar-k Mode! Output Time Series with 1-SD Bounds.
catch (moderate confidence) and wide for B and B/B,;, (low confidence).
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Figure 45. Likelihood Profile of 'q' for Akule

significance level
0.9
0.95
0.975

lower bound
(.18366
0.138797
(.0957949

upper bound
(1.894392
0.929595
0.945822
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Figure 46. Likelihood Profile of 'k’ for Akule

significance level lower bound upper bound
0.9 1.05726e+06 7.31065e+06
0.95 1.04908¢+-06 7.65821e+06
0.975 1.0417%e+06 7.67976e+06
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Figure 47, Likelihood Profile of MSY for Akule

significance level lower bound  upper bound

0.9 512770 3.54566e+06
0.95 508802 3.71423e+06
0.975 505269 3.72468e+06

6.6.4 Vector-k Model for Akule
6.6.4.1 Qutput Parameters

Objective function value, log L = 1.59909
Catchability, g = 0.107577
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Figure 48, Observed and Predicted Catch for Akule Vector-k Model. Predicted catch is shown at three penalty
levels, allowing different amounts of variation in carrying capacity (see text for explanation).

Figure 48 shows that the fit between observed and predicted catch becomes closer as the penalty
is relaxed. The model’s ability to vary k is diminished by the penalty. Lower penalization of
variation in carrying capacity leads to higher variation in carrying capacity; note that magnitude
is also higher. A scalar-k model must find the best compromise value of & for all times. The
vector-k model can optimize k at each time, allowing higher overall k; as the penalty is relaxed, &
becomes more optimized.
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£ yi0° Akule Vector-k Model at Three Penalties
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Figure 49. &, B and B/B,  for Akule Vector-k Model (note truncated y-axes). Time series are shown for three
penalty levels, which aliow different amounts of variation in carrying capacity (see text for explanation)

Figure 49 shows that the penalty affects biomass as it affects k: the time series for lower
penalties are higher in both variance and magnitude. The models predict ratio time series that
differ primarily in variation rather than trend or magnitude because a lower penalty leads to an
increase in both B and B,,. A ratio in excess of one indicates a fishery exploited below MSY,

which is a healthy fishery.
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« 10° Stock-Production Relationship for Akule
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Figure 50. Surplus Production for Akule Vector-k Model. The point cloud covers a small portion of possible
values, indicating the low contrast in the data,

The stock-production relationship of the Schaefer Model is plotted in Figure 50, as described for
the akule scalar-k model above. Data are from the results under a penalty of five. Note that, as
discussed in Section 6.2, the theoretical curve is based on the mean k-value. The output values
are based upon k for each time, so the output values have high variance. While the points are
dispersed, they are in the lower right region of the curve, indicating light exploitation. Negative
values of surplus production result any time the biomass decreases and occur in the absence of
fishing. Therefore, negative values are not necessarily indicative of overfishing.

6.6.4.2 Confidence in Results

Figures 51 and 52 show that B and k are poorly determined, as the 1 SD bounds include zero
values. However, the B/B,,,, time series maintains itself between 1.5 and 2 and its 1SD bound
does not pass below 1, indicating confidence that the stock is above B,,. The predicted catch is
reasonably determined. Note that the model uses predicted catch to find the peak of the
likelihood function.
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x 107 Vector-k Schaefer Model: One SD Bounds
2 ¥ T ¥ T H )
® ol T T T -
_2 L 1 1 2 1 1
65 70 75 80 85 Q0 a5 100
A N
£ & T T T T T
Al '
0 1 L 1 L L L
265 1 0? 70 75 80 85 90 a5 100
X O - Y e e e e e e e e e e e e e e e e e e e a e e e -
_2 3 i ] 1 1 1 1
26§ 10 70 75 80 85 30 95 100
OI
elr !
o ~ .
0 SR
65 70 75 80 85 90 a5 100
year

Figure 51. Vector-k Model—OQutput Time Series with 1-SD Bounds. Moderate bounds indicate moderate
confidence in resuits.
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Figure 52. Vector-k Model—Likelihood Profile of 'q' for Akule

significance level  lower bound upper bound

0.9 00707325 0.80383
0.95 0.066586 0.851739
0.975 0.065683 0.878473

The likelthood profiles for the estimated parameters quantify the model’s confidence in the
values (see explanation of Bayesian inference in Section 3.3) and shows that g is not well
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determined in the data. To confirm the validity of the sum-of-squares method of calculating the
likelihood function, the distribution of the estimates around the data were calculated and found to
be normal,

6.6.5 Scalar-k Model for Opelu

6.6.5.1 Output Parameters

Figure 53 shows that the biomass has always been above B,,. Also note that the predicted catch
is closely matched to the observed catch, indicating the model achieved a good fit.

Objective function value, log L =1.218
Catchability, g = 0.370

Carrying capacity, k = 846372

Maximum sustainable yield, MSY = 393563
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Figure 53. Scalar-k Model—Input and Output Time Series for Opelu. (Note truncated y-axes)

In Figure 54 the stock-production relationship shows that the point cluster is about midway
between an unexploited fishery and one at MSY.

63



<10° Stock-Froduction Relationship for Opelu
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Figure 54. Scalar-k Model—Stock-Production Curve for Opelu. The point cloud covers a small range of
values, due to the low contrast in the data,

6.6.5.2 Confidence in Results
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Figure 55, Scalar-k Model—Qutput Time Series for Opelu with 1-8D Bounds. 15D bounds are moderate on
predicted catch {moederate confidence) and wide on B and B/B,,,, (low confidence).

Figure 55 shows that the model does not determine B well. However, B/B,, and predicted catch
are reasonably determined. The predicted catch is used in maximizing the likelihood function.
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The likelihood profiles (Figures 56-58) for the estimated parameters quantify the model’s
confidence in the values (see explanation of Bayesian inference in Section 3.3). The likelihood
profile for g reflects the restraints placed on its bounds in the model. MSY is a function of k.
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Figure 56, Scalar-k Model—Likelihood Profile of Catchability Parameter '¢' for Opelu

significance lower bound upper bound
0.9 0.109529 0.867396
0.95 0.0896858  0.928783
0.975 0.0871135  0.937848
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Figure 57. Scalar-k Model—Likelihood Profile of Maximum Sustainable Yield for Opelu

significance lower bound upper bound

0.9 170909 1.88838e+06
0.95 155204  2.23645e+06
0.975 139500  2.52163e+06
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Figure 58. Scalar-k Model—Likelihood Profile of 'k’ for Opelu

significance level lower bound  upper bound

0.9 367545 4.06104e+06
0.95 333773 4.80957e+06
0.975 300000 5.42286e+06

Note that k is bounded in the model, forcing the likelihood profile to be narrow. If k is released
from these bounds, it is evident that it is not well determined, as shown in Figure 59. Note that
the confidence limits are the same, whereas the graph changes based on the bounds given in the
model.
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Figure 59. Scalar-k Model-—Likelihood Profile of 'k' Without Boundary Constraints

significance level lower bound upper bound

0.9 367545 4.06104e+06
0.95 333773 4.80957e+06
0.975 300000 5.42286e+06
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To confirm the validity of the sum-of-squares likelihood function used in this model, the
distribution of the estimates around the data were calculated and found to be normal.

6.6.6 Vector-k Model for Opelu

6.6.6.1 Output Parameters

Objective function value, log L = 0.487
Catchability, g = 0.246
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Figure 60. Vector-k Model—Observed and Predicted Catch for Opelu. Predicted catch is shown for three
penalty levels, which allow different amounts of variation in carrying capacity.

Note the close fit between predicted and observed catch in Figure 60. The model achieves a
closer fit for the opelu than for the akule.
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x10° Opelu Vector-k Model at Three Penalties
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Figure 61. Vector-k Model—k, B and B/B,,, for Opelu. Time series are shown for three penalty levels, which
atlow different amounts of variation in carrying capacity (note truncated y-axes).

The pattern in Figure 61 differs from that of the akule in that the B/B,, ratio is lower for the
higher penalty value,

The stock-production relationship of the Schaefer Model is plotted in Figure 62, in the same
manner as described for the akule scalar-k model. Data are from the results under a penalty of
five. The range of the point cluster is slightly to the left of £, indicating light exploitation.
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xig® Stock-Production Relationship for Opelu
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Figure 62. Vector-k Model—Stock-Production Relationship for Opelu. The point cloud covers a small portion
of possible values, indicating the low contrast in the data.

6.6.6.2 Confidence in Results
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Figure 63. Vector-k Model—Qutput Time Series with 1-SD Bounds for Opelu, Moderate bounds indicate
moderate confidence in results,
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Figure 64. Vector-k Model—Likelihood Profile of 'q' for Opelu

significance level lower bound upper bound
0.9 0.160037 0.957131
0.95 0.123371 0.949496
0.975 0.101152 0.967578

Figures 63 and 64 show that B and k are poorly determined in the vector-k model, while B/B,,,
and predicted catch are better determined. The one standard deviation bound of B/B,, is above
one for the entire time series, with the ratio itself lying at approximately 1.7. Predicted catch
undergoes considerable variability, with the one standard deviation bound lying above zero for
the entire time series. Note that the predicted catch is used in maximizing the likelihood
function. The likelihood profiles for the estimated parameters quantify the model’s confidence in
the values (see explanation of Bayesian inference in Section 3.3).

To confirm the validity of the sum-of-squares likelihood function used in this model, the
distribution of the estimates around the data were calculated and found to be normal.

6.7 Carrying Capacity and Environmental Variability

6.7.1 Background

The vector-k model determines the most likely time series of k£ based on the input fishery time
series, without reference to external factors. In order for the resulting changes in k to have
significance, the existence of a plausible causal mechanism must be demonstrated. Therefore,
the time series of k generated for akule and opelu are correlated with two classes of variables that
have potential interactions with them. Variables of the physical environment comprise the first
class. The physical environment may affect the productivity of the marine environment where
the small pelagic fishes live, the ecological processes therein, or the recruitment and growth
success of these fishes. Ecological variables comprise the second class and consist of abundance
data for large pelagic fishes captured in the nearshore environment. Large pelagic fishes prey on
akule and opelu and there is the possibility that the population dynamics of the predator may
affect the prey, or vice versa.
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The time series for akule, opely, and environmental variables are differenced with a lag of one.
Differencing replaces each value by the difference between it and the next value. The effect is to
remove trend from the time series, which can lead to false positives. These detrended time series
are then correlated with the Pearson correlation (r) using a range of lag times. A correlation of |
r | > 0.5 is considered the minimum required for consideration of possible causal linkages
because the majority of variability in the fishery time series is explained by variability in the
environmental time series. The two time series being correlated may be lagged relative to one
another. If the akule is lagged by one year, the time series is shifted one year into the future. The
1997 value is compared to the 1996 value for the environmental variable, and so on.
Correlations with lags greater than three years are not considered because neither the akule nor
opelu survives to greater than three years of age for a significant portion of the population
(Froese and Pauly 1998) and, therefore, environmental influence cannot exceed this time.

6.7.2 Physical Variables

The time series of k for akule and opelu are cross-correlated with time series for the following
physical variables:

sea surface temperature and anomaly

wind strength and anomaly

sea level anomaly

ocean current strength

air temperature (terrestrial)

total precipitation (terrestrial).

The akule carrying capacity time series is correlated with total precipitation (1=0.59).
Precipitation is lagged two years behind akule k. The k-time series is generated at a penalty level
of 0.1. For the undifferenced time series, r=0.69.
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Figure 65. Correlation of Mauna Loa Precipitation and Akule CPUE. The akule carrying capacity time series
is lagged two years after precipitation, which is approximately the time required to reach maximum length. Hence,
this refationship may indicate that climatic effects on larvae are reflected in adult population two years later.

In Figure 65 it is evident that the time series for £ and precipitation show similarity in both the
trend and magnitude of change.

6.7.3 Ecological Variables

The time series of k for akule and opelu are cross-correlated with time series for the following
ika shibi species.

* bigeye ¢ kawakawa

¢ bluefin ¢ mahimahi

e yellowfin ® 0no

e albacore ¢ sailfish

¢ swordfish ¢ skipjack

¢ black marlin * spearfish

¢ blue marlin ¢ striped marlin

The akule and opelu did not show strong correlation with any of the ika shibi species.

6.8 Discussion

6.8.1 Test Cases: Confirmation of Model’s Diagnostic Ability

The test cases for the scalar and vector-k models show that both versions correctly diagnose a
crashing fishery with minor errors. Error in the scalar-k model causes premature prediction of
MSY and, therefore, adds a precautionary margin. The vector-k model lags in predicting MSY,
but this lag is a foregone conclusion because the input data for this scenario assumes constant k.
This result is important because it highlights the risks inherent in using this approach without
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independent evidence of variation in k-changes in CPUE that are due to other factors are masked
by changes in k.

6.8.2 Sources of Uncertainty

The good performance of both versions of the model under an idealized scenario shows that it
can diagnose the condition of a fishery with good precision and moderate accuracy. However,
there are a number of sources of uncertainty that reduce performance under real-world
conditions.

First and foremost is the lack of contrast in most fishery data sets, the akule and opelu included.
Many fisheries data sets miss the developmental stage in a fishery where B ~ £, so the data lacks
points on the far right of the stock-production curve. Alternately, if B is much lower than B,
we have points on the far left of the stock-production curve. However, it may already be too late
for sustainable management because recruitment overfishing has likely been occurring for some
time. Inclusion of these two conditions is necessary in order to have a high contrast data set.
Their absence is one of the primary causes of uncertainty in fishery assessments. Hilborn and
Walters (1992) stress the seemingly obvious, but sometimes neglected, fact that we cannot tell
how a stock will respond to heavy fishing until it has been heavily fished.

A low contrast data set can be consistent with virtually any condition: low exploitation, high
biomass, low surplus production; optimal exploitation, moderate biomass, maximum surplus
production; and overexploitation, low biomass, and low surplus production. If the database lacks
more than one condition, we cannot confidently situate the fishery along this continuum. The
method does allow assessments of stock status to be made, because we can produce stock-
production relationships and B/B,, time series. However, the lower the contrast, the less
confident these estimates.

The catchability parameter, ¢, is another source of uncertainty. In the Schaefer Model, predicted
catch given by ¢ = gg5 . Because both g and B are unknown, there are too many degrees of
freedom for an analytical solution. Therefore, the numerical solutions used here are required.
However, confident solutions are again dependent upon the data. The likelihood profiles show
that ¢ is poorly determined in both akule and opelu data when compared to the test cases.

The population growth parameter, r, is constant in the models used here. However, the values
used are a source of uncertainty. Values for r are calculated from K and W.., with W.. itself

being a function of L.. In addition, the empirical constants used in the equation for r also
contain error.

60.8.3 Akule

The scalar-k model indicates that the akule fishery has moderately low contrast. The surplus
production plot (Figure 43) shows that the data missed the development of the fishery when B
was at or near k, as represented by the lower right end of the theoretical curve. Most of the
points lie about 2/3 of the way from k to B, indicating exploitation below MSY. Heavy
exploitation is not represented, as there are no points at B-values

lower than B,,,. The B/B,, plot in Figure 42 shows an overall decline from about 1.5 to 1.2,
indicating that the catch is increasing towards MSY.
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The vector-k model also indicates low contrast because the points reside in the lower right
portion of the stock-production plot (Figure 50). Note that the spread of the points increases due
to the variation in k, while the theoretical curve is based on mean-k. Lower penalty values allow
higher variation in and magnitude of k and, therefore, B and MSY. However, the overall
conclusion from this model is best seen in the B/B,, plot, which does not undergo much long
term change, and remains at a mean of about 1.8 through the time series. The decline in CPUE
has been explained by a decline in k. Before such a result can be used with confidence,
independent estimates of variation in k are needed.

6.8.4 Opelu

The scalar-k model achieves a closer fit for opelu than for akule (note the lower objective
function value and the closer fit of predicted catch to observed catch). The surplus production
plot (Figure 54) indicates low contrast, again missing the developmental stage of the fishery, and
shows no evidence of heavy fishing pressure at or above MSY. The B/B,, plot in Figure 53
makes an early increase to about 1.7 then falls very gradually to about 1.4.

The vector-k model also indicates light exploitation, with the points about 1/3 of the way from k
to B, Note that unlike the akule vector-k results, changes in penalty weight change the
magnitude and trend of the B/B,,, time series. With low variation in %, B/B,, declines from
about 1.6 to 1.2, indicating that catch is approaching MSY. In the higher variation & scenarios the
ratio is higher and the decline very minor, moving from about 1.9 to 1.75. This is because the
opelu CPUE does not have a monotonic trend, so the vector-k model is unable to incorporate its

variability at high penalties.

6.8.5 Correlations with Environmental Variables

The precipitation at Mauna Loa is correlated with the & time series for akule lagged by two years.
The & time series was generated using a penalty weight of 0.1, which allows a high degree of
variability in k& Given the one-year generation time and high growth rate of the akule, it is
anticipated that environmental changes could be translated into changes in biomass on a one to
two-year time scale, so high variability in k is an appropriate assumption. Given the two to three
year life span of the akule, the two-year lag time would be expected if variation in precipitation
affected recruitment success or early development. Precipitation is strongly correlated with
terrestrial runoff to the coastal ocean, which is in turn a source of fertilization to the otherwise
oligotrophic waters of the North Pacific subtropical gyre. In addition, precipitation scrubs
various chemicals out of the atmosphere and deposits them in the ocean. Hence, there is a
plausible mechanism of interaction between precipitation and akule population dynarmics.

6.9 Conclusions

The best available model fitting techniques and powerful statistical methods are used to analyze
the akule and opelu data. The test cases show that the models are able to correctly diagnose a
declining fishery, given a high contrast data set. The use of these

models in real-world situations incurs a range of sources of uncertainty associated with low
contrast data, the catchability parameter, and the population growth parameter.

Results for the scalar-k model suggest that the akule population has undergone moderate

exploitation, and that the biomass is approaching B,,, but remains about 20% above it. The
vector-k model indicates that the akule has undergone light exploitation, and that the biomass has
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remained about 80% greater than B, ., through the time series, The decrease in CPUE is due to a
decrease in biomass. Results for the scalar-k model indicate that the opelu has undergone light to
moderate exploitation, and that the biomass has declined gradually but remains about 40%
greater than B, . The confidence is higher than for the akule data. Results for the vector-k
model show a range of scenarios from one similar to the scalar-k results to one in which biomass
has declined less during the time series, remaining at about 75% greater than B, .

The one standard deviation bounds on B/B,,, pass below a value of one in the scalar-k model for
both akule and opelu, raising the possibility that the stocks may be overfished within this range
of certainty. These bounds remain above one for both species in the vector-k model. While this
is a high level of uncertainty, the use of such models on a low contrast database does not allow
for any other outcome. A lightly exploited fishery will always have a low contrast data set.
Therefore, the results are consistent with a light to moderate exploitation at levels below MSY.

Using a vector-k model involves greater risks than using a scalar-k model, because the former is
able to account for decreases in CPUE by reducing &, regardless of whether & actually falls.
Thus, the results of vector-k models should be treated with caution unless independent evidence
exists that changes in k are real. Correlations with numerous physical and fishery variables
highlighted total precipitation at Mauna Loa. Precipitation may influence carrying capacity
through the fertilization of the coastal ocean via terrestrial runoff and atmospheric scrubbing.
This presents a hypothesis to be tested in future research.
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