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1. Introduction

Commercial harvesters of pelagic fish have the sale of these fish as their primary
goal. In Hawaii fisheries, most tuna are sold in the two auctions, the United Fishing Auction
in Honolulu and the Suisan Auction in Hilo. How prices paid for fish at these markets
respond to increases in landings and the influence of different characteristics of fish are
important inputs into fishermen’s decisions and the determination of efficient landings. The
understanding of price trends and variations in these prices is helpful in planning for
investment decisions and in analyzing trends in the industry. The effect of management
decisions on prices and hence revenues from fishing can be assessed better by understanding
auction price behavior. Using a data series on auction prices gathered by Bartram, Garrod,
and Kaneko, this report explores the determination of the price of tuna in Hawaii markets.

' Recent analyses of fisheries markets have devoted more attention to the quality
attributes of fish. This may be partly attributed to better data availability but the increased
concern for managing fisheries {Blomo ef al., 1982, Wang and Kellogg, 1988) and the
expansion of controlled production through aquaculture (Anderson and Kusakabe, 1989} may
also be factors. Conjoint analysis is the most prevalent approach, relying on answers to
survey questions from market participants regarding their preferences for seafood with
differing characteristics (Anderson and Brooks, 1986; Anderson and Kusakabe, 1989; Wirth,
ef al., 1991, Sylvia and Larkin, 1994). A major focus of conjoint analysis is the trade-off
between the good's price and its attributes.

The Hawailian markets offer a rare opportunity to reveal preferences for quality
attributes of pelagic fish. The transactions in these markets show the trade-off between price
and attributes of fish and hence do not rely on responses to hypothetical circumstances.
Because the Japanese sashimi market for tuna 1s so discerning with regard to quality, most
harvested tunas are auctioned individually, with their prices reflecting a willingness to pay
for the quality attributes of the individual fish. Buyers act as middlemen to purchase tuna for
resale i the Japanese market and other markets and they bid for tuna based on their
knowledge of the willingness to pay for the fish, given its attributes, in subsequent markets.

The Pelagic Fisheries Research Program recognized the importance of studying the
quality and price of tuna by commissioning the study “Quality and Product Determination as
Price Determinants in the Marketing of Fresh Pacific Tuna and Marlin” (Bartram et af.,
1996). The researchers collected data from the Hawali tuna and marlin auction, recording
individual fish prices and the quality or characteristics of the fish. These data were collected
during the two-week period at the end of June and beginning of July in both 1994 and 1995.
The Bartram ef al. study provides excellent descriptions of tuna product types and major
markets. On the basis of average prices categorized by attributes, quality-differentiated
market attributes were judged to be present. Based on their experience as seafood buyers
(Bartram and Kaneko are buyers in the Honolulu market), Bartram et al. also provided their
assessment of the “grade” of each tuna. The grading melds the individual attributes of each
tuna into a numeric scale, ranging from a high of 1+ to a low of 4. Although the rating
depends on the individual attributes of the fish, there is no simple “equation” that transforms
the attributes into a grade (although we explore such an equation in this report), subjective
judgments are inherent and the grade depends on market conditions. Average prices are
observed to vary across grades (Figure 1).
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results are found in this report. for highest and next to the lowest grades.

First, we estimate hedonic price

functions for tuna that demonstrate empirically the value of characteristics and species of
fish. Second we show how these characteristics influence the grading of fish. Third, by
estimating demand curves on the basis of grades as well as species, we show that aggregation
by grades may be more reasonable than aggregating by species, which is the traditional
approach. Each empirical effort leaves us with unanswered questions, principally relating to
the connection between the Hawaii markets and the world market for tuna.

The empirical results should not be considered as fixed but rather indicative of the
kinds of empirical relations that hold. The results depend on the sampling period, late June
and early July 1994 and 1995. This season has especially heavy landings of longline-caught
fish. Further, during this time period prices are low relative to other times. Despite these
shortcomings, the results help in understanding the marketing of tuna in Hawaii.

2. Hedonic Price Models

The prices that emerge in the auctioning of fish can be considered hedonic prices.
The price of an individual fish depends on its characteristics, such as species, fat content,
type of handling, and so forth. Hedonic prices of fish are similar in concept to hedonic prices
of houses, which depend on characteristics such as location, square feet of floor space, lot
size, etc., or hedonic prices of wine, which depend on the variety of the grape, year, sugar
content, etc. There is a considerable literature on the hedonic prices of agricultural
commodities, including tomatoes (Bierlen and Grunewald, 1995), apples (Tronstad et al.,
1992), wheat (Espinosa and Goodwin, 1991}, cotton (Brown ef a/., 1995), milk (Gillmeister






et al., 1996), beef (Brester ef al., 1993), and grapes (Golan and Shalit, 1993). However, there
has been no hedonic study of the prices of fish, despite the growing awareness that the
quality of fish is an important characteristic of seafood markets.

While the estimation of hedonic prices for fish is inherently interesting, this will
illustrate the continued evolution of the role of quality in fisheries markets. This
development has had a significant effect in the marketing of salmon, where the consistent
quality of aquacultured fish has been influential in increasing the share of such fish in salmon
markets. The role of quality must ultimately play a role in the management of tuna.
Fisheries policy, designed in part to harvest fish in a socially efficient way, will be called
upon to recognize that some forms of harvest provide more value added than other forms,
because they create better products at the market. We provide some evidence of this
phenomenon in the analysis of hedonic prices of tuna.

In the present analysis of the hedonic prices of tuna, we address three issues. The
first pertains to the empirical content of the hedonic prices. What are the characteristics that
determine these prices and what are the marginal values of these characteristics? The second
issue concerns the grading of fish. Buyers provide an introspective or ‘mental’ grade when
they examine a fish to determine its quality. How much information do these grades contain?
Can the price of fish be explained exclusively by the grade of the fish, or do the
characteristics of the fish provide additional information? Finally, we try to understand the
degree to which the auction prices of fish are determined by quantities landed on the day the
fish is sold. The question relates to Hawaii commercial fishing enterprises and landings. Do
additional landings depress prices, and if so, by how much?

Our research finds evidence to support a market of fish by quality. Fish with better
quality get higher prices. We show empirically the role of grading. Further, we show that
the aggregation of fish by grade appears to provide results that are more consistent with
consumer behavior than aggregation by species. These empirical findings, explained in
detail below, are dependent on the nature of the datasets gathered. While these datasets are
unique within fisheries research in providing grades and qualities, they were gathered during
the summer, traditionally a time of low prices in Hawaii auctions. While there is no reason
to believe that the qualitative findings would change if data were gathered during a time of
more vigorous market activity, it is clear that higher prices would mean higher marginal
values for many characteristics. In sum, our results are contingent on the nature of the data
gathered.

A Simple Hedonic Price Equation and the Marginal Value of Characteristics of Tuna

The basic theory of hedonic prices explains the price of a commodity as a function of
its characteristics. In this model, the increment in price due to increases in any characteristic
will equal the buyers’ marginal willingness to pay for the characteristic, as well as the
marginal cost of producing the characteristic for sellers (Rosen, 1974). When buyers and
sellers have time to adjust their responses, the marginal hedonic price equals the marginal
value to consumers and the marginal cost to suppliers. In the very short run, such as prevails
in fish auctions, equality between the marginal hedonic price and marginal willingness to pay
of buyers holds. However, equality between prices and the marginal cost of production
would require a longer horizon, perhaps a month or more, to accommodate.

LUS]






To express the hedonic price analytically, let Py represent the price of the i"™ fish on
the t day of the survey and let Z; (=Zi1, Ziz, ...Zy) be the J characteristics which determine
the price of the fish. Then the hedonic price equation can be written

Pit = F(Zist) (1)

where F is the function which relates price Py to the individual Zj. The marginal price of the
jth characteristic, say Zy, is given by the partial derivative:

This shows how a characteristic influences the price as well as the marginal valuation of the
characteristic by the buyer. Buyers are willing to pay more for fish with particular
characteristics, ultimately reflecting consumer demand. To calculate the marginal price
requires the estimation of the hedonic price equation.

The estimation of the hedonic price function is the subject of a vast literature. In
estimation, we concentrate on the issues relating to marginal values. In particular, there is a
considerable literature on the functional form (see Cropper ef al., 1988). In the analysis
below, we will eschew the more complicated functional forms for two reasons. First, a
simple linear form makes the results on marginal prices transparent. Second, the
characteristics of fish tend to be measured quite well compared with other hedonic markets,
and the very large number of observations reduces the influence of errors in measurement
compared with the Cropper et al. analysis.

The linear form of the hedonic price equation is

Py =PBZ; +g (3)

where p is the vector of J coefficients to be estimated, and ¢, is the random error term. To
illustrate the effect of characteristics on hedonic prices, we choose from the set of
characteristics in Table 1. Of the 8635 tuna in the analysis, 35 percent are yellowfin, 24
percent bigeye, and 41 percent albacore. Omitted from the analysis were 175 skipjack.
Though not evident from Table 1, the categories of the data gathered for the two years were
not exactly the same for both years. In particular, in 1994 more evidence on the flesh of the
fish was obtained. The variables describing whether the fish was burned as well as the
degree of fat were only available for 1994.

The estimated model includes all the variables in Table 1 except DUMSJ, BURNI,
DSFAT, DUMTRL, and DGGILLED. These indicator variables cannot be included because
they contain no additional information. The constant term in the regression includes the joint
effects of the categories not included. They are the default cases: BURNI, DSFAT,
DUMTRL, DGGILLED, and DUMSJ. Consequently the variables indicating the method of
landing, species, method of handing or characteristics of the flesh should be interpreted as the
increase or decrease over their default case.

Table 2 provides the coefficients for the ordinary least squares model of the hedonic
price function. This model of 8635 observations on tuna prices explains 44 percent of the
variation in prices, as given by the R%. The -statistics on the estimated coefficients tend to
be quite large. Thirteen of the nineteen variables in the model are significant at the one-






percent level, implying a high level of confidence about most of the coefficients. Other
functional forms would explain similar proportions of the variation in price, but would
perhaps give different values for the marginal prices.

Table 1. Characteristics of Tuna Sold in the Hawaii Fish Auctions®.

Standard
Variable Description Mean | Deviation
SELLPRI price per pound of fish 1.58 1.21
DUMYF 1 if yellowfin® 35° A8
DUMBE 1 if bigeye 24 43
DUMTM 1 if albacore 41 49
DUMLL 1 if landed on longliner .83 39
DUMHND 1 if landed on handliner A2 32
DUMTRL 1 if landed on troller .05 22
DUMWHL 1 if fish is whole 76 42
DHGUT 1 if fish is headed and gutted 07 26
DGGILLED | 1 if fish is gutted and gilled, loined or other A7 38
WHOLEWT | whole weight of fish, in pounds 87.7 48.4
SUMWTBE weight of bigeye landings for the day (in 10,000 997 622
pounds)
SUMWTTM weight of albacore landings for the day (in 10,000 1213 209
pounds)
SUMWTYF ;N:&izts ;)f yellowfin landings for the day (in 10,000 175 652
BURNO 1 if the fish is labeled not burned (1994 only) 27 44
BURNI1 1 if the fish is labeled slight burn (1994 only) 72 27
BURN2 1 if the burn label is more severe (1994 only) 003 073
BURN3 1 if the burn is most severe (1994 only) .004 065
DNFAT 1 if the fish is labeled no fat (1994 only) .804 396
DSFAT érif;)he fish is neither labeled fat nor not fat (1994 178 389
DFAT 1 if the fish is labeled fat (1994 only) 018 A3

* There are 8635 complete observations for tuna in the dataset.
® These variables are 1 if the description is correct and 0 otherwise.
* The means are also proportions for 0, 1 variables.

In the hedonic models estimated, we have treated fish as a generic good. That is, all
fish are pooled in the same model and the effect of the characteristics, such as species or
grade, estimated. Another approach would be to estimate hedonic models for particular
kinds of fish, such as yellowfin, bigeye, etc. Such a model would give somewhat different
results, simply because it represents a slight variation in functional form. Another potential
model would be to estimate hedonic models for each grade. We pool all the fish because
evidence presented below (Section 4) suggests that markets appear to function with the
quantities of different grades of fish as much as the quantities of different species of fish.







Table 2. Linear Hedonic Model of Tuna Prices.

Coefficient t-Statistic

CONSTANT -6().88 0.235
YEAR 0.030 0.235
DUMYF 0.919 28.65
DUMBE 0.931 33.47
BURNO 0.248 1.990
BURN?2 -0.440 -2.462
BURN3 -0.941 -4.873
WHOLEWT 0.008 29.343
DHDGUT 1.007 21.173
DUMWEHL 1.247 37.894
DUMLL -0.241 -4.943
DUMHND -0.093 -1.738
DNFAT -0.335 -7.485
DFAT 1.001 12.973
SUMWTYF -0.075 -3.911
SUMWTBE -0.177 -90.309
SUMWTTM 0.008 0.468
Observations 8635

R-bar squared 446

The coefficients represent the direct effect of the characteristics on the price of the
fish, that is, the marginal value of characteristics. Most of the variables are categorical,
explaining whether the fish being sold is in a particular category. The hedonic price
coefficient of a characteristic is the price difference over the default case of the category not
included. To illustrate, the coefficient on DUMYF represents the increase in price per pound
paid for yellowfin over albacore, which in this case is estimated to be $0.919 per pound. The
coefficient on DUMBE has the analogous interpretation; 1.¢., bigeye on average sells for
$0.931 per pound more than albacore. The ‘BURN’ variables represent the influence of
burns on the price of a fish. The default burn level is BURN1, which means that there is
some burn of the muscle of the fish. The higher the BURN variable, the greater the burn.
This is reflected in the prices, which show that the premium for no burn over some burn is
$0.248 per pound (BURNO), while the discount for burn more serious than some burn is
$0.44 to $0.94 per pound, depending on the severity of the burn. The variable WHOLEWT
is the weight of the whole fish. As Bartram et al., 1996, point out, there is a premium for
larger fish. The coefficient on WHOLEWT measures this size premium. On average across
all species, the price per pound increases by $0.008 (almost a cent a pound) for each pound
increase in the weight of the fish. Thus, not only do bigger fish give more pounds, but also
the price per pound goes up.

The fatness of the fish shows up in the coefficients DNFAT and DFAT. The default
case is some fat, and the coefficients show the increment in price per pound over the ‘some






fat’ category. When there is no fat, the price falls by $0.335 per pound, and when the fat
content is highest, the fish gets a premium of $1.001 because this is one of the characteristics
of fish bound for the sashimi market.

The method of handling the fish, that is, how the fish is treated after harvest,
influences how the fish can be used and hence to what market it will be sent. The default
handling method is gilled and gutted and a variety of other methods, such as loined. The
DHDGUT coefficient implies that the price per pound for headed and gutted fish is $1.007
higher than the default case. The premium per pound for whole fish comes from the
coefficient on DUMWHL, which is more than a dollar—$1.247. The powerful influence of
having a fish that is whole reflects greater certainty about the condition of the fish. Often
fish are headed and gutted or loined when there is some question about the condition. The
effect of these forms is especially strong and their significance is quite high, judging by the -
statistics.

The method of harvest, or gear type, reflects some expectation about the past
handling of the fish, as well as characteristics that cannot be measured. The default case is
trolling. The coefficients show that fish landed by longliners on average get $0.241 less per
pound in the auction, while handliners get $0.093 less per pound, all other things being equal.
This result is contrary to common expectations about the prices received by different gear
types. It is also at odds with the simple means of published prices. This can be seen for
mean prices in the current data set. Table 3 shows the mean prices and weights of yellowfin
by gear type.

Table 3. Mean Price and Weight of Yellowfin, by Gear Type.

Gear type Mean price Mean weight
Longlining $2.11 123.7
(.031)* (1.29)
Trolling 2.04 106.8
(.035) (7.78)
Handlining 2.55 133.9
(.042) (2.35)

*Standard errors in parentheses.

Coefficients on bigeye landings, labeled SUMWTBE, and similarly named variables
represent the influence of landings on prices. These variables are in units of 10,000 pounds
to make the coefficients tractable. The bigeye price effect is the largest, showing that an
increase of 10,000 pounds in landing per day reduces the price per pound of fish by $0.17.
The coefficient on SUMWTRBE is significantly different from zero at a high level of
confidence. The coefficient on SUMWTYTF is also negative (-0.075) suggesting that there 1s
some depression of price, but it is smaller than the bigeye coefficient. The albacore
coefficient (0.008) is not significantly different from zero. This is quite sensible, because
there is a defauit world price for albacore for canning if it is not sold as fresh fish. The
albacore result is consistent with the presence of a large world market for albacore. While
many albacore go into outlets for fresh fish, equilibrium requires that prices are equal in both
markets.

Two variables are important for policy considerations: the influence of WHOLEWT
and the differential price effects of the method of handling, DUMHL or DUMLL. The size






of the fish is an important determinant of the price of the fish. Consequently, fish which
grow bigger are proportionately more valuable, not in the sense of more pounds but more
value per pound. Thus fish that can be saved potentially provide higher value, even though
saving fish means harvesting them at a later date. A fish harvested in the future must be
discounted by the market rate of interest to determine its current market value. For example
a fish harvested one year from today would be worth W P,/(1+1) in present discounted
revenues, where W; is the weight of the fish in pounds in one year, P; is the price received
per pound in one year and r is the discount rate. If WP, grow faster than the interest rate,
saving fish makes sense. The common property failure is clearly evident here, for no
fisherman can hope to harvest in a year fish that he declines to catch today.

The categorical variables for method of capture or gear type suggest that fish caught
by trollers are more valuable to consumers than fish caught by handliners or longliners. This
does not necessarily mean that they are more valuable socially, because that depends in part
on the cost of harvesting. However, other things being equal, it suggests that consumers, the
ultimate users of the resource, are not indifferent to the allocation of catch to harvesting
sectors.

A. Grading versus Characteristics

The role of buyers in the auction for fish is to grade fish on the basis of the
characteristics of fish, and to bid for fish based on the grade of the fish. In the data set
gathered by Bartram ef al., 1996, the authors of the report graded fish. In this section, we
explore the degree to which the grades are ‘sufficient statistics’ for the price of fish. That is,
can the price of fish be explained completely by the grades or do the characteristics provide
additional information about the prices? We will examine this issue by estimating a series of
increasingly inclusive models, beginning with a mode] that uses only the grades.

The basic hedonic model, equation (1) above, is

Py =BZ; +&y .

Note that the error is subscripted by i and t, where i is the individual fish and t represents the
day on which the fish was sold. We accounted for the systematic variation over days (1) in
the basic model by controlling for landings of tuna. This we will test below. To manage this
error structure, we estimate a fixed effects model. Essentially this model specifies a different
dummy variable for each day. Since there are 23 days of survey data, we will have 22
dummy variables representing the unmeasured events for each day of the survey. The fixed
effects coefficients are suppressed in the following analysis.

To utilize the grades given by Bartram ef al., 1996, we have converted the two grades
to one. In the Bartram ef al. dataset, there are five grades, from 1 to 5, and a qualification,
“+* or *-* or unrated for grade 2. However, there are no fish in grade 5. We have converted
these grades into 6 consecutive grades in the following way:






Bartram et al. grade Revised grade Number of fish

1 0 393
2, 1 4,297
2 2 665
2, - 3 1064
3 4 2042
4 5 405

Hence we have six grades based on the two-tier system.

To understand the influence of grading versus characteristics, we estimate the model
sequentially, from the simplest model with grades only, to a model with grades and species,
then the more complicated model with grades, species, and physical characteristics of the
fish. This sequential estimation shows how partially specified models work, compared to the
complete model. Table 4 presents the three basic models. The first model, with grades only,
explains almost 39% of the variation in fish prices. The default grade is GRADES, the
lowest (worst) grade. Hence the coefficients on the grade variables represent the increment
in the price of fish over the lowest grade. The grades are all significantly greater than zero,
and they have the correct order, except for GRADE2. These coefficients show that GRADEO
gets a premium in price of $2.58 over the lowest grade. Although GRADE? is higher than
GRADES by $0.884, it receives a lower increment than GRADE3, which has a price higher
by $1.332. The coefficients on the grades should decline monotonically from GRADEO to
GRADE4.

The obvious set of variables to include next is the species—the categorical variables
for yellowfin and bigeye. As in the previous analysis, albacore will be the default case.

The coefficients including both grades and species are found in column 2 of Table 4. Two
things happen when species are included. First, the grades are sorted out in a logical way, so
that the coefficient on each lower grade is significantly greater than zero but significantly less
than the next higher grade. Consequently, including the species corrects the anomaly in the
coefficients on grades. Further, the coefficients on the species conform with expectations, in
that bigeye is the highest and yellowfin is the second highest. When the species are included,
the model explains about 57% of the variation in price.

The third column of Table 4 includes the physical characteristics—the degree of burn,
the fat content, and the means of handling. Here we can see that these variables are
attempting to explain the same phenomena that graders have already observed and
incorporated into the grade. The burn variables are not ordered in the right way and
individually they are not significantly different from zero. Likewise, the coefficient on the
variable for no fat, NFAT, is not significantly different from zero. However, the variables
for handling the fish and method of landing are all significant. Further, the WHOLEWT
variable indicates a premium for larger fish, at $0.005 per pound, independent of grade.

As in the previous model of hedonic prices, trolling is the default method of landing
so that DUMLL and DUMHND represent the reduction in price over troll-caught fish.
Although these physical characteristics appear significant, they only increase the explanation
of the variation in price by six percentage points, from 57% to 64%.

A formal test of the significance of the additional variables is an F test. This is a test
of the null hypothesis that all the parameters on the additional variables are zero. Table 5






Table 4. Fixed Effects Hedonic Model of Tuna Prices.

Grade Only | Grade & Species Grade, Species & Physical
(t-statistic)” (t-statistic) Characteristics (¢-statistic)

GRADEOD 2.580 3.078 2.646
(37.66) (53.24) (47.41)

GRADE! 2.487 2.630 2.237
(40.45 (50.93) (44.26)

GRADE2 0.884 1.742 1.508
(17.39 (38.91) (34.68)

GRADE3 1.332 1.285 1.115
(23.54) (27.18) (24.60)

GRADE4 0.496 0.839 0.70
(9.36) (18.30) (16.37)

DUMYF 1.362 1.216
(55.93) (42.40)

DUMBE 1.428 1.353
(53.09) (51.87)

BURNO -0.185
(-1.82)

BURN2 -0.172
(-1.19)

BURNS3 -0.131
(-0.82)

WHOLEWT 0.005
(22.35)

DHDGUT 0.673
(16.73)

DUMWHL 0.917
(33.58)

DUMLL -0.114
(2.76)

DUMHND -0.110
(2.44)

DNFAT 0.043
(0.64)

DFAT 0.700
(10.60)

Observations 8635 8635 8635

R-bar squared .39 57 .64

gives three tests for the inclusion of the additional sets of variables. In the latter two models
of Table 4, “Grade & Species,” and “Grade, Species & Physical Characteristics,” we can
reject the hypothesis that the coefficients on the additional variables are all equal to zero.
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This is true even when we consider the kinds of characteristics that go into grading, that is,
fat content and the degree of burn on the fish.

Table 5. Tests of the Effect of Physical Attributes on Tuna Prices.

Variable Set F Statistic”
DUMYF, DUMBE 1462.
BURNQ, BURN2, BURN3, WHOLEWT, DHGUT, DUMWHL, 149.6
DUMLL, DUMHND, DNFAT, DFAT

BURNO, BURNZ, BURN3, NFAT, DFAT 31.8

% Critical values of the F-statistic at the | level of significance are, respectively,
FIO =378, FOO =302, B} =232,

These tests isolate in a quantitative way what happens in the grading. As is described
in Bartram ef al., 1996, grading is principally about the physical quality of the fish. Fish are
graded primarily on their overt characteristics such as species, size and physical defects;
potential shelf life,which is based on temperature, body condition, muscle texture and
bloodline, and fishing and storage methods; and an evaluation of muscle quality based on
texture, color, clarity and fat content. Additional quality is attributed to fish based on the size
of the fish, its form, its species, and the method of harvesting. However, even these variables
do not explain as much variation in the price of fish as the grades. We will return to the
determinants of grading in the following section.

B. The Impact of Landings

In the previous section, we have used a fixed-effects model, which captures the
influence of daily events through a dummy variable for the day. The variables most likely to
change from one day to the next are the landings. However, if the Hawaii market were fully
integrated into the world market for tuna, then daily landings would not influence local
prices. Two conditions are required for landings in Hawaii not to influence Hawaii prices.
First, landings in Hawali must not be big enough to influence world prices. Second, handling
and transportation capacity in Hawaii must be sufficient to accommodate increases in
landings without raising costs or creating bottlenecks. In this section, we compare the fixed-
effects model with a model in which landings replace the day-specific categorical variables.

The influence of landings on price is important for fisheries development and policy.
From the development perspective, plans for increasing supply in Hawaii will not necessarily
benefit the commercial harvesters if landings depress prices, unless harvests increase
proportionately more than prices decline. From the point of view of fisheries policy, it is
important to consider the price effects of seasonal and area restrictions on fisheries when
these restrictions reduce harvest.

The fixed-effects model will be compared with a model using landings, conditional
on the last specification in Table 4. When the landings specification is estimated, the set of
variables that were significant in the fixed-effects model, shown in the last row of Table 5,
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does change. However, we are more interested in the landings coefficients and the influence
of landings on prices. The coefficients, mean daily landings and flexibilities, are given in
Table 6. An intuitive indication of the role of landings versus the fixed-effects models can be
gained by comparing the percent variation in price explained, the R%. With the fixed-effects
models, along with the other variables, the model explains 63.6% of the variation in price.
When the landings are substituted for the fixed-effects variables, the model explains 62.3%.
Consequently, it appears that the day-specific dummy variables are accounting chiefly for

changes in landings.

Table 6. Effect of Landings on Tuna Prices.

Estimated Mean
Daily Landings of Coefficient Landings Flexibility at Mean
Species (Standard Error) : (10,0001bs.) | Landings and Prices
SUMWTYF (yellowfin) -.086 649 -.035
(.016}
SUMWTBE (bigeye) -.187 624 -.074
(.019)
SUMWTTM (albacore) 019 1.21 Coefficient not
(.014) significantly different
from zero

The flexibilities, percent changes in the price of all fish from a one percent change in

landings of species i, are calculated as (L: /P)aP, /oL, where the bars indicate means for
landings or price over the sample period. The mean price per pound of all fish over all days
of the auction was $1.58. The last column contains the flexibilities. These are flexibilities in
the sense that they represent the percent response in price to a percent increase in landings.
For example, a 1000 pound increase in the landings of bigeye decreases the price of all fish
by $.0187 per pound. In principle, this response in price can occur because of insufficient
capacity to ship fish out, because local consumers in Hawaii can only be induced to consume
more fish with a lower price, or because Hawali supply on the world market is large enough
to influence world price. [t seems unlikely that Hawaiian supply influences world prices, so
the flexibilities probably stem from local conditions. This is borne out by the size of the
flexibilities, which are generally quite low, the largest being for bigeye. The coefficient on
albacore, which is positive but not significantly different from zero, can be understood in
terms of the world market. Since albacore may potentially go into canning, it enters a very
large world market. The coefficient not being significantly different from zero means that
the market can accommodate large quantities of albacore without depressing the price. The
world market effect holds even though much albacore now goes into markets for fresh fish
because the fresh market for albacore must equilibrate with the world market for canning.

3. Grading and Landings
The empirical analysis above shows how the market accommodates grading.

Empirically, grading accounts for some of the characteristics of the fish. In this section, we
explore the relationship between grading, the characteristics of fish, and landings by focusing
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on a mode] that explains grading rather than price. In particular, we try to separate the
effects of the physical characteristics of fish from landings. It is of especial interest to
determine whether landings affect the grading. This phenomenon is believed to occur in the
crab industry in the sense that the definitions of jumbo, large, medium and small vary from
season to season, depending on the supply of crabs. The question here is Do buyers
downgrade fish when the market is flooded? Bartram ef al., 1996, who could observe the
effects of landings on grading, raised this possibility.

A reasonable model for testing the influence of landings on grades is the ordered
probit. This is a model that can be used with ranked data. Grading gives a categorical
variable for each fish. We have converted the original categorical variables into six
variables, ranging in value from 0 to 5, with the lowest numerical value being the highest
quality. We motivate this analysis by supposing that the actual grade is a continuous variable
that the buyers convert into a discrete value for the sake of convenience. For this model to
work, buyers only need to rank fish. Then they can be shown to act as if their behavior were
motivated by a continuous grade. Let the continuous grade be denoted y, where y depends
on a set of variables Z according to the linear relationship

y=yZ+0 4)

where 0 is a mean zero random error {(assumed to be distributed N(0,1)) and vy is a vector of
coefficients to be estimated. The y value would be the actual grade if it could be observed.
Instead, we observe the grade g as follows:

g=0ify s

Tifug <y <y (5)
2ifp Sy < py

kifu, ., <y

where in the current case k = 5. We observe the range in which the grade lies, which is
described by g, but not the actual value of the grade as given by y. The idea is to use the
information given by g and the assumed relationship between vZ and y to estimate y. The
probability of observing a particular grade is the probability that y =yZ +#6 falls in a particular
range:

Prob(g=j} = Prob(p;., <yZ+0<p;)

With six observed grades, we estimate four p’s and the vector of parameters y. One of the
p’s is embodied in the constant term and for practical purposes may be assumed to be zero.
Since there are six categories there are four ’s. The p’s have meaning only in terms of their
differences, in their absolute values. Hence [ is set to zero. The estimation is by maximum
likelihood, similar to a simple probit.

The idea of estimation is to explain the grading as a function of the characteristics of
the fish, as well as test for the influence of landings on grades. Table 7 shows two sets of
models. These models differ by specification, with two base specifications and two that omit






landings. Model A includes categorical variables for species, while Model B excludes these
variables. For Models A and B, we also estimate a model that excludes the landings to test
the hypothesis that landings influence grading.

The direction of the influence of the covariates can be explained through Equations
(4) and (5). If the continuous grade were observed, then from (5) a positive coefficient
would indicate that the covariate (one of the Z’s) would increase the grade. Increasing
grades means worse fish. Hence ‘good’ covariates, such as the weight of the fish, would
decrease the grade and would imply a negative coefficient. Consequently, we expect
desirable covariates, such as fat, to have negative coefficients, while undesirable covariates
like burn should have positive coefficients.

Table 7 shows that most of the variables in Model A have the expected effect. The
weight, whether the fish is whole, the presence of fat, the absence of burn all tend to lower
the grade towards the best quality value of 1. The absence of fat and the degree of burn also
influence the grading. The higher the degree of burn, the worse the rating—i.e., the rating
becomes more positive. It is perverse that when a fish is identified as yellowfin or bigeye,
the grading becomes higher, 1.e., worse.

The influence of landings on the grading is a bit ambiguous. In Model B, landings of
yellowfin and bigeye have a negative coefficient, meaning that, all other things being equal,
fish sold on days when landings are high tend to be graded better than when landings are low.
This is the opposite of the flooded market effect, which predicts worse grades when landings
are high. However, when a variable reflecting the individual fish’s species 1s included
(Model A, column 1), there is no significant effect of landings on the grades.

To understand the influence of landings, and as a separate test, we asked, Suppose
that the different gear types of fishing bring in fish with different reputations. In particular,
suppose that tuna boats bring in tuna which is graded higher and that, on days when tuna
boats land significant quantities, landings are higher and the quality of fish is better. Hence
we classified all fish on the basis of the kind of boat/trip that landed them. The possible
categories for trips are tuna, mixed, and broadbill. The estimated models include TUNA and
BILL as categorical variables for the tuna and broadbill boats, with the default case being
MIXED. In the estimated models, both of these categorical variables tend to improve the
grade of the fish over fish from mixed boats. However, they do not explain the influence of
landings on grades.

The finding on landings is weak however, because the coefficient on landings is so
small, that even though it is significantly less than zero, very large changes in landings
cannot change the grade. That is, from Table I, mean yellowfin landings are 17,514 pounds
and the coefficient on yellowfin landings is -0.015. Even a very large change in landings,
say equal to the mean, will only produce a -0.026 change in the index. Given the p’s in Table
7, this is not large enough to change the grade of any fish. The coefficients are not large
enough to matter, though the very large sample size may make them significant.

In sum, grading is well explained by the characteristics of fish. The chief anomaly in
the grading of fish is the perverse influence of species. The apparently better species make
the grade worse after we have controlled for the influence of other characteristics of the fish.
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Table 7. The Influence of Landings on Grading.

Model A--Species Included

Model B--Species Excluded

Unrestricted Restricted Unrestricted Restricted
DUMYF 0.68 0.68 - -
(16.43) (16.42)
DUMBE 0.97 0.96 - -
(26.29) (26.68)
BURNO -0.34 -0.32 ~0.110 -0.12
(-7.92) (-7.76) (-2.74) (-3.13)
BURN2 0.98 1.00 1.10 1.07
(3.39) (3.44) (3.56) (3.58)
BURN3 2.82 2.83 2.96 2.91
(9.70) (9.80) (9.79) (9.86)
WHOLEWT -0.0068 -.0068 -.0030 -0.0031
(-22.38) (-22.51) (-11.43) (-11.73)
DUMWHL -0.61 -0.60 -0.69 -0.70
(-16.86) (-16.90) (-19.06) (-19.20)
DHDGUT -0.71 -0.70 -0.86 -0.87
(-11.67) (-11.58) (-14.50) (-14.83)
DUMLL 0.21 0.21 0.079 0.082
(3.46) (3.45) (1.50) (1.57)
DUMHND -0.081 -0.89 -0.099 -0.085
-1.17) (-1.28) (-1.53) (-1.33)
DNFEFAT 0.34 0.34 0.37 0.48
(6.56) (7.37) (7.28) (10.68)
DFAT -0.68 -0.68 -.30 -0.53 .
(-7.07) (-7.09) (-5.63) (-5.31)
BILL -0.17 -0.16 - -
(-3.85) (-3.73)
TUNA -0.15 -0.15 -- -
(-4.91) (-4.98)
SUMWTYF -0.015 - -0.068 -
(Ibs * 107 (-0.72) (-3.17)
SUMWTBE -0.034 - -0.082 -
(Ibs * 107 (-1.48) (-3.74)
CONSTANT 2.34 2.28 2.42 2.30
(23.48) (27.59) (25.02) (29.62)
18 0.57 0.57 0.57 0.58
(26.84) (26.85) (27.29) (27.32)
L2 2.20 2.20 2.13 2.13
(82.90) (82.90) (83.03) (83.04)
i 2.59 2.59 2.49 2.49
(96.73) (96.74) (93.60) (93.54)
L4 3.87 3.87 3.68 3.67
(106.72) (106.70) (108.01) (108.14)
Log-likelihood -11216 -11217 -11668.02 -11682.0
(# of observations) 8635 8635 8635 8635







4. Aggregating Data for Market-Level Analysis

There are many reasons to collect information on the Honolulu auction. For example,
the large volume of tuna going through the market makes its price a critical determinant of
Hawaiian commercial fishing revenue. Understanding trends and variations in these prices
could help in planning for investment decisions. Also, allegations of price fixing among
segments of the market cannot be examined without information on the impact of quantity on
prices. Moreover, the effect of management decisions on fishermen and other industry
participants can be assessed more definitively if auction data can be exploited to explain
price-quantity interactions. The effect of total landings on prices is especially important.

However, data collection is expensive and care should be exercised to assure that
maximum information content is obtained from the given data collection budget. At present,
data are collected at the auction twice each week. A government agent records the price of
each fish, the species, the weight, the name of the boat landing the fish and the buyer. A
reasonable question is whether the previous analyses shed light on the cost efficiency of the
information gathered. Since the data collection is largely a fixed expense (i.e., the agent
walking around with auctioneer and buyers during the day of the sale), we want to know the
subset of data that contains the most information.

But we need to determine the value of alternative forms of information. Obviously
we are not interested in predicting the price of any one fish—there are too many fish in the
auction. Rather, we are concerned with reducing the volume of information while still being
able to predict effects on prices (and fishermen income) of those factors that NMFS
influences. The most obvious one is the total harvest of a given species. NMFS policies
such as area closures imply a change in composition of harvest (see Curtis, 1997) and this, in
turn, implies different prices for the industry. Also, management that attempts to increase the
minimum age of harvested fish necessarily alter the size and weight distribution of fish. We
have seen that these factors influence fish prices and hence fishing revenues. One would like
to be able to predict these effects in the deliberation over alternative policies.

A. Conditions for Aggregation

The previous sections demonstrate that the attributes of a fish do indeed affect the price that
buyers are willing to pay for it. In addition to providing implicit prices for quality attributes,
these results provide evidence that the traditional approach to the analysis of seafood demand
may be inappropriate. Usually analysis is conducted as if the value and quantity were added
up over all quality levels or grades of that species. This happens even when quality is not
known, when aggregation takes place by species. Instead, a quality or grade-based grouping
of fish may be in order. At issue is how to add-up (or aggregate) the weight and value of the
fish harvested. It is costly to maintain and manipulate large data sets and, if there is an easy
way of capturing the information related to 1000 fish into say four numbers, we should make
the effort to do so. Most often, aggregation is done by adding up weights and values of
individual (or lots) of fish on a species basis because fisheries management is most often
directed toward species. However, if we are trying to understand what determines the
general price in the auction, previous analysis suggests that it may be possible to capture
more information if we were to aggregate according to grades, not species. That is, if one
does not keep information on the grade of fish but only on the species, the factors affecting
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price (i.e., the factors in product markets) are convoluted in the prices (by species) and it may
be difficult to disentangle the effects.

As an example, average yellowfin tuna prices (shown as in Figure 1) vary
substantially according to whether the fish are considered of a high grade going into the
sashimi market or a low grade going into a cooked meat or canned market. However, if we
consider the average price of all yellowfin tuna and compare it with the average price of all
bigeye tuna, we do not see a great variation (Figure 2). By taking the average over all
grades, we reduced the price variation and hence it is more difficult to “tease out” the causes
of price change.
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Figure 2. Average daily tuna prices by species.

Currently, however, data are commonly collected and analyzed on a per-species. Harvest is
reported on a species basis by defining an aggregate output (e.g. pounds of bigeye) and
summing the catch of each species, irrespective of grade. That is, suppose that we have fish,
v*, where y is the weight of the fish, s is the species and g the grade, where there are M
species (s=1,..,M) and T grades (g=1,...,T). Aggregation over species simply implies that

Se T S
y'=2yE
g=1

where s indexes the species of fish and g indexes the grade of fish. We are interested in
which methods of adding up fish represent most closely the behavior of consumers of fish.
Adding up, or summing, is a form of linear aggregation and places strong restrictions on
consumer preferences. By using the above procedure, we presume that consumer’s demand
for seafood depends only on the species classification and that the distribution of catch of
each species across quality levels does not affect the utility that the consumer derives from
his expenditure on the species. This is not a bad assumption when the fish harvested are
reasonably similar in quality and probably transformed into the same product line. In New
England, auctions sell the entire catch of a species from a boat as one item because the fish
have proven historically to be similar in quality. In addition, people seem to have formed
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preferences on species (cod and haddock are preferred to whiting). In these instances,
aggregation across species makes sense.

Instead, we could aggregate according to grade irrespective of the species of fish: i.e.,
create an aggregate weight,

y'o= 3y
s=1

Here we presume that consumer’s demand for each grade of fish depends only upon the total
catch of each grade and not upon the particular species. In this case, we are assuming that
the important characteristics to the consumer are particular quality attributes (such as color of
meat) and not the species. In a Japanese sushi bar, cubes of raw tuna fish are evaluated
primarily on the texture, fat content, and color and less so on the species. In this case,
aggregation across species may not make sense but across grade may be useful.

The purpose of this section is to define both types of aggregate outputs, one based on
species classification, the other based on grade, and discuss the implications of linear
aggregation for each output type. Can we aggregate the output, by species or by grade, so
that a consumer who behaves rationally toward the individual species or grades acts the same
way towards the aggregated groups? For this formal analysis, we are trying to find a method
of aggregation that does not preclude its use in revealing rational individual behavior.
Assume that consumers face the same prices, and except for differences in income, have the
same parametric indirect utility function. A necessary and sufficient condition for
aggregation is that the indirect-utility function can be expressed by the Gorman polar form.

T
For example, to define a series of aggregate outputs for each species, y*'= ¥y s=1,2,...
_ i

M, results in the following specification:
v (p,M™) = b(p)IM” +2" (p)

= b(p)Y M* + Y a* (p) (62)

7
- SvepMe)
g=]

T T
where V™= V* is the indirect utility, M* = > M® is the expenditure and

g=l g=1

T
a’= Zasg‘ the price associated with the s group of species-defined outputs. Equation (6a)
g=1

T
describes a process of aggregation in which the macro-utility function, V™= ZVS“ , 18
p=|

derived by adding up the micro-utility functions. Note that in this formulation, we are

simplifying the problem by treating the buyers as simply passing through the preferences of

consumers by moving (not transforming) their input (raw fish) into output to the consumer.
Alternatively, to define a series of aggregate outputs for each grade of fish,

M
y*e= Y y*8 o=12 T, results in the following specification:
s=1
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V¥ (p, M™) = b(p)M™ +a™(p)

=bE)YM* + % (p) (6b)
= >V (p, M)

M M
where V°8 = ZV“’ is the indirect utility, M*® = Z M?® is the expenditure and

s=} s=]

M
a‘®= a™ the price associated with the g™ group of grade-defined outputs.
3=l
Consistent linear aggregation, whether over species or grades, not only requires that
each consumer’s preference function be quasi-homothetic, it also requires that each indirect

utility function be affine in income or
VEp, M*¥) = b(p) M*+a¥(p)

where each V**is additively separable and homogeneous in expenditures. Differentiating
(6a) and (6b) with respect to M*® obtains

V= (p,M™) V¥(p,M¥™) oV (p,M'™)
oM™ OM™ oM

(7

V= (p, M¥)

M ¢
and species. The implication of linear output aggregation is that the distribution of outputs
across quality levels or species is irrelevant and that the marginal utility of income spent on
each quality differentiated species equals the aggregate (species or grade) marginal utility of
income. For example, for a single species, the marginal utility of income derived from
purchasing a high quality output is the same as the marginal utility of income of purchasing a
low quality output. Alternatively stated, the increase in utility derived from the purchase of
an additional unit of a high quality output concomitant to a reduction of one unit of low
quality output does not affect expenditures.

Differentiating (7) with respect to M (rs, fig) obtains

which implies that must be the same, and constant, across all levels of quality

VT (p,M*)  'VE(p,M¥) V¥ (p,M'¥) 0 ®)
oM =am™ MM ™ oMEaM ™

Equations (7) and (8) show why quality should not matter to consumers if the species
approach to estimating aggregate demand functions is to be consistent with individual
behavior. For consistency, linear aggregation requires that each species-defined marginal
utility of income be independent of M and equal to aggregate marginal utility of income,
that is, also independent of aggregate income. Likewise, a grade-based aggregate output is
also independent of income.
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Returning to the present example, the implications of defining aggregate outputs
based on species classifications suggests that the income elasticities of all guality levels of a
tuna species are equal. This seems implausible because of the price differential between
grade levels within a species classification: the average price per pound of high-grade bigeye
tuna (grades 0 and 1) is $4.07 compared to an average $0.98 per pound for the low-grade
bigeye tuna (grades 4 and 5). As noted by Gorman (1959), luxury goods should never be
combined with necessary goods. Alternatively, defining aggregate outputs based on grading
classifications may prove more plausible because the price range within a quality grouping is
less stratified.

To summarize, the creation of aggregate outputs for each grade (species) requires that
the total output of a given grade (species) is additively separable from other grades (species)
in the representative consumer’s preference function. Moreover, the sub-utility functions for
each aggregate output are assumed to be additively separable and homogeneous in the
outputs comprising each grouping. This requires that demand for each aggregate output be
independent of expenditures and that the marginal utility of income for each species and
quality-differentiated good be equal. Intuitively, this implies that a demand curve for a
species does not shift with a change in the level and mix of grades that compose the catch of
that species. Conversely, to define a demand curve for a particular grade requires that the
demand curve does not shift with a change in the level and mix of species that compose the
catch of that grade of fish.

Although the evidence from section 2.B suggests that both grades and species are
important determinants of individual fish prices, we explore grade-based and species-based
aggregation in the next section. Two empirical models are presented, one defining an
aggregate output for each species classification, the other defining an aggregate output for
each grade. Since linear aggregation is used to define both types of aggregate outputs,
independence of demand for each output from expenditures cannot be tested and instead is
imposed directly on both models. The emphasis of the comparison is, as in Section 2, on the
marginal values and the degree of confidence that they can be estimated as well as the overall
ability of the model to explain consumer choice.

B. Aggregating Outputs and Values

To explore the influence of aggregation across species and across grades, we have
taken the nearly nine thousand observations for individual fish and summed for each day
their weights and value to obtain twenty-two daily total quantities and values. We have done
this twice, once on the basis of grades and once on the basis of species. An average daily
price for aggregation scheme and day was created as the ratio of the value to the total
quantity. The grades are defined as high grade (HG, if the fish’s grade is in the best
categories, 1+ to 2). These fish are destined for the sashimi market. All other fish are
defined as low grade (LG, if the fish’s grade was in any grade, 2- to 4). These fish are
destined for the grilled or canned market. Average daily grades for the HG and LG product
types were also created. For the tuna species, the data were limited for skipjack and
therefore we did not consider it. This left three species—bigeye, yellowfin, and
albacore—for which aggregate quantities and average prices were created.

Tables 8 and 9 contain the results of estimating price (or inverse demand) functions
for the HG and LG tuna. Two models were estimated: complete specification, in which both
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“own” and “cross” quantity and grades were included, and partial specification, in which
only the “own” quantity and average grade were included. All price equations show
sensitivity of price to “own” landings and “own” average grades. The estimated price
flexibility at mean price/quantity levels for the HG and LG designation are -0.17 and —0.26,
respectively. The prices, however, are insensitive to “cross” effect from either quantities
marketed or grades. The 1994 dummy variable indicated a significantly higher price for the
HG tuna in 1994 but no difference for the LG tuna.

Table 8. Price Equations for High-Grade® Tuna.

Models
Variables Complete Partial
. Specification Specification
Coefficient Coefficient
(t-Statistic) (t-Statistic)
Means $2.29/1v $2.29/1b
Q (High grade, in 10,000 1.958 -.200 -.081
Ibs} (-2.18) (-2.34)
Q (Low grade, in 10,000 1.066 056 -
ibs) (0.30)
Mean Grade(HG) 1.68 -1.90 -1.84
{(-3.16) (-3.23)
Mean Grade (1.G) 2.53 -.093 -
(-0.40)
PDummy1994 43 77 56
(2.26) (3.28)
Constant 1.0 5.74 551
(4.93) (5.48)
Observations 22 22
R-bar squared 78 .80

*Tuna in grade categories 0, 1 or 2 (1, 1-, 1+, 2+ or 2 from Bartram et al., 1996).

The price (or inverse demand) curves for 1994 are drawn in Figure 3. The better tuna
receives a higher price, one that is less sensitive to the quantity of fish on the market. One
explanation for this result is that the volume of high grade tuna from Hawaii at this time of
year is not large enough to have much of an effect on the world/Japanese markets. On the
other hand, the lower grade tuna 1s more likely to be sold locally' and has a more responsive
price.

! This is an example of sending the good apples out (Sitberberg, 1978, p. 348).
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Table 9. Price Equations for Low-Grade® Tuna.

Models: Specification
Variables Complete Partial
Coefficient Coefficient
Means (1-Statistic) (t-Statistic)
Q (High grade, in 1.958 017 -
10,000 Ibs) (1.24)
Q (Low grade, in 1.066 -.873 ~.673
10,000 lbs) (-3.12) (-2.99)
Mean Grade(HG) 1.68 22 -
(0.24)
Mean Grade (LG) 2.53 -.043 -14
(-0.20) (-1.15)
Dummy1994 43 -.35 -
(-:69)
Constant 1.0 2.08 2.67
(1.20) (4.99)
Observations 22 22
R-bar squared 27 31

*Tuna in grades 3, 4, or 5 (2-, 3 or 4 for Bartram et al.).

In general, the results for the aggregated by grade case are encouraging, especially
considering that the data are limited to a twenty-two day period. One should expect a longer
time series to improve the results significantly. Next, we estimated a system of price or
inverse demand function for the three species of tuna using seemingly unrelated regression.2
The results are shown in Table 10 and are less encouraging. On the optimistic side, the
prices are negatively related to “own” quantity but none are significantly different from 0 at
the 5% level of confidence. The “cross” effects show that yellowfin and bigeye are
substitutes whereas quantity of albacore has a complementary effect on the prices of the other
two species, although none of the effects is convincing in a statistical sense. The year 1994
seems to have had a positive effect on yellowfin and albacore prices but not on bigeye. This
would be inconsistent with the substitute relationship between bigeye and yellowtin.

These results show the difficulties of using species-based price equations. All of the
various markets for the various product types lie behind the demand curve for each species.
If our interest is in understanding the structure of the markets, little is gained by studying the
price equations of species. However, if our interest is predicting species prices and their
trends, then the species’s price equations may be useful.

2 . . . .
We use the same technique on the aggregated by grade system but the inter-equation correlation was so small
that the resuits did not change significantly.
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Figure 4. Inverse demand curves for tuna, by grade, 1994.

Table 10. Estimated Coefficients of Species’ Inverse Demand Functions.

Average Price (3/1b)

Bigeye Yellowfin Albacore
Variable Means 2.18 2.30 1.06
Quantity of Bigeye 0815 -470 -.353 141
Marketings (10,000 (-1.63) (-2.00) (1.92)
1bs)
Quantity of Yellowfin 1.701 000 -.280 059
Marketings {10,000 (.002) (-1.89) (1.05)
ibs)
Quantity of Albacore 887 404 300 -.11
Marketings (10,000 (1.69) (2.02) (-1.87)
Ibs}
Dummy1994 43 34 .86 42

(0.83) (3.37) (3.97)
Constant 1.0 2.06 2.44 76

(3.69) (7.15) (5.37)
Observations 22 22 22
R-bar squared 13 49 .69
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5. Conclusions

Prices in the Hawaii fish auctions are of prime concern to many. The livelihood of
commercial fishermen obviously depends on them. Prices determine their incomes and
strongly influence their production choices. Tuna consumers all over the world could be
influenced by prices paid in Hawaii. Managers too should be aware of the tuna pricing
system because their decisions implicitly influence prices and hence the welfare of fishermen
and consumers.

In this report, we focused on understanding

the factors that influence the price of an individual tuna,

the marginal value of the different attributes of tuna,

the ability of a tuna’s grade to reflect all other attributes’ influence on the fish’s price,
the factors that influence the grading of tuna,

and the ability to do market level analysis of auction prices.

QOur analysis draws heavily on the data collected by Bartram er al. as well as their work. We
have explored related issues, putting them 1n the context of research on other commodities,
and exploiting common econometric techniques to understand additional issues.

The hedonic price analysis tell a logical story about price determination. The
physical characteristics of fish determine the ex-vessel price. These characteristics, the
degree of burn, fat, and the manner of harvesting and handling, all influence the grade of the
fish. The grade itself can then be used as a means of aggregating information about the fish
for wholesale marketing. This aggregation reduces the quantity of information needed to
understand fish price determination, just as it reduces the information about the fish that
buyers need to retain.

Subsequent analysis directly examines the factors that affect the grading of tuna.
Essentially results of this analysis confirmed those found in the hedonic price analysis, i.e.,
fat, burn, fish size and processing characteristics all influenced grading. The grading seems to
be based primarily on the characteristics of the fish. Landings have little ability to change
the grading.

Further results of this study also indicated total daily landings of each species affected
individual fish prices. This may have important implications for how the auction marketing
process is currently structured. Currently, vessel decisions to land their harvest may be
coordinated, but not always sufficiently to prevent a glut of fish on some days and a scarcity
of fish on others, with prices varying accordingly. A policy that made public each vessel’s
decision to land its fish on a particular day could help smooth the supply, hence the price, of
fish.

Results from a market-level analysis of the auction suggested that it is perhaps more
useful to evaluate market demand for tuna on the basis of the grade of fish and noton a
species basis as is typically done. This confirmed the hypothesis that for a quality
differentiated good such as tuna for which there is a discerning market, aggregation across
different grades of fish to analyze species demand may obscure market relationships.

This report is based exclusively on auction data in Hawaii for two-week periods in
1994 and 1995. It is evident that the links between the Hawaii auctions and prices in the rest
of the world are important. The empirical influence of the rest of the world prices requires
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data spread out over the year, so that seasonal adjustments in demand in other parts of the
world can make their way through other markets and prices, and hence to Hawaii. This is
research that follows logically from the current report, and could further aid in understanding
the Hawaii market.
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