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Abstract

We explored integration of multi–layer, feed–forward neural networks into an advection–
diffusion–reaction model to estimate large–scale tuna movement from conventional tagging
data. Two neural networks were used to compute spatially and temporally varying move-
ment parameters from a series of input data specific to the computational grid. The first
neural network computed the zonal and meridional components of the advection term, and
the second computed the diffusion term. The input data, which are considered proxies for
habitat that may be important for determining skipjack behavior, include temporal (cal-
endar year, month, Southern Oscillation Index), spatial (latitude, longitude, water depth,
seabed topography, distance from the land), and spatio–temporal data (sea surface temper-
ature and surface currents). The computed movement parameters from the neural networks
were used in the advection–diffusion–reaction model, along with the tag-attrition parameters
(natural and fishing mortality rates), to compute predicted tag recaptures. The training
of the neural network and simultaneous estimation of the other model parameters were
achieved by minimizing the negative log of a likelihood function that relates the observed
and predicted tag recoveries.

The method was applied to the skipjack tuna data from the central and western Pacific
Ocean. The results were compared against an earlier analysis of the same data where move-
ment parameters were mapped onto a 10-region × 2-season advection-diffusion-reaction
model. Numerous neural network configurations and parameter combinations were inves-
tigated, and three-layer neural networks with 4-6 input nodes in the input layer and with
3-5 nodes in the hidden layer were found to be reasonable. None of the models gave sat-
isfactory estimates of the neural network (movement) parameters. In all the cases the
movement parameters of the advection-diffusion-reaction model were poorly defined by the
neural network models. The attrition parameters, however, were estimated satisfactorily
in all the models, and the predicted and observed tag recaptures showed good agreement,
particularly for sporadic and isolated recaptures. This is in contrast with the regional and
seasonal parameterization where model prediction was better for short–term recoveries.

Problems using neural networks in these models are discussed, and possible improvements
in the neural network configuration and alternative parameterization of the movement pa-
rameters are suggested.



1 Motivation

Tunas have ocean–wide distributions in the tropical and subtropical regions of the world.
They are highly mobile and are classified as ‘highly migratory’ in many international con-
ventions. Within their broad geographic distribution, and in all the oceans, a multitude of
fisheries exploits the resource, both on the high seas and in the coastal regions. Most of
the coastal tuna fishing nations are small island countries and their economies are often de-
pendent on the tuna resource. Despite the tuna’s economic importance and their potential
for fishery interactions, the effects of their movements on fishery management, at a level of
individual fishery area, are normally neglected.

The state–of–the–art, ocean–wide stock assessment models that are in use today consider
the movement within the context of ‘bulk transfer’ models (Fournier et al. 1998; Hampton
and Fournier 2001). Although these models have been successful in predicting the change
in population density in broad geographic regions, they cannot be used to predict change
in an arbitrary point (or at fishery levels) because they are not continuous in space.

Advection–diffusion–reaction (ADR) models of continuous time and space have been
successfully used to model tagged populations of skipjack tuna on large scales (Sibert et al.
1999; Adam and Sibert 2002; Sibert and Hampton 2003). The models estimate movement
parameters using likelihood methods. However, in the absence of theory explicitly relating
movement behavior to the environment, structural assumptions that associate movement
parameters within regions and seasons were made for estimating the movement parameters.

In this investigation, we attempted to take a step further to improve upon the movement
parameterization by making use of neural networks to compute local movement parameters
from a variety of habitat proxies. The spatio-temporally varying movement parameters
were computed by the neural network and used in the ADR model described by Sibert et
al. (1999) to simultaneously estimate the parameters for both the neural network and the
ADR model by maximum likelihood. We illustrate the approach using the SSAP1 data set
used by Sibert et al. (1999).

2 The model

A tuna tagging experiment begins with release of tagged fish from one or more locations.
Subsequent releases may occur and the experiment continues until the last tagged fish
(or simply tags) have been recovered. The basic information collected include release and
recapture times and their geographic positions. The number of tags, Nxyt, at any given
time, t, at geographic position, (x, y), is given by

Nxyt =
ct∑

c

Ñxytc,(1)

1Skipjack Survey and Assessment Programme, Secretariat of the Pacific Community, Noumea, New
Caledonia
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where Ñxytc is the number of tags remaining alive at time, t, at the geographic position
(x, y) that were released from cohorts thus far where c = 1, ..., c = ct. In the case where
a subsequent cohort, d, release occurs at time td at location (xd, yd) the density of that
location is reassigned to the sum of its present value and the cohort value, i.e.,

N t
xy ← Nxdydtdcd

+
ct∑

c=1

Ñxytc.(2)

Assuming the behavior of cohorts are independent, and that complete mixing of tagged and
non–tagged fish occurs following release such that they have equal probability of recapture,
the population of tags may be represented by the ADR model (Bills and Sibert 1997; Sibert
et al. 1999)

∂N

∂t
=

∂

∂x

(
D

∂N

∂x

)
+

∂

∂y

(
D

∂N

∂y

)
− ∂

∂x
(uN)− ∂

∂y
(vN)− ZN.(3)

The model resolves the local rate of change in the density of tags into random (or diffusion,
D), directed (or advective, u, v) and reaction (or mortality Z) components. Details of the
boundary conditions and issues relating to the solution of the PDE are given in Bills and
Sibert (1997) and Sibert et al. (1999). In this exercise we only used reflective boundaries
and a fully implicit upwind differencing method of solving equation (3), which guarantees
numerical stability even with large rates of movement (see Press et al. (1993) for a discussion
on implicit differencing). Wthout further constraints, movement parameters (u, v, D) will
vary over time and space. The initial condition for N is

Nxyt0 =
{

Ñxcycc0t0 over release locations
0 elsewhere.

(4)

The reaction term includes components of natural mortality, M , and fishing mortality, F .
Using the convention

Zxyt = M +
∑

f

Fxyft, where Fxyft = QfExyft.(5)

Fishing mortality of the fleet f is then assumed to be a constant proportion, Qf (the
catchability coefficient) of the fishing effort Exyft. The predicted number of recaptured
tags, Ĉxyt, is given by

Ĉxyt = βf
Fxyft

Zxyt
(1− e−Zxyt)Nxyt(6)

where βf is the fishery–specific tag reporting rate, independently estimated from tag-seeding
experiments (e.g., Hampton 1997).
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3 Parameterizing movement fields

Without further information to parameterize movement behavior, the usual approach in
the past has been to constrain movement parameters to be constant in some ‘space–time
blocks’ of the model domain (Sibert et al. 1999; Adam and Sibert 2002). The idea here
is to make the assumption that movement behavior would be the same in regions and
seasons so as to estimate the regional and seasonal movement parameters. Those analyses
suggest that movement information in the tagging data were highly variable and might be
better explained by continuously varying movement parameters. Also, the region–season
parametrization often produces arbitrary discontinuities in population density that are not
biologically realistic. An alternative parameterization of the ADR model in time–space
discretized form was used by Kleiber and Hampton (1994). Using skipjack tuna tagging data
from the Solomon Islands, they modeled the movement (in this case transfer rate coefficients
from the grid boundaries) as functions of the number of FADs2 and the proportion of the
island mass that falls within the grid. While successful in detecting a FAD and an island
mass effect, these approaches would not be applicable for open ocean where such features
would not be available. Lehodey et al. (1998, 2003) have shown, in a simulation model,
that a proxy for tuna forage can be used to parameterize movement parameters in an ADR
model that produces realistic distribution of skipjack tuna.

In principle, it would be possible to parameterize the movement fields using a mecha-
nistic model based upon the scientific understanding about the relationship between the
movement behaviour and the explanatory variables. However, these relationships are cur-
rently unknown. It is generally accepted that the small–scale distribution and abundance
of skipjack tuna is affected by the the availability of forage (Lehodey et al. 1997). The for-
age comprises epipelagic prey items ranging from large zooplankton, such as euphausiids,
amphipods and other small crustaceans, to bait fish such as oceanic anchovy (Lehodey et al.
1998). The distribution and abundance of the forage are essentially regulated by oceano-
graphic processes, such as seasonal upwelling events driven by oceanic features that occur
at scales of few kilometers and months. However, direct measurements of forage density at
resolutions compatiable with spatio-temporal scales of the tagging data are currently are
not available. Similarly, indirect measurements of forage, such as ocean color, that are ob-
tainable by means of remote sensing have not been satisfactory to complement the existing
tagging data.

Earlier efforts at parametrizing the movement fields to a simple ‘habitat index’ based on
sea-surface temperature and sea-surface current were not unsuccessful (Sibert and Bertignac,
unpublished analysis). The problem appeared to be lack of detail in the data sets (inter-
polated climatology data) available at the time. However, recent advances in computer
simulations of skipjack populations from ADR models have been encouraging. For exam-
ple, Lehodey et al. (2003) showed that skipjack tuna catch history is reproducible at ocean
basin level by constraining the movement fields to primary production, sea surface temper-
ature, and oceanic currents that were simulated from a coupled physical–biogeochemical
model.

2Fish Aggregating Devices, floating objects specifically deployed to attract fish
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3.1 Use of neural networks

Neural networks are proving to be attractive devices for modeling complex nonlinear pro-
cesses without making an a priori relationship between the predictor and the explanatory
variables (Lek and Guégan 2000). The December 2001 special issue of Ecological Modelling
(Vol. 146, 1-3) contains several applications of artificial neural network modeling. Neural
networks have been used in many fishery applications; forecasting fish recruitment (Chen
and Ware 1999), estimating fish density (Brosse and Lek 2002) and standardizing fishing
effort data (Maunder and Hinton submitted).

Our approach was to use neural networks to compute local movement parameters of an
ADR model using a series of habitat proxies as input data. The parameters of both neural
net and ADR model are estimated simultaneously from a maximum likelihood algorithm.
Before explaining how the neural network is integrated into the ADR model, we describe
below the type of the neural network used and various constraints we imposed on the neural
net parameters.

We used simple multi–layer, feed–foward neural networks. A typical configuration of
neural network is shown in Figure 1. The processing elements, called nodes (or neurons
in the jargon of neural networks), are arranged in layers. The first layer, called the input
layer, takes in the explanatory variables (input variables) and output comes off from the last
layer, called the output layer. In between the input and ouput layers is the hidden layer(s).
For any given number of input nodes, the model complexity may be increased by increasing
the hidden layers and/or increasing the number of nodes in the hidden layer(s). For the
purposes of this analysis we used three-layered networks only. Each node is connected
to all other nodes of adjacent layers and receives input and sends output through these
connections. In the hidden layers the nodes simply sum the weighted values of the input
variables, adds a bias term, and passes the value through a scaling function (or activation
function in the neural net jargon). A three–layered neural network may mathematically be
represented by

hk = φk




n∑

j=1

(wjkxj + bk)


 k = 1, .., k = m,

ot = θt

(
m∑

k=1

(wkthk + bt)

)
t = 1 or 2(7)

where hk is the hidden–layer output, which is scaled by the activation function φ(x) (see
below). The first subscript in the weights, w, indexes the nodes in the preceding layer and
the second indexes the nodes in the current layer, xj , where j = 1, ..j = n are the input
values of the input layer, b is the bias term, and m and n are the number of the input–layer
nodes and hidden–layer nodes respectively. The hidden–layer output becomes the input
values for the output layer, ot, which uses the output scaling function θ(x) (see below) to
scale the output values to appropriate range for use in the ADR model. The activation
function, φ(x), can be sigmoid or linear. We chose a sigmoid function that scales the values
between -1 and +1 as given by
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Figure 1: A feed–forward neural network with single hidden layer and with two output
nodes in the output layer.
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φ(x) =
2
π

arctan(x).(8)

3.2 Scaling the output

To be able to use the neural network output as movement parameters of the ADR model,
the output values have to be scaled to the appropriate range of the ADR models’ movement
parameters. Previous analyses suggested that D would be in the range of 0–50,000 square
nautical miles per month and u and v around -30 to 30 nautical miles per month. To map
the neural network output to these ranges of the movement parameters, we used a flexible
scaling function that takes in the desired range of the parameter along with a ‘slope’ and
an ‘offset’ parameter. The scaling function is given by

θ(x) = min + (max−min)
(

arctan(α ∗ [x− β])
π + 0.5

)
(9)

where α and β are slope and offset parameters respectively. Higher values of α increase
the ‘sigmoid nature’ of the function and very high values tend to make it a step function.
Conversely, decreasing α makes the function more linear. The parameter β is simply the
offset of the input values relative to zero. An example of scaling functions with different
values of α and β is shown in Figure 2.

While it may be possible to estimate the values of α and β from the tagging data itself,
we found that the parameters are confounded with the weights connecting from the hidden
layer to the output layer. For example, the scaled output for a neural network with two
nodes in the hidden layer, ignoring the constant terms, is given by α{arctan(w1h1 +w2h2 +
b − β)}. Any given value of this expression may be obtained by dividing and multiplying
the parameters with a constant, giving multiple solutions, for example α

2 {arctan([2w1h1] +
[2w2h2] + [2b]− [2β])}. Similarly by adding and subtracting a constant to b and β would
have no effect on the value of the expression. We therefore made α and β constants in the
model fitting procedure. Alternatively, a linear scaling function may be used that would
avoid the use of these parameters.

3.3 Constraining the parameters

In a highly generalized nonlinear model structure like the nueral network, the issues of local
and multiple global minima are a pervasive problem (Sussmann 1992; Intrator and Intrator
2001). In the conventional ‘training’ of the neural network (model fitting), a subset of the
data, called the validation set, is left aside for testing the performance of the model (method
of cross validation). During training, the error (the sum of the squared differences between
the observed and predicted) of the training and the validation set is compared after each
function evaluation over the entire training set (called an epoch in the neural net jargon).
If the training and validation set were independent and representative of each other, the
decrease in error of the training and validation set as a function of increasing epochs should
be more or less similar (Lek and Guégan 2000). Optimum training for a given model is
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achieved when the error of the validation set starts to increase even if the error from the
training set continues to decrease. This discrepancy is due to over-fitting (over-generalizing)
of the model. The idea here is to train the neural net to a degree so that the general feature
of the underlying nonlinear model of the data is captured in the parameters of the neural
net. The fitting procedure does not guarantee that the network has found a minimum or
indeed a unique solution in parameter space. Thus, the success of the training procedure
and the resulting neural network’s ability to accurately predict future events depends upon
inclusiveness of the observation data and the correct choice of neural network configuration,
the latter found by trial and error.

For our purposes of estimating the maximum likelihood of the data given a particular
model, the fitting procedure should find the global minimum of the error surface in parame-
ter space, thus converging to a unique solution. In the neural net models, it has been shown
that non-uniqueness occurs with certain neural net configurations (Sussman 1992; Albertini
et al. 1993). To avoid such undesirable effects we constrained the weights connecting from
the hidden layer to the output layer to be positive and be in ascending order. For example if
wij , i = 1, .., 4; k = 1, 2 represents the matrix of weights connecting from a neural network
with four nodes in the hidden layer connecting to two output nodes in the output layer, we
constrained the weights to be the difference between the weights of the current node and
the previous node. For example,

w11 < w21 < w31 < w41, wi1 > 0

w12 < w22 < w32 < w42 wi2 > 0.

Non-decreasing weights were achieved by re–parameterizing the weights as

w′11 = w11; w′21 = w21 + w11; w′31 = w31 + w21 + w11; w′41 = w41 + w31 + w21 + w11

so that w31 = w′31 − w21 − w11 where w′31 is the actual neural network parameter to be
estimated. Simple simulation experiments with the above constraints on the hidden–layer
weights consistently gave unique solutions. In addition to the hidden–layer weight con-
straints we also penalized the likelihood with a value dependent on the total magnitude
of the weights connecting from the input layer to the hidden layer (Hsieh 2004). If the
likelihood function is f(θ;X) this is achieved by

`(X|θ) = f(θ;X) + P
n∑

j=1

(wjk)2

where P is a weight magnitude penalty parameter. Larger values of P would tend to make
the weights smaller in magnitude, yielding a smoother and less nonlinear solution than when
P is small or zero.

At the start of the model–fitting procedure, the weights of the neural network were
initialized with small random values and the bias terms initialized with zero. The attrition
parameters were initialized with values close to the estimated values of the regional and
seasonal movement model estimates.

9
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Figure 3: Schematic flowchart showing the main features in the integration of a neural
network into the ADR model.

4 Integrating the neural networks and

estimation of the model parameters

We used two neural networks: one that calculates two output values corresponding to the
u and v, the other calculating a single output value corresponding to the D. At each
time step and at each computational element in the model, the neural networks calculate
three output values corresponding to the three movement parameters of the ADR model
from a series of grid–specific input data (see below). These values are then scaled using
the appropriate scaling functions of the movement parameters and passed to the ADR
model. The movement parameters along with the attrition parameters (q and M) are used
to calculate local density of the tags. A flow chart representing the integration of neural
networks to the ADR model and the parameter estimation procedure is given in Figure 3.

In order to estimate the parameters of the model, we assumed that recaptures occur in
each grid cell, and in each time step follow a Poisson probability distribution. The likelihood
of the data given the model is (Sibert et al. 1999)

`(X|θ) =
∏

xyft


e−Ĉt

xyf Ĉt
xyf

Ct
xyf

Ct
xyf !


 .(10)

The estimates of the parameters were found by minimizing the negative log of the likelihood
function across all observations. We used the Autodiff Library’s quasi–Newton function
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minimizer (Otter Research 2002), which makes use of the gradient of the partial derivatives
of the model parameters. Analytically correct partial derivatives were computed using
adjoint code based on the concept of reverse mode automatic differentiation (Griewank and
Corliss 1991). Bounds are imposed on all estimated parameters to assure stability of the
numerical function minimization algorithm (Bard 1974).

The bounds set on the parameters are listed in Table 1. The numerical function mini-
mizer iterates until the maximum of the absolue value of the gradient components is less
than a convergence criterion, normally maxi | ∂`

∂θi
| ≤ 0.001.

Table 1: Parameter ranges set in the estimating procedure.

Parameter Lower bound Upper bound
Input–layer weights -10.0 +10.0

Hidden–layer weights 0.0 40.0
Bias terms -100.0 +100.0

M 0.0 0.5
q 0.0 1.0

5 Input data

The parameters of the ADR model have meaning in the real world. In the neural network,
however, the parameters (weights and biases) do not have meaning in terms of the process
being modeled. Thus, neural networks are often referred to as black boxes. It is therefore
important that we choose candidate input variables that are related to the process being
modeled.

Some of the input data fields we used vary only spatially, others temporally, and others
vary both spatially and temporally. For example latitude and longitude fields vary only spa-
tially while the year and month and Southern Oscillation Index (SOI) vary only temporally.
Oceanographic data fields vary both spatially and temporally. Following is a complete list
of the input variables we considered in the analysis.
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• Temporal fields

– Calendar year and month: We used the year and month of the models’ time
horizon to provide time information. A smooth sigmoid transformation for the
month signal was used to avoid discontinuity when month change occurs at the
end of each year.

– Southern Oscillation Index: Standard SOI3 index. This field gives a time
signal since the SOI was the monthly average across the Pacific Ocean. In the
central and western Pacific Ocean the SOI has a profound influence on the east–
west distribution of the skipjack abundance (Lehodey et al. 1997).

• Spatial fields

– Geographic location: We used the latitude and longitude positions of the grid
element to provide the spatial information to the model. Both would give a
smooth signal in the x and y dimensions of the model.

– Water depth: We used average water depth at computational grid, calculated
using the ETOPO54 to give spatial heterogeneity to the model.

– Topography:4 This field was taken to be the difference between the maximum
(at sea level) and minimum elevation at the computational element and provide
spatial heterogeneity.

– Distance from land: Calculated as the nearest distance from the computa-
tional element to the land, visible in the model resolution. This information may
be useful as a proxy to the so called ‘island mass effect’ (Kleiber and Hampton
1994).

• Combined Temporal and Spatial fields5

– Zonal and meridional surface current: Meridional and zonal sea surface
current in the computational element.

– Sea surface temperature: Meridional and zonal sea–surface temperatures in
the computational element.

– Simulated ‘tuna forage’: Simulated forage field from a biogeochemical model.

– Simulated habitat index: ‘Habitat’ field predicted by parameterizing the for-
age field.

All input data fields were scaled between -1 and +1. Figure 4 shows water depth and
topography fields. Histograms of the SST, and the zonal and meridional currents for the
SSAP region are shown in Figure 5.

3http://tao.atmos.washington.edu/data sets/globalsstenso/, accessed December 2001
4ETOPO5 (Earth Topography - 5 Minute), National Geophysical Data Center (NGDC), Boulder, CO.
5Provided by Dr. Patrick Lehodey, Secretariat of the Pacific Community, Noumea, New Caledonia. The

data are the same as those used in Lehodey (2001).
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6 Results and discussion

For brevity and convenience of discussion the models are represented by 15 alphanumeric
characters. For example, the model UV642B6-D531B4-MQ (66 estimated parameters, n =
66) represents a UV–neural network with 6 input layer nodes, 4 hidden layer nodes, 2
output, and 6 bias terms, followed by the D-neural network configuration. The last two
letters represent the natural mortality and the catchability coefficients. Flexible coding of
the model allowed testing of a multitude of neural network configurations and parameter
settings. After a series of trials, a reasonable neural network configuration was found to be
models of 4–6 input variables (= input–layer nodes) with 3–5 hidden nodes in the hidden
layer.

Table 2 shows estimates of the attrition parameters and the objective function values for
a series of neural network configurations. The parameter estimates of the 10-region × 2-
season model selected by Sibert et al. (1999) as the best fit, referred here as the ‘benchmark’
fit, are also given for comparison. None of the model fits showed satisfactory convergence.
In rare cases where convergence occurred, the hidden–layer weights and the bias terms of
the D–neural network were always on the bounds. Increasing the range of the weights was
found to be unhelpful. A typical model fitting (training) history is shown in Figure 6.
In most models that we tested, the likelihood function ceased to decrease after 500–600
function evaluations despite continued increase in iterations (to an upper limit of 2000). In
those cases virtually all of the hidden–layer weights and the bias terms of the D–network
were on the bounds. For this reason a ‘stopping criterion’ based on the rate of decline in
likelihood function (until the value of the function did not decrease by 0.001 consecutively
for 20 evaluations) was used.

Despite the problems in estimating the neural network parameters, the attrition param-
eters were estimated reasonably well in all the models we tested (Table 2). The estimates
of the natural mortality rate were slightly lower compared with the benchmark fit. Except
for the Japanese purse seine and possibly Solomon Islands pole–and–line, the catchability
coefficients in all the fleets were nearly the same as in the benchmark fit.

The pattern of predicted diffusion field often showed close correlation with the spatial
data. For example, in the neural networks that used the depth and topography field, the
estimated diffusion field showed high resemblance (see Fig. 14) with little change across the
time steps. A reason for this may be the presence of prominent ‘ridge features’ that change
input values abruptly (cf. Fig. 4). Compared with the spatial input data, the temporal
input data appeared to have little influence on the movement fields.

The neural network parameter estimates were very sensitive to the initial values of the
weights. Although repeating a fit with the same initial values consistently gave the same
parameter estimates, different starting values gave vastly different estimates of the param-
eters (Figure 7). Possible reasons for the sensitivity to starting values are that the data
are uninformative with respect to the neural network parameters or that there are multiple
maxima in the likelihood surface. Scatter plots of the movement parameters estimated from
the benchmark fit against the average input data values for those space–time strata showed
that the relationship, if any existed, was weak (Figure 8 and Figure 9). Similarly, the
relationships with the depth and topography data were also poor.
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Figure 6: A typical training history of the model. In most cases the function values cease to
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Table 2: A sample of the estimates of attrition parameters from different neural network
configurations. The estimates of the ‘benchmark’ fit from the regional–seasonal paramteri-
zation is given for comparision.

Model configuration M qpgpl qsbpl qfgpl qjppl qjpps npar -LogLike | G | Notes

10 region x 2 season 0.111 0.00041 0.00041 0.00457 0.00081 0.00561 66 4007.68 0.0003 Benchmark fit
1:UV641B5-D632B5-MQ 0.083 0.00043 0.00064 0.00427 0.00078 0.00346 68 4059.71 5.0553 Does not converge
2:UV732B5-D731B4-MQ 0.072 0.00053 0.00074 0.00503 0.00083 0.00275 66 4682.39 6.5274 Does not converge
3:UV732B5-D731B4-MQ 0.088 0.00039 0.00054 0.00451 0.00099 0.00466 66 4086.93 110.6232 Does not converge
4:UV632B5-D631B4-MQ 0.076 0.00045 0.00056 0.00471 0.00084 0.00378 60 4058.12 1.3113 Does not converge
5:UV632B5-D631B4-MQ 0.085 0.00044 0.00059 0.00461 0.00096 0.00299 60 4078.59 15.9012 Does not converge
6:UV632B5-D531B4-MQ 0.091 0.00048 0.00073 0.00432 0.00091 0.00277 57 4212.59 0.0073 D weigts on bounds

Neural network input data for above:
1:UV641B5-D632B5-MQ: UV: mon, lat, lon, zdt, soi, frg; D: mon, lat, lon, zdt, soi, frg
2:UV732B5-D731B4-MQ: UV: yrr, mon, lat, lon, soi, sst, hab; D: yrr, mon, lat, lon, soi,
sst, hab
3:UV732B5-D731B4-MQ: UV: yrr, mon, lat, lon, soi, sst, hab; D: yrr, mon, lat, lon, soi,
sst, hab
4:UV632B5-D631B4-MQ: UV: yrr, mon, lat, lon, zdf soi D: yrr, mon, lat, lon, zdf soi
5:UV632B5-D631B4-MQ: UV: mon, lon, lat, zdt, zdf, soi D: mon, lon, lat, zdt, soi, sst
6:UV632B5-D531B4-MQ: UV: yrr, mon, lat, lon, zdt, soi D: mon, lon, lat, zdt, soi

Notes:
1: Benchmark fit with region × season model
2: Does not converge
3: D weights on bounds
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Figure 7: Distributions of estimates of the neural network parameters for a UV732B5-
D731B5-MQ (n = 66) model using 20 different sets of initial values of weights and bias
terms.
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Figure 8: Relationship between the benchmark fit estimated values of D against the average
values of spatio–temporally varying neural network input data (habitat (hab), forage (frg),
and sea surface temperature (sst)). Left panels are for season 1 and right panels are for
season 2.
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Figure 9: Relationship between the benchmark fit estimated values of D against the average
values of spatio–temporally varying neural network input data (zonal (usc) and meridional
(vsc) surface current). Left panels are for season 1 and right panels for season 2.
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In all the cases, the advection field was strongly oriented to a northwesterly direction at
the eastern boundary of Australia. Incidently there was no release and hardly any recapture
in this area of the model (see Fig. 12). The spare and sporadic nature of the recapture data
may also explain the multimodal distribution of the estimates of diffusion (see Fig. 13).

6.1 Simulation

In order to investigate the reliability of the estimating procedure, we simulated a series of
recapture data sets from the model (UV732B5-D731B4-MQ, n = 66) using an estimated
set of parameter values. In the simulation, movements were deterministic but recaptures
were sampled from a probability distribution where the predicted tag density from the
ADR model was considered to be the expected value of a Poisson random variable. Using
different starting values for the weights and bias terms at each time, the parameters were
estimated for 50 realizations of tag–recapture data. The bias in the estimates, calculated as
the difference between the true and the estimated value divided by the standard deviation
of the estimates, is shown in Figure 10. The estimates of the weights show large bias, some
even larger than two standard deviations indicated by the horizontal lines in the figures.
The attrition parameters, however, were estimated with reasonable accuracy similar to the
average estimates (cf. Table 2).

A plausible reason for this behavior of the neural network model could be related to
the nature of the recapture observations in the data, but perhaps more importantly it is
due to the paucity of the recapture data in the model. In the conventional tagging data
the movement path of the fish is not known; only the release and recapture locations are
known. For a given time–at–liberty, the fish could have moved in a multitude of paths to be
recaptured at the observed time–grid strata. The implicit assumption in the ADR model
is that large numbers of releases and recaptures should, at the population level, reveal the
population movement that would be statistically estimable from the ADR model. It is
thus conceivable to imagine that multiple maxima in the likelihood surface for a set of tag
recaptures to have originated from more than one possible movement path between points
of release and recapture.

In reality, the recaptures in any grid–time strata are very few. In fact, of the 99,180 (58
months × 1710 non-land grids) computational grids specified in the model domain, only
952 (<1%) grids had observed recaptures; 99% of the model domain was void of recapture
data for which the parameters of the model would have to explain the movement (or more
precisely the continuously changing gradient field) of the density of the tags. In the regional
× seasonal parameterization of the ADR model, the accuracy of parameter estimates is
higher when there are larger numbers of recaptures in a region × season stratum (Bills
and Sibert 1997). In practice, regions are adjusted so that each region × season stratum
contained at least one tag recapture. In the regional × seasonal parameterization, the
movement field was effectively constrained to be uniform in each region × season strata,
whereas in the neural network model, the movement field may vary continuously across the
entire model domain at 1◦ × 1◦ resolution. Given the paucity of recaptures relative to the
region × season parameterization, it is therefore not surprising that we were not able to
accurately estimate the movement parameters.
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Figure 10: Bias in the estimates of the neural networks parameers from simulated data
(UV732B5-D731B4-MQ, n = 66). The bias is calculated as the difference between the
‘true’ value and the estimated value divided by the standard deviations of the estimates.
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It is not clear why the behaviour of the D-neural network is different from the UV-
neural work. Part of the reason might be that D is the variance of mean positions at times
that are represented by the advection parameters (Sibert and Fournier 2001). With very
few recaptures in the model domain one would expect the variance of the mean positions
to be unusually large. Alternatively it is possible that the input data we used were not
suitable proxies for the variables that regulate the movement behavior of skipjack tuna.
Lack of apparent correlation of the estimated regional and seasonal movements with the
mean habitat proxies were mentioned earlier.

The model resolution on which the movement field is calculated was 1◦×1◦ (i.e., ≈ 12,000
square kilometers) in monthly time steps. However, habitat features critical in governing
the skipjack behaviour may operate on a much finer space–time resolution. For example,
zooplankton swarms on which skipjack are known to forage occur at scales of around 100
km at time scales of weeks to a month (Dickey 1991), approximately the same scale as the
model resolution. The habitat data aggregated to the model resolution may not be at an
appropriate scale to yield movement information in the tag recapture data. The problem
is exacerbated both by the low coverage and declining quantity of the recapture data over
time.

Advective and diffusive parameters both vary at the scale of the computational elements
in the model. The fine scale variation in (u, v) may confound the variability in D. In other
words, advective gradients may introduce sufficient variability in movement to move the
tags through the model domain without recourse to gradients in diffusion. Such confound-
ing would be exacerbated by the ‘numerical viscosity’ introduced by upwind differencing
(O’Brien 1986).

6.2 Results from a typical fit

Despite the estimates of the neural network parameters that were on the bounds, nearly
all the fits showed reasonably good agreement with observed and predicted tag recaptures.
The observed and predicted tag recoveries from UV632B5-D641B5-MQ (n = 68), using
neural networks with year, month, latitude, longitude, topography, and SOI as input data
for both neural networks, and a linear output scaling function is shown in Figure 11. The
top panel is the aggregated tag returns over the life of each tag release cohort summed
over the model area, and the bottom panel is the observed and predicted tag returns over
time course of the experiment summed over the model area. The predicted recoveries from
the benchmark fit are also given for comparison. Compared with the benchmark fit, the
neural network parameterization better predicted recaptures at longer durations of time–
at–liberty, but was worse at predicting the recaptures at shorter times–at–liberty. This was
opposite to the results obtained for the regional × seasonal parameterization. Figure 12
shows tag returns aggregated over the computational grids in the entire time dimension of
the model. There was generally good agreement between the observed and predicted tag
returns in each grid. The agreement was particularly good for the long–term, sporadic, and
isolated recaptures.

The distributions of the movement parameters obtained for this fit are given in Figure
13. The distributions of u and v are of typical in nearly all the fits. The distribution of the
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Figure 11: A typical fit of the neural network model (UV632B5-D641B5-MQ, n = 68) The
benchmark fit, n = 66, is overlaid for comparison.
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Figure 12: Spatial distribution of observed and predicted tag returns over time for model
(UV632B5-D641B5-MQ, n = 68). Each one-degree square of the model region is divided
into two triangles, the upper left triangle representing the observed tag recaptures and the
lower right representing the predicted tag recaptures. The color of the triangle represents
the number of returns on the logarithmic scale. Two triangles forming a square of uniform
color indicate close agreement between the observed and the predicted recaptures in one–
degree geographic areas.
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Figure 13: Distributions of the u, v, and D (fit43; UV632B5-D641B5-MQ). The figures on
the left panels are unscaled values, i.e, the neural network output, and the panels on the
right are scaled values, using a linear scaling function.
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D, however, was highly variable between the fits. Most of them tended to show multi–modal
distributions as were estimated in this fit. Given that the model fit did not converge, it will
be difficult to provide meaningful interpretations of these distributions. A sample of the
movement fields showing the density of the tags and the advection and diffusion parameters
is given in Figure 14.
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Figure 14: Sample tag density and movement fields from UV632B5-D641B5-MQ.
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7 Recommendations for further research

• Change the parameterization to eliminate the gradients in D. Either esimate a single
uniform value of D or set its value at an arbitrary constant.

• The recapture data were too few in quantity to estimate the continuously varying
movement parameters. To compensate for this lack of recapture data, the approach
followed in the regional × seasonal movement parameterization may be used. Move-
ment parameters, for example, may be computed over 5-degree × 2 month time steps
instead of the 1-degree × 1-month resolution that was used for this analysis. This
would allow for more effective use of the sparse movement information in the recap-
ture data. Implementing this scheme would require only minor modification of the
existing model code.

• Future attempts should also explore use of Generalized Additive Models (GAMs) in
place of the neural networks for computing local movement parameters. Somewhat
similar to the neural networks, GAMs are highly flexible statistical models that are
often used to identify and characterize nonlinear regression effects.

• Alternative parameterization of movement patterns: The time-space discretized ap-
proach of ADR model implemented by Kleiber and Hampton (1994) considers move-
ments as fluxes, or transfer coefficients, across the cell boundaries. In their approach
the flux rates are modified by the presence of FADs and island masses, where FAD
effect is computed from a model.

Using a similar approach, the computed value of the neural network may be used to
modify the transfer coefficients as follows:

m↑ = D.NN(X; θ)
m↓ = D.NN(X; θ)

m→ = D.NN(X; θ)
m← = D.NN(X; θ)

Here NN(X; θ) is the neural network model, where X are the input data and θ the
model parameters. The output of the neural network may be directly used to avoid
the output scaling functions. Lower values of the neural network output indicate lack
of local features that affect movement behavior, while higher values affect the behavior
more strongly. Note that in this parameterization D is referred to as diffusivity and is
different from diffusion, D, of the continuous form of the ADR model (see Appendix A
of Kleiber and Hampton (1994) for a numerical treatment of the difference in the two
approaches). Also there is no explicit advection term. Lack of habitat features (i.e.,
lower neural network output) indicates diffusivity is uniform. But uniform dispersion
would be the exception rather than the norm for tunas.
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