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Abstract

Generalized additive model (GAM) and regression tree analyses were conducted with blue shark, Prionace glauca, catch
rates (catch per set) as reported by National Marine Fisheries Service observers serving aboard Hawaii-based commercial
longline vessels from March 1994 through December 1997 (N = 2010 longline sets). The objective was to use GAM and
regression tree methodology to relate catch rates to a tractable suite of readily measured or computed variables. Because the
predictor variables are also either provided in or easily computed from the logbooks that commercial vessels submit upon
landing fish for sale, it is likely that a model or models fitted to accurate observer data could then be applied on a fleet-wide
basis to serve as a standard of comparison for the logbooks. The GAM included nine spatio-temporal, environmental, and
operational variables and explained 72.1% of the deviance of blue shark catch rates. Latitude exerted the strongest effects of
any individual variable; longitude was the most influential variable when adjusted for the effects of all other factors. Relatively
cold sea surface temperatures were associated with high catch rates. The initial regression tree included 68 terminal nodes and
11 predictors. It was refined to a final tree with 42 terminal nodes, which reduced the root mean deviance by 65.3%. The tree
was partitioned first on latitude 26.6°N, and then branched out to reach terminal nodes after 2—8 additional partitionings. Sets
south of this latitude were characterized by lower catch rates and partitionings on a greater number and variety of predictors.
Northerly sets were characterized by higher and more variable blue shark catch rates. Predictions from the two analyses were
highly correlated (» = 0.903, P < 0.001). Moreover, use of these methods in combination aided greatly in the interpretation of
results. We conclude that GAM and regression tree analyses can be usefully employed in the assessment of blue shark catch
rates in this fishery. We suggest that either or both of these models could serve as comparison standards for commercial
logbooks. Published by Elsevier Science B.V.
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is a nonparametric generalization of multiple linear
regression, in which a link function is related to
predictor variables by scatterplot smoothers in lieu
of least-squares fits, and which is subject to less
restrictive distributional assumptions than multiple
linear regression (Hastie, 1992; Swartzmann et al.,
1992). Regression trees are models that can serve as an
alternative to linear or additive models, in which
numeric response variables are split into increasingly
homogeneous subsets by recursive binary partitioning
on a set of categorical or numerical predictor vari-
ables, with results displayed as a dendrogram (Clark
and Pregibon, 1992).

This paper presents the results of GAM and regres-
sion tree analyses of blue shark, Prionace glauca,
catch rates as reported by National Marine Fisheries
Service (NMFS) observers stationed aboard vessels of
the Hawaii-based commercial longline fleet from
March 1994 through December 1997. Several spa-
tio-temporal, environmental, and operational variables
provided in the observer data were tested to assess
their influences on blue shark catch rates. The objec-
tive was to use GAM and regression tree methodology
to relate catch rates to a tractable suite of readily
measured or computed variables. Our purpose in
defining this objective was to create the possibility
of a fishery-wide application. Because all of the pre-
dictor variables are either provided in or easily com-
puted from the logbooks that commercial vessels
submit upon landing fish for sale, it seems likely that
the coefficients from a model fitted to accurate obser-
ver data could be applied to the logbooks from unob-
served trips. Therefore, the predicted catch rates could
then serve as a standard of comparison for the log-
books. A standard of this sort could be considered
potentially valuable because blue shark has been the
most numerous species in the catch of this fishery
throughout the decade (Ito and Machado, 1999),
despite the fact that it is taken as incidental catch.

2. Materials and methods

The Hawaii-based commercial longline fishery
primarily targets bigeye tuna, Thunnus obesus, and
swordfish, Xiphias gladius (He and Laurs, 1998); the
geographic distributions of fishing directed at these
species are depicted in Fig. 1. The highest blue shark
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Fig. 1. Contour plot of longline sets with NMFS observers
deployed from March 1999 through December 1997. Swordfish-
directed sets are denoted by the dotted line; tuna-directed sets are
denoted by the solid line. The labels represent the numbers of
observed sets within 2° x 2° squares.

incidental catch rates are usually associated with
swordfish-directed activity (He and Laurs, 1998; Ito
and Machado, 1999). Detailed descriptions and maps
of the seasonality, distribution, and catch patterns in
this fishery are presented in He et al. (1997) and Ito
and Machado (1999).

Statistical analyses were conducted with data
derived from records kept by NMFS observers sta-
tioned aboard Hawaii-based commercial longline ves-
sels from March 1994 through December 1997.
Observers were present on 190 trips, performing
duties that included gathering data concerning fishing
effort and obtaining species-specific tallies of catches
and discards. These trips deployed a total of 2198
longline gear sets, but sets with incomplete records
were excluded from analyses. Consequently, analyti-
cal procedures were initiated with 2010 longline sets
deployed on 176 trips, an average of 11.4 sets per trip.

Each individual record (i.e., summary of one gear
set) employed in analyses included the catch of blue
shark and 11 candidate predictor variables. These
included three spatio-temporal variables (the date,
and latitude and longitude), three environmental vari-
ables (sea surface temperature, the angle of the sun to
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the horizon, and the visible proportion of the moon),
and five operational characteristics (the number of
hooks per set, light sticks per hook," hooks per float,
time at the initiation of the set, and vessel length). All
variables were obtained directly by the observers
except the solar and lunar indices, which were calcu-
lated from the date and geographic position.

GAM development followed methods similar to
those described by Bigelow et al. (1999), who recently
presented GAMs for both swordfish, X. gladius, and
blue shark within the Hawaii-based fishery from 1991
through 1995, with the following specifics. Analyses
were conducted in S-PLUS (MathSoft, 1996) accord-
ing to fitting, testing and plotting procedures described
by Hastie (1992). The response variable was blue
shark per set, so it was assumed that the underlying
probability distribution was the Poisson (Swartzmann
etal., 1992; Bigelow et al., 1999). As such, logarithms
were the appropriate link function. All predictor
variables were numeric except the set time, which
was expressed as a four-level factor variable to accom-
modate its circularity. The factor levels (1 = 0300
—0859h, 2 =0900—1459h, 3 = 1500—2059h, 4 =
2100—0259h) were defined after preliminary exam-
ination of frequency distributions. Variable selection
proceeded by forward entry. This procedure was cho-
sen because preliminary attempts to fit a model by
backward elimination yielded results that were
regarded as biologically meaningless (e.g., the effect
of longitude superseded that of latitude).

At each stage of forward entry, the Akaike informa-
tion criterion (AIC) was computed for every candidate
predictor not yet entered. The variable with the highest
AIC was tested as the next entry; the decision was
predicated upon a forward entry F-test with a signifi-
cance criterion of P < 0.05. Forward entry continued
until additional variables no longer yielded significant
reductions in the residual deviance. The effects of the
various predictors were depicted in loess plots with
the ordinate set to a uniform scale. Adequacy of model
fit was assessed in terms of the pseudocoefficient of
determination (pseudo-R?> = 1 — residual deviance/
null deviance; Swartzmann et al., 1992) and from
partial residuals plots. The relative effectiveness of

! Light sticks are phosphorescent plastic tubes about 10-15 cm in
length that are attached to the leader above the hook, used primarily
in swordfish-targeted fishing.

the different types of predictors was then assessed by
computing reduced models (e.g., a GAM with only
environmental variables as predictors) and evaluating
the significance tests, residual deviance, and pseudo—Rz.

Regression trees were developed with natural log-
transformed catch rates data from all sets that yielded
at least one blue shark (N = 1911 sets). Zeroes were
deleted from this analysis, but not GAM development,
because the Poisson structure underlying the latter
accommodates zeroes. The suite of candidate predic-
tors was identical to the GAM except for years and
months, which were regarded as categorical rather
than as a single numeric variable. The tree was initially
“grown” from the entire set of possible predictors,
and then examined in terms of its constituent predic-
tors, residual mean deviance, residuals, and normal
probability plot of residuals. It was ‘“‘pruned” to
reduce overfitting after performing cross-validation
procedures adapted from Clark and Pregibon
(1992). The tree size corresponding to the average
minimum deviance estimated by cross-validation was
chosen as the starting point for further investigation of
tree size. This involved examination of the tree struc-
ture (i.e., “topology’’) in an effort to identify parti-
tionings that were not biologically meaningful (e.g.,
back-transformed predictions that differed by less than
one blue shark). Agglomeration of nodes was con-
sidered appropriate if the resulting increase in the
residual mean deviance was small and the distribution
of the residuals was thereby improved. Tree structure
was then altered to its final form. The plot of the final
tree depicts sequences of as many as five partitionings,
while the lower levels and terminal nodes are
described in the text.

The results of GAM and regression tree analyses were
compared in terms of the significance and relative
importance of predictor variables, as well as their pre-
dictions. The first involved comparison of the order of
entry into the GAM to the identities and positions of
variables within theregressiontree. The second involved
computation of the correlation between the back-trans-
formed predictions obtained from the two methods.

3. Results

Longline sets monitored by NMEFS observers
were distributed seasonally across 40° of latitude
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Table 1

Summary of effort and catches on trips of Hawaii-based commercial longline vessels that carried NMFS observers. Total catch refers to all

species of fishes; other entries refer to blue shark

Year Trips Gear sets Total catch Blue shark Percentage Blue shark
catch per set

Data used in analysis

1994-1997 176 2010 70 143 23872 34.0 11.9

1994 41 411 12 658 4313 34.1 10.5

1995 45 514 17 805 5739 322 11.2

1996 52 628 18 665 6777 36.3 10.8

1997 38 457 21015 7043 335 15.4

All data

1994-1997 190 2198 75924 25474 33.6 11.6

(5°N—45°N) and 50° of longitude (140°W-170°E).
Sets in winter were concentrated west of the main
Hawaiian Islands, and from northeast to northwest
across a broad longitudinal band ca. 30°N. The area
fished was roughly triangular in shape and centered
about the main islands in spring, followed by movement
toward the northwest in summer, and concentration
north and northeast of the islands in autumn. Sword-
fish-directed sets were generally located to the north
and northeast of the tuna-directed activity (Fig. 1).
Detailed descriptions and maps of the seasonality,
distribution, and catch patterns in this fishery are pre-
sented in He et al. (1997) and Ito and Machado (1999).

Blue shark comprised approximately one-third of
the catches throughout the study period (Table 1). The
mean blue shark catch rate was 11.9 per set; the
median and maximum were 6 and 359 blue sharks
per set. The annual mean blue shark catch rate
increased by 43% in 1997 relative to 1996. This
reflected high catch rates in the first 2 months of
the year, which yielded two of the four highest
monthly mean values during the study period, and
15.5% of the blue sharks. All of these statistics were
calculated without any standardization.

3.1. GAM of blue shark catch rates

Two predictor variable characteristics required con-
sideration during development and interpretation of a
GAM of blue shark catch rates. Several correlations,
primarily but not exclusively among the operational
factors, were significant. Numbers of hooks were
positively correlated with hooks per float (r = 0.86,
P < 0.001), but negatively correlated with light sticks

per hook (r = —0.64, P < 0.001) and vessel length
(r=-0.47, P <0.001). Hooks per float were also
negatively correlated with light sticks per hook
(r =—=0.71, P < 0.001). This variable was also mark-
edly bimodal and kurtotic. For these reasons, hooks
per float were not used in the GAM. Sea surface
temperature was negatively correlated with latitude
(r=-0.79, P <0.001), equivalent to a mean
decrease of —0.4°C per degree of latitude.

GAM development proceeded until nine variables
had been entered (Table 2). Set time did not affect blue
shark catch rates significantly (P = 0.383), but all
other candidate predictors yielded significant reduc-
tions in the residual deviance (nine F-tests: all
P < 0.005). However, the decrements in the residual
deviance and increments in the pseudo-R> decreased
rapidly as the number of predictors increased, parti-
cularly beyond 6 (Fig. 2). It was noteworthy that the
total number of hooks yielded a larger reduction in the
residual deviance as the sixth entry than when tested as
the fifth. This indicated that its effect was contingent
upon the presence of light sticks per hook in the
model. All relationships between the predictor vari-
ables and blue shark catch rates were significantly
non-linear (nine y*tests: all P < 5.0 x 10~'"). There
were 8.4-8.8, 6.8-9.0, and 8.2-8.4 non-linear degrees
of freedom for the spatial, environmental, and opera-
tional factors, respectively.

Geographic location was the predominant influence
on blue shark catch rates. Latitude provided the largest
reduction in the residual deviance. The loess plot (i.e.,
the GAM result for this variable) (Fig. 3) revealed a
non-linear response pattern from low latitudes to ca.
32°N. There was a local maximum ca. 25-30°N, and a
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Table 2
Analysis of deviance of a nine-variable GAM of blue shark catch rates. The reductions in the AIC and residual deviance, degrees of freedom,
and the F-test and associated significance, are presented for each term”

Predictor variable AAIC AResidual deviance d.f. Fenter P

Latitude —13702.44 —13719.990 8.78 127.793 <0.001
Longitude —5029.78 —5046.555 8.39 76.631 <0.001
Temperature —1559.01 —1573.947 7.47 29.850 <0.001
Date —1211.95 —1227.168 7.61 25.591 <0.001
Light sticks —613.10 —629.565 8.23 12.989 <0.001
Hooks —627.81 —644.591 8.39 13.881 <0.001
Vessel length —294.96 —311.620 8.33 7.048 1.7x107°
Solar index —129.22 —147.132 8.95 3.147 0.0009
Lunar index —89.87 —103.395 6.76 2.947 0.005

# Loess smoothing was applied to all variables; null deviance = 32473.45, d.f. = 2009; residual deviance = 9069.488, d.f. = 1936.094;
pseudo-R? = 0.721.

Pseudocoefficient of determination
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Fig. 2. Relationships between the residual deviance and the pseudocoefficient of determination and the number of predictor variables in a
GAM of blue shark catch per set.



120 W.A. Walsh, P. Kleiber/Fisheries Research 53 (2001) 115-131

0 ]

-

Effect on blue shark catch per set

10N 20N

30N 40N

Latitude

Fig. 3. The effect of latitude on blue shark catch per set as estimated by a nine-variable GAM. The response scale reflects natural log-

transformation.

strong positive relationship between latitude and catch
rates beyond 32°N. The loess plot of longitude (Fig. 4)
exhibited a sharp break between 165°W and 170°W,
and a strong negative effect on blue shark catch rates
from ca. 155°W eastward. This plot exhibited the
greatest response range, which indicated that long-
itude exerted the greatest effect on blue shark catch
rates when adjusted for all other factors.

Sea surface temperature was the most influential
environmental factor for blue shark catch rates
(Fig. 5). The most prominent feature of its loess plot
was a steady decline from ca. 18°C to lower levels of
ca. 25°C. There was a trend of increase at 27-30°C,
but this region included only 10.6% of all sets. The
other environmental factors (not shown), the lunar and
solar indices, were the final model entries. These
yielded significant but minor reductions in the
deviance, and increased the pseudo-R* by 0.008.

The operational factors entered the model in
sequence as its fifth to seventh variables. The loess
plot of light sticks per hook (Fig. 6) revealed rela-
tively low blue shark catch rates among sets con-
ducted without light sticks (44%). There was
pronounced curvature at 0.2—0.5 light sticks per hook,
with the maximum positive effect within this region
ca. 0.45. Numbers of hooks (Fig. 7) exhibited the
greatest response range in its loess plot within this
class of predictors. As expected, blue shark catch
rates generally increased with hook numbers through-
out the range employed. The relationship between
blue shark catch rates and vessel length (Fig. 8)
exhibited marked, irregular curvature throughout
the size range. This differed from both light sticks
and hooks, which were approximately linear and
smoothly curved in the upper halves of their respec-
tive ranges.
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Effect on blue shark catch per set
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Fig. 4. The effect of longitude on blue shark catch per set as estimated by a nine-variable GAM. The response scale reflects natural log-

transformation.

The loess plot depicting blue shark catch rates over
time (Fig. 9), adjusted for the other predictors, exhib-
ited steady increase from its minimum throughout
1994. This was the only year that temporal patterns
exerted strong effects on catch rates. The back-trans-
formed predictions from the GAM (Fig. 10) generally
tracked the measured values closely. The exceptions
were January and December 1997, when the measured
catch rates were considerably greater than those pre-
dicted by the GAM.

Computation of reduced models (Table 3) demon-
strated that a six-variable GAM comprised of latitude,
longitude, temperature, the date, the number of light
sticks per hook, and the total number of hooks yiel-
ded explanation close to that of the full model
(pseudo-R? = 0.703). Geographic location described
blue shark catch rates more effectively than the other

types of predictors. Operational factors, in turn,
described blue shark catch rates more effectively than
environmental variables. Date of fishing explained
only a small proportion of the deviance of blue shark
catch rates (pseudo-R? = 0.058).

3.2. Regression tree analysis of blue shark
catch rates

The distribution of blue shark catch rates after
natural log-transformation appeared roughly normal
(Fig. 11), and heteroscedasticity was greatly reduced.
Regression tree analysis then revealed many relation-
ships between catch rates and the predictor variables
(Table 4).

The initial tree structure included 68 terminal nodes
and 11 of 12 candidate predictors. Set time was not
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Effect on blue shark catch per set
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Fig. 5. The effect of sea surface temperature on blue shark catch per set as estimated by a nine-variable GAM. The response scale reflects

natural log-transformation.

“chosen” by the fitting algorithm. A series of five
cross-validation procedures generated minimum
deviance estimates at 46.4—47.1 terminal node. The
tree that was refitted on the basis of cross-validation
included 48 terminal nodes and retained all of the 11

Table 3

predictor variables within its structure. Agglomeration
of three pairs of nodes with catch rate estimates that
differed by less than one blue shark yielded the final
tree with 42 terminal nodes. The mean terminal node
size was 45.5 sets, but four nodes included 104-151

Results obtained by fitting reduced GAMs of blue shark catch rates. The fit of each model is summarized in terms of its AIC, residual

deviance, and pseudocoefficient of determination®

Predictor variables AIC Residual deviance d.f. Pseudo-R?
Date 30613.93 30596.67 2001.37 0.058
Latitude, longitude 13743.23 13706.91 1991.84 0.578
Temperature, lunar index, solar index 21674.15 21625.74 1985.80 0.334
Light sticks, hooks, vessel length 20217.42 20165.59 1984.08 0.379
Latitude, longitude, temperature, date, light sticks, hooks 9731.36 9631.64 1960.14 0.703

* The null deviance for each model is 32473.45, d.f. = 2009; loess smoothing was applied to all variables.
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Fig. 6. The effect of the number of light sticks per hook on blue shark catch per set as estimated by a nine-variable GAM. The response scale

reflects natural log-transformation.

sets, which together comprised 26.1% of the tree. The
residual mean deviance (0.368) was 14% greater than
that of the initial tree, but was attained with 26 fewer
terminal nodes. These refinements are summarized in
Table 4.

The regression tree (Fig. 12) was examined in terms
of the dimensions of its structure because the vertical

Table 4

position of a node pair is a function of the importance
of the parent split (Clark and Pregibon, 1992), the
identities and values of the partitioning variables, the
levels within the tree at which the partitionings were
located and the various catch rate estimates generated
by the partitionings. The tree split first at latitude
26.6°N, and then branched out to reach terminal nodes

Summary of a regression tree analysis of natural log-transformed blue shark catch rates. The number of predictors within the tree, terminal
nodes, deviance, residual mean deviance, percent reduction in the root mean deviance, and mean and median residuals are presented for each

stage of the analysis. See text for listing and description of predictors

Stage Predictors Terminal Deviance Residual mean Reduction of root Mean Median

nodes deviance mean deviance residual residual
Initial tree 11 68 596.9 0.324 69.9 46x107"8 0.031
Pruned tree 11 48 659.3 0.354 66.8 3.3x107"7 0.017
Final tree 11 Y] 688.6 0.368 65.3 —1.6x107"  —0.002
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Fig. 7. The effect of the number of hooks per set on blue shark catch per set as estimated by a nine-variable GAM. The response scale reflects

natural log-transformation.

after 2-8 additional partitionings. The two subtrees
(i.e., left and right sides) each contained 21 terminal
nodes, with 58.2 and 41.8% of the sets in the left and
right sides, respectively. The most obvious topological
feature was the difference in the depth of the parti-
tionings in the two subtrees, which reflected greater
differences between nodes. For example, the initial
split on longitude in the right subtree corresponded to
means of 9.2 and 25.0 blue shark per set, where the
corresponding split on vessel length in the left subtree
corresponded to 5.6 and 3.3 blue shark per set. The left
subtree, which corresponded to sets deployed south of
26.6°N, was also characterized by partitionings on a
greater number of predictors than northerly sets, along
with lower catch rates. Northerly sets were character-
ized by higher and more variable blue shark catch rates,
depicted by much deeper splits within the tree topology.

Blue shark catch rates south of 26.6°N were first
partitioned on a vessel length of 65.85 ft. Smaller
vessels had lower catch rates. These sets were then
partitioned on light sticks per hook; approximately
90% of these sets employed 0-0.26 light sticks per
hook. These sets were categorized further according to
longitude, latitude, months, and the solar index. Sets
deployed by larger vessels split first on longitude, with
higher blue shark catch rates west of 161.3°W. Long-
itude was also the basis of partitionings at deeper
hierarchical levels within this subtree. Additional
splits were predicated upon months, hooks per float,
longitude, latitude, hooks, vessel length, and the lunar
index. Year was the basis of a single partitioning,
which reflected higher catch rates in 1994 and 1995
than in 1996 and 1997, among vessels larger than
65.85 ft and west of 161.3°W.
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Fig. 8. The effect of vessel length (ft) on blue shark catch per set as estimated by a nine-variable GAM. The response scale reflects natural log-

transformation.

Blue shark catch rates north of 26.6°N were primarily
affected by geography and seasonal variation. The 20
partitionings of these sets included three on longitude,
two on latitude, three on months, and five on tempera-
ture. The eight terminal nodes from west of 162.7°W
were characterized by a 17.1-fold range in predicted
catch rates. This large range resulted from a partitioning
on years caused by relatively low catch rates in 1994.
These nodes, which were defined by additional parti-
tionings on longitude, latitude, and months, comprised
14.0% of the tree, but yielded 42.7% of all blue sharks.
The other main branch of the northern subtree under-
went a second partitioning on longitude at 153.9°W.
Terminal nodes categorized by temperature, months,
years and latitude (left section) contained 13.3% of the
sets and yielded 17.5% of the blue sharks, with an
average catch rates of 16.4 blue sharks per set. Terminal
nodes categorized by months, hooks per float, the lunar

index, longitude, and years (right section) included
14.4% of the sets, and yielded 11.1% of the blue sharks,
for an average catch rate of 9.6 per set.

3.3. Comparison of GAM and regression tree
analyses

Results of the analyses were comparable in three
major respects. First, the two types of models included
the same suite of significant predictors, although
temporal effects were expressed as a continuous vari-
able in the GAM but as categorical variables in the
regression tree. Second, their two sets of predictions
agreed closely. Third, several prominent features of
the loess plots apparently corresponded to partition-
ings within the regression tree.

Back-transformed predictions from the GAM and
the regression tree (Fig. 13) were compared after
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Fig. 9. The effect of temporal variation on blue shark catch per set as estimated by a nine-variable GAM. The response scale reflects natural

log-transformation.

trimming 1% of the observations, to reduce the influ-
ence of high catches on eight sets. The two sets of
predictions were highly correlated (r = 0.903, P <
0.001). Inclusion of the eight sets reduced the correla-
tion coefficient by 0.099 (r = 0.804, P < 0.001).
Both analyses demonstrated that geography was the
predominant influence on blue shark catch rates.
Latitude was the first entry into the GAM and the
basis for the first partitioning in the regression tree. Its
loess plot exhibited a local maximum coincident
with the first partitioning in the tree. Longitude was
second into the GAM, and the basis for the first
partitioning among the northerly sets with relatively
high blue shark catch rates. Its loess plot exhibited the
greatest response range among the predictors, while the
tree topology also depicted strong longitudinal effects.
The two analyses also appeared compatible with
respect to the environmental factors. Temperature was

third into the GAM, and the basis of one-fourth of the
partitionings in the northern subtree with its relatively
high blue shark catch rates. In contrast, the lunar and
solar indices were the final entries into the GAM, and
only present at the lowest hierarchical levels in the
regression tree.

The use of months and years as categorical vari-
ables in the regression tree facilitated interpretation
of the effect of time in the GAM. The regression tree
contained seven partitionings on months, but only
four on years, three of which reflected lower catch
rates in 1994 than in all other years. Analogously,
the response range in the loess plot was greater
within than between years since 1994. Thus, tem-
poral factors were influential regarding blue shark
catch rates, but primarily in terms of intra- rather
than interannual variation, in the last 3 years of the
study.
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Fig. 10. Back-transformed monthly mean GAM predictions of blue shark catch per set (dashed line with triangles) in relation to measured
mean blue shark catch per set (solid line with open circles) from March 1994 to December 1997.

The results from the two analyses regarding the
operational factors were comparable in one respect:
concentration of these partitionings within the mid-
and lower hierarchical levels and the topology of the
regression tree appeared to be consistent with sequen-
tial and relatively late entry into the GAM. Beyond
this, however, these factors represented the principal
disparities between analyses. Vessel length provided
the initial partitioning among southerly sets in the
regression tree, but was the last of the operational
factors to enter the GAM. Light sticks, in contrast, was
the first of these factors into the GAM, but was the
basis of the next partitioning beneath vessel length in
the southern subtree. The loess plot of the number of
hooks exhibited a large response range, but this vari-
able was absent from the northern subtree and present
only as the basis of one partitioning in the southern
subtree.

4. Discussion

A significant characteristic of this study was its
utilization of data gathered by fishery observers.
Because the responsibilities of these individuals do
not include participation in the deployment or retrieval
of longline gear, it is reasonable to expect that they
would be less likely to overlook or miscount any of the
catch than actively fishing crew members. Thus, the
results presented herein are presumably founded upon
highly accurate data.

A second significant characteristic of this study was
its application of two modern statistical methods to
blue shark catch rates, and generation of closely
comparable results. The latter, in particular, was reas-
suring, although not surprising. Venables and Ripley
(1994) likened the process of developing a regression
tree to forward variable selection in regression. Both
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Fig. 11. Distribution of natural log-transformed blue shark catch per set.

methods represent hierarchical refinement of prob-
ability models. It was noteworthy that this study
provided examples of how these methods could be
employed in a mutually complementary manner. Inter-
pretation of the GAM was facilitated by examination
of the topology and hierarchical structure of the
regression tree, even as the partitionings within the
latter were examined in relation to non-linear features
of the loess plots.

Both the GAM and regression tree were regarded as
parsimonious models. Its pseudocoefficient of deter-
mination (pseudo-R?> = 0.721) indicated that the
GAM explained a large proportion of the deviance
of blue shark catch rates, and nine forward entry F-
tests were highly significant (all P < 0.005), which
demonstrated that inclusion of these predictors was
appropriate. In contrast, the test of set time
(P = 0.383) did not reveal a need for a larger model,
at least with this suite of candidate predictors. The

final regression tree was also considered to be of an
appropriate form because it included the same pre-
dictors as the GAM, and was pruned on the basis of
consistent results from a series of cross-validation
procedures as well as the biological criterion that
terminal nodes must differ by at least a whole organ-
ism. In other words, terminal nodes defined by differ-
ences of less than one shark were combined in the final
regression tree because such differences were consid-
ered biologically meaningless.

The principal complexity encountered in this study
was the fact that the observed longline sets did not
form a homogeneous or standardized set of measure-
ments. The Hawaii-based longline fishery primarily
targets tuna or swordfish, but in different locations and
by different methods. Tuna-directed fishing operations
are generally conducted in daytime by small vessels
near the main Hawaiian Islands, with many hooks per
set but few light sticks, whereas swordfish are targeted
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with predictions beneath.

from the Hawaiian Archipelago to 45°N, with gear
deployed at night, including greater numbers of light
sticks, but fewer hooks per set than tuna fishing (He
et al., 1997). Despite these differences, it proved
possible to develop models that were amenable to
clear biological or operational interpretation. More-
over, this does not preclude further investigation of
model performance within specific regions of the
distributions of the independent variables, which
could represent types of fishing, or assessment of
the practical utility of reduced models, which might
entail some sacrifice of accuracy in exchange for

simplified interpretation or reduction of data collec-
tion requirements.

These analyses were expected to reveal strong
geographic effects on blue shark catch rates, with
latitude predominant. These expectations were ful-
filled, although the relationship between latitude
and catch rates is largely indirect. A substantial pro-
portion of the incidental blue shark catch by the
Hawaii-based longline fishery since 1990 has been
associated with swordfish-directed effort (He et al.,
1997). From 1991 to 1995, the latter was centered
within the subtropical frontal zone ca. 30°N, a region



130 W.A. Walsh, P. Kleiber/Fisheries Research 53 (2001) 115-131

o
4
e
H
o
o |
— ®©
0]
)
Ny
)
o °
=
2 o
g :
X 81 ° 8
(] o
@ {
()] o
3 ]
a 00 8
b °
° s o i
cC o o °
S ¥ o ° 88 2
g ’ 5 :
°
o 8 o 8 o
o 8 o § 8 5! °
= i{- i
o
So] . °% ie
«
2388 o
&° o g 8°
o o
2 :3
%% o .
° 8
8 o g°
o
T T T T T T
0 20 40 60 80 100

Regression tree predictions of blue shark catch per set

Fig. 13. Scatter plot of back-transformed predicted values obtained from the GAM and regression tree analyses.

characterized by latitude-related oceanographic fac-
tors (e.g., an abundance of food organisms caused by
intersections of currents or water masses) that favor
concentration of swordfish (Bigelow et al., 1999).
Such known oceanographic phenomena, in turn, pre-
sumably affect the distribution of fishermen by influ-
encing their expectations of success. In addition to the
indirect effect, the life history of blue shark includes
latitudinal reproductive migrations (Nakano et al.,
1985; Pearcy, 1991) that could affect catch rates by
altering availability to this fishery. The seemingly
strong effect of longitude, depicted by the wide
response range in the loess plot, was probably more
closely related to the type of fishing effort than blue
shark abundance per se. Over 90% of all blue sharks
from south of 26.6°N were caught east of 165°W. This
proximity to the main Hawaiian Islands suggests that
these were primarily tuna sets. Given the differences in
gear configuration between swordfish and tuna sets,

relatively low blue shark catch rates are not surprising.
The operational factors in general appeared compar-
able to the distribution of fishing in the sense that both
reflect expectations of catch, and exert their effects
accordingly. Although these were not the most impor-
tant variables, the presence of these factors in the
models is useful because it allows estimation of the
effects of manipulations that might affect efficiency or
serve as preventive or ameliorative measures.

The relative importance of the environmental fac-
tors was consistent with physiological and ecological
considerations. It was predictable that temperature
would exert strong effects because it acts directly
on a fish in at least two ways. Temperature is first
and foremost a controlling factor, governing metabo-
lism (Fry, 1971). As such, it exerts strong effects on
energetic demands, even in a eurythermal species
such as blue shark, and thereby influences distribu-
tion because a species would presumably evolve
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preferences for habitat with predictably sufficient food
resources. High blue shark catch rates associated with
swordfish-directed effort in the transition zone prob-
ably reflect their co-occurrence in a food-rich region.
Temperature also functions as a directive factor (Fry,
1971), eliciting behavioral responses (e.g., movement
along gradients). Since responses of this type would
presumably exert more subtle effects on catch rates, it
is not surprising that, in addition to those higher up,
there were three partitionings on temperature at the
lowest hierarchical level in the northern subtree, defin-
ing terminal nodes. Thus, the regression tree captured
the statistical essence of processes occurring at dif-
ferent levels of biological organization. Similarly, the
solar and lunar indices, representing influences on
visual predatory behavior, were expressed as partition-
ings at terminal nodes in the regression tree and as the
final entries into the GAM.

The results presented herein were consistent with
those of Bigelow et al. (1999). These authors developed
a GAM of blue shark catch rates from logbook data
gathered on swordfish-directed trips from 1991 to 1995,
and determined that latitude, longitude, and sea surface
temperature were the most important predictor vari-
ables, in that order. Because the present study generated
similar results from observations of all types of effort,
it suggests that the validity of these authors’ work was
not necessarily limited to swordfish-directed effort.

It would appear that either GAM, regression tree, or
both types of analyses developed from fishery obser-
ver data could be usefully employed as a comparison
standard for logbooks. Specifically, the quality of the
underlying data, the indications of relatively broad
validity, and the consistency of results between meth-
ods, all indicate that a statistical model fitted to fishery
observer data could serve as a useful standard against
which to compare captains’ logbooks. This would be
useful, because these are the principal monitoring tool
in this fishery. This possibility will be explored in a
subsequent report.

5. Conclusions

We conclude from our development, comparison,
and interpretation of GAM and regression tree ana-
lyses of fishery observer data that these models can be
usefully employed in assessment of blue shark catch

rates. We suggest that these models represent appro-
priate comparison standards for the logbooks sub-
mitted by commercial vessels.

Acknowledgements

This paper is funded by Cooperative Agreement
Number NA67RJ0154 from the National Oceanic and
Atmospheric Administration.

References

Bigelow, K.A., Boggs, C.H., He, X., 1999. Environmental effects
on swordfish and blue shark catch rates in the US North Pacific
longline fishery. Fish. Oceanogr. 3, 178-198.

Clark, L.A., Pregibon, D., 1992. Tree-based models. In: Chambers,
J.M., Hastie, T.J. (Eds.), Statistical Models. Wadsworth &
Brooks/Cole Advanced Books and Software, Pacific Grove,
CA.

Fry, FEJ., 1971. The effect of environmental factors on the
physiology of fish. In: Fish Physiology, Vol. VI. Academic
Press, San Diego, CA.

Hastie, T., 1992. Generalized additive models. In: Chambers, J.M.,
Hastie, T.J. (Eds.), Statistical Models. Wadsworth & Brooks/
Cole Advanced Books and Software, Pacific Grove, CA.

He, X., Laurs, M., 1998. Bycatch, finning, and economic value of
blue shark in the Hawaii-based longline fishery. In: Shark
Management and Conservation. Proceedings from the Sharks
and Man Workshop of the Second World Fisheries Congress
(Synopsis). Department of Primary Industries, Queensland,
pp. 88-94.

He, X., Bigelow, K.A., Boggs, C.H., 1997. Cluster analysis of
longline sets and fishing strategies within the Hawaii-based
fishery. Fish. Res. 31, 147-158.

Ito, R.Y., Machado, W.A., 1999. Annual Report of the Hawaii-
based Longline Fishery for 1998. Administrative Report
H-99-06. Honolulu Laboratory, Southwest Fisheries Science
Center, National Marine Fisheries Service, NOAA, Honolulu,
HIL

MathSoft, 1996. S-PLUS, Version 3.4. MathSoft Inc., Seattle, WA.

Nakano, H., Makihara, M., Shimazaki, K., 1985. Distribution and
biological characteristics of the blue shark in the central North
Pacific. Bull. Fac. Fish. Hokkaido Univ. 36, 99-113 (in
Japanese with English abstract).

Pearcy, W.G., 1991. Biology of the transition region. In: Wetherall,
J.A. (Ed.), Biology, Oceanography, and Fisheries of the North
Pacific Transition Zone and Sub-Arctic Frontal Zone. NOAA
Technical Report NMFS 105.

Swartzmann, G., Huang, C., Kaluzny, S., 1992. Spatial analysis of
Bering Sea groundfish survey data using generalized additive
models. Can. J. Fish. Aquat. Sci. 49, 1366-1378.

Venables, W.N., Ripley, B.D., 1994. Modern Applied Statistics
with S-PLUS. Springer, New York.



