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ABSTRACT

An approach to integrate sea surface temperature
(SST) measurements into estimates of geolocations
calculated by changes in ambient light level from data
downloaded from pop-up satellite archival tags
(PSAT) is presented. The model is an extension of an
approach based on Kalman filter estimation in a state-
space model. The approach uses longitude and latitude
estimated from light, and SST. The extra information
on SST is included in a consistent manner within the
milieu of the Kalman filter. The technique was eval-
uated by attaching PSATs directly on thermistor-
equipped global positioning system drifter buoys. SSTs
measured in the PSATs and drifter buoy were statis-
tically compared with SSTs determined from satellites.
The method is applied to two tracks derived from
PSAT-tagged blue sharks (Prionace glauca) in the
central Pacific Ocean. The inclusion of SST in the
model produced substantially more probable tracks
with lower prediction variance than those estimated
from light-level data alone.
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INTRODUCTION

Fisheries research organizations, universities, and gov-
ernments spend large amounts of funding on electronic
tagging devices to address a variety of fundamental

biological and practical management questions (e.g.
Arnold and Dewar, 2001; Gunn and Block, 2001).
Electronic tagging devices are used to gain information
about fisheries interactions, post-release survivability,
and to delimit spawning locations and migration cor-
ridors. As water is (nearly) impenetrable to radio waves,
alternative strategies are needed in electronic tagging
devices to provide estimates of geographical location
(i.e. geolocations) for fishes that do not regularly visit
the surface. For animals that breath air, and hence are
at the surface for long periods, it is possible to use Argos
or Global Positioning System (GPS) tags, which are
highly accurate. Archival or data storage tags and pop-
up satellite archival tags (PSATs) are electronic tags
that store ambient light-level data fromwhich estimates
of dawn and dusk can be used to calculate longitude
(from local noon) and latitude (from local day length)
(Wilson et al., 1992; Hill, 1994; Musyl et al., 2001).

Despite their enormous potential, archival tags and
PSATs have several limitations, including tag retent-
ion, variable reporting rates, amount of transmitted
data and the magnitude and extent of geolocation
errors from light-based techniques. This paper provides
a method that can be used to improve the accuracy of
light-based geolocation estimates so that these may be
applied to analyze movement in relation to oceano-
graphic variability.

Raw geolocations (i.e. unfiltered and uncorrected)
derived from light-based algorithms are often very
noisy, and it is common that devices are mistakenly
‘placed’ hundreds of kilometers from their actual
location (Gunn et al., 1994; Musyl et al., 2001; Sibert
et al., 2003). Estimation of latitude by light-based
methods around the time of the equinox can be
especially problematic because day length is nearly
equal at all latitudes. Light-based geolocation methods
are often rendered even more difficult by the behavior
of the animals. For instance, animals such as swordfish
and bigeye tuna spend a substantial fraction of the day
at great depth where light intensity is near the
threshold of sensitivity for most electronic tags, or dive
near the time of sunrise and sunset (Musyl et al.,
2003). It is obvious that these raw geolocations are
essentially useless by themselves because of the likely
magnitude and extent of geolocation errors.

*Correspondence. e-mail: anders.nielsen@hawaii.edu

Received 23 June 2004

Revised version accepted 18 May 2005

FISHERIES OCEANOGRAPHY Fish. Oceanogr. 15:4, 314–325, 2006

314 doi:10.1111/j.1365-2419.2005.00401.x � 2006 Blackwell Publishing Ltd.



A widely used (e.g. Musyl et al., 2003; Wilson
et al., 2005), and in most cases successful, approach to
make sense of these raw geolocations is based on a
state-space model (Sibert et al., 2003), and estimated
by the Kalman filter (Harvey, 1990). This model as-
sumes that the tagged individual moves according to a
biased random walk, and the raw geolocations are
interpreted as the true position plus some measure-
ment error. The measurement error is parameterized to
produce large latitude errors near an equinox and
smaller latitude errors near a solstice, which is often
seen in the raw geolocations as a side effect of light-
based geolocation (Hill and Braun, 2001). State-space
models are also used in animal tracking in combina-
tion with the Bayesian paradigm, where prior beliefs
are part of the specified model (Jonsen et al., 2003).

The Kalman filter is named after Rudolph Emil
Kalman, who published this elegant recursive method
(Kalman, 1960). The Kalman filter is one of the most
well-known and often-used tools in statistical time-
series analysis, with a wealth of applications in, for
instance, finance, missile guidance, and interactive
computer graphics. The usages of the Kalman filter are
described in full detail in the Methods section, but
intuitively this approach uses two components: raw
geolocations and predictions from the underlying
random walk. The method uses the raw geolocations
to estimate the random walk parameters in the periods
when data are reliable, but relies mainly on the
random walk predictions in periods where data are
unreliable.

However, most electronic tagging devices store
more than just light intensities. Water temperature
and pressure (depth) are also commonly stored.
Ancillary information can be used to estimate geo-
graphic position. In particular, Smith and Goodman
(1986) envisaged the use of ambient water tempera-
ture to estimate latitude. The use of sea surface tem-
perature (SST) to estimate latitude from archival tags
has since become common (e.g. Inagake et al., 2001;
Takahashi et al., 2003; Teo et al., 2004).

The data stored in electronic tags represent a sub-
stantial investment of time and financial resources.
Temperature measurements are already stored in the
tags, and using them to refine the geolocation esti-
mates from the tags is a logical extension. The purpose
of this paper is to extend a model relying only on raw
geolocations to a model that uses all the information
available from the tags – longitude, latitude and SST.
The method developed in this paper is not restricted
to SST, but could potentially be used to reconstruct
tracks from other measurements (e.g. depth and tem-
perature at depth) if they were available.

MATERIALS AND METHODS

Wildlife Computers pop-up archival transmitting tags
(PAT, version 2) were deployed on two WOCE/GPS
drifter buoys (ClearSat-15 from Clearwater Instru-
mentation, Inc., Watertown, MA, USA), and set to
pop up after 9 months. The tags were attached with
short monofilament tethers (approximately 40 cm) so
that they would float at the surface without being
shaded by the bouys for extended periods. Both drifter
buoys were deployed (PAT 21760 at 161.975 W,
23.086 N and PAT 21765 at 174.538 W, 26.304 N)
in September 2002 prior to the equinox and set to
acquire hourly histograms of depth and temperature.

As part of ongoing investigations to determine
post-release survivability in blue shark (Prionace glau-
ca) released from longline fishing gear, model PTT-100
PSATs from Microwave Telemetry (MT) were affixed
to two blue sharks in the central Pacific Ocean (M.K.
Musyl and R.W. Brill, unpublished data). In these
studies, sharks were caught by conventional longline
fishing gear configured in typical Hawaiian ‘swordfish’
style (i.e. shallow nighttime sets with less than
approximately 100 m, as determined by attached time
depth recorders, about 4–5 hooks per basket with a
green chemical light stick above each dropper, usually
baited with squid (Illex spp.) on 15/0 hooks. Sharks
were brought on board the NOAA research vessel
Townsend Cromwell in a sling and were restrained by
crew with mattresses. PSATs were affixed to the
shark’s dorsal fin by drilling a hole (approximately 10–
15 mm diameter) near the base of the fin and
threading 49-braid stainless steel wire encased in
Tygon tubing which acted as the harness. Stainless
crimps were used to attach the harness to a tether
made of 122 kg fluorocarbon which was crimped to the
nose cone of the PSAT.

Pop-up satellite archival tags from MT deployed on
sharks were programmed to acquire raw temperature
and pressure (depth) readings every hour and the tag’s
pop-off dates were set at 13 months after deployment.
‘Fail-safe’ options were programmed in the PSAT to
receive data in the event the animal died and sank or
if the tag was shed. In the event of a sinking PSAT, a
pressure release mechanism (corrosional link) was set
at 1200 m. In this scenario, the tag jettisons from the
shark and floats to the surface to start transmitting
data to Argos satellites. Alternatively, if the tag does
not experience any significant pressure changes in four
consecutive days (e.g. shed tag floating at the surface
or a stationary tag at a depth <1200 m), it will auto-
matically initiate data recovery procedures. For
the MT tags, estimates for dawn and dusk are
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automatically calculated in the tag by a proprietary
algorithm (Gunn and Block, 2001). PSAT 13097 was
affixed to an approximately 2-m female blue shark on
April 2, 2001 at 158.76 W, 28.28 N, and PSAT 13093
was affixed to a 1.5-m female blue shark on April 11,
2001 at 158.28 W, 18.88 N.

Two satellite-derived SST products were obtained
for inclusion in the Kalman filter. Fine-scale SST fields
(error estimate 0.3–0.5�C) at a resolution of 9 km and
8-day averages were obtained from Advanced Very
High Resolution Radiometers (AVHRR) Pathfinder
data (Vazquez et al., 1998). Mesoscale SST fields (er-
ror estimate 0.7�C) at geographic resolution of 1� and
a weekly time scale were based on an optimal inter-
polation analysis of AVHRR and in situ ship and buoy
data (Reynolds and Smith, 1994). Fine-scale data were
used for the blue shark tags. Mesoscale data were used
for the drifter buoy tags as these data have no gaps
caused by clouds. The rationale for using the meso-
scale product was to simplify the computations, be-
cause the geolocation estimates for the buoys were so
poor.

Model

The model is based on an improved and extended
version of the state-space Kalman filter model of Sibert
et al. (2003), where the state equation is describing
the movements along the sphere. A random walk
model is assumed:

ai ¼ ai�1 þ ci þ gi; i ¼ 1; . . . ; T: ð1Þ
Here ai is a two-dimensional vector containing the

coordinates (ai,1, ai,2) in nautical miles along the
sphere from a translated origin at time ti, ci is the drift
vector describing the deterministic part of the move-
ment, gi is the noise vector describing the random part
of the movement, and T is the number of observations
in the track. The deterministic part of the movement
is assumed to be proportional to time ci ¼ (uDti, vDti)¢.
The random part is assumed to be serially uncorrelated
and follow a two-dimensional Gaussian distribution
with mean vector 0 and covariance matrix Qi ¼
2DDtiI2·2. Here D is a model parameter quantifying
the diffusive movement component and I2·2 is the
two-dimensional identity matrix.

The measurement equation of the state-space
model is a non-linear function describing the expec-
ted observation at a given state (ai). Each observation
yi consists of three elements: longitude, latitude, and
SST. The first two coordinates are the light-based
geolocation estimates and the last is the SST recor-
ded by the tag. The measurement equation describing
yi is:

yi ¼ zðaiÞ þ di þ ei; i ¼ 1; . . . ; T: ð2Þ
The first two coordinates of z comprise the coordinate
change function, and the last coordinate describes the
expected SST at a given position. z is given by:

zðaiÞ ¼

ai;1

60 cosðai;2p=180=60Þ
ai;2

60

s ai;1

60 cosðai;2p=180=60Þ ;
ai;2

60

� �

0
BB@

1
CCA: ð3Þ

Here the factor p/180 converts from degrees to radians,
and 60 is the distance corresponding to 1� of longitude
at the equator. The function s(longitude, latitude)
describes the expected SST at a given location and
time. How this function is constructed will be described
later. The observational bias di ¼ (blon, blat, bSST)¢, if
present, describes systematic measurement errors, for
instance if the internal clock in the tag is not absolutely
correct. The bias term was not necessary in any of the
tracks presented in this paper. The measurement error
ei is assumed to follow a Gaussian distribution with
mean vector 0 and covariance matrix Hi, where

Hi ¼
r2lon 0 0
0 r2lati 0

0 0 r2SST

0
@

1
A: ð4Þ

The variance of the latitude measurements r2lati is
closely related to the equinox, as measurements close
to an equinox have large latitude errors. The following
variance structure is assumed:

r2lati ¼
r2lat0

cos2f2p½Ji þ ð�1Þsi b0�=365:25g þ a0
; ð5Þ

where Ji is the number of days since last solstice prior to
all observations, si is the season number since the
beginning of the track (1 as long as Ji < 182.625, then 2
for the next 182.625 days, then 3 and so on). Themodel
parameter b0 express the number of days, before or after
alternating with season, the latitude errors will peak
compared with the date of the equinox. The model
parameter r2lat0 is theminimum latitude variance, and a0
ensures an upper bound for the latitude variance.

Extended Kalman filter

As the model described in the previous section is non-
linear, an approximation is needed to apply the Kal-
man filter. The extended Kalman filter (Harvey, 1990)
simply uses a first-order Taylor approximation around
the optimal estimator âiji�1:

zðaiÞ � zðâiji�1Þ þ Ẑiðai � âiji�1Þ: ð6Þ
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Here Ẑi is the first derivative (or the Jacobi matrix) of
the function z, which is calculated as:

z0ðaiÞ ¼
@zðaiÞ
@ai

¼

1
60 cosðai;2�p=180=60Þ

ai;1p sinðai;2�p=180=60Þ
180½60 cosðai;2�p=180=60Þ�2

0 1
60

@s
@zi;1

1
60 cosðai;2�p=180=60Þ

@s
@zi;1

ai;1p sinðai;2�p=180=60Þ
180½60 cosðai;2�p=180=60Þ�2

þ @s
@zi;2

1
60

0
BBB@

1
CCCA:

ð7Þ

The optimal estimator âiji�1 is inserted into the matrix
in Eqn 7 to obtain Ẑi. The extended Kalman filter
update equations are written as:

âiji�1 ¼ âi�1 þ ci; predict next position; ð8Þ

Piji�1 ¼ Pi�1 þ Qi; calculate its variance; ð9Þ

Fi ¼ ẐiPiji�1Ẑ0
i þ Hi;

transform into measurement variance; ð10Þ

wi ¼ yi � zðâiji�1Þ � di; calculate prediction error;

ð11Þ

âi ¼ âiji�1 þ Piji�1Ẑ
0
iF

�1
i wi;

adjust prediction with observation; ð12Þ

Pi ¼ Piji�1 � Piji�1Ẑ
0
iF

�1
i ẐiPiji�1;

adjust prediction variance: ð13Þ

The filter is started by calculating â0 ¼ z�1ðy0Þ and
assuming this position to be known without error
(P0 ¼ 02·2).

Model parameters are estimated by maximum
likelihood; the negative log-likelihood function for the
Kalman filter is (Harvey, 1990):

‘ðhÞ ¼ � log LðYjhÞ ¼ 3T

2
logð2pÞ

þ 0:5
XT

i¼1

logðjFijÞ þ 0:5
XT

i¼1

w0
iF

�1
i wi: ð14Þ

Obtaining the SST field s and its derivative

The temperature field s and its derivatives ¶s/¶zi,1 and
¶s/¶zi,2 must be known in order to evaluate the
coordinate change function (Eqn 3). Naturally the
temperature field is not known, but must be estimated

from observations. A fine-scale SST field is comprised
of approximately 200 000 measurements. Such a sub-
stantial volume of data could probably be handled
directly in the Kalman filter numerical optimization,
but would require a substantial amount of computer
memory or clever data structures.

Smoothing of observed SST field is appropriate for
this work for several reasons. The Kalman filter re-
quires that s and its derivatives be evaluated at all
points within the study area. Observations are often
missing in some areas because of cloud cover. The
observed SST field may be very irregular so that the
apparent SST may vary substantially over short dis-
tances because of fine structure in the temperature
field or to measurement noise. Finally, the daily SST
estimate computed from the data recorded by the tag is
in fact a daily average, so even if the true SST field is
not smooth, the tag measurement corresponds to a
field which has been locally smoothed by averaging.

For the purposes of the Kalman filter, the estimated
SST field is represented by a local polynomial regres-
sion (Loader, 1999). This algorithm fits local polyno-
mials to the observations to ensure a surface smoothed
to a degree specified by the modeler. The ‘nearest
neighbor fraction’ determines what fraction of the
nearest points are used to fit the local polynomial. For
the tracks analyzed here, a nearest neighbor fraction of
5% was chosen. Three different degrees of smoothing
were tested (2.5%, 5%, 10%) to investigate the sen-
sitivity to the degree of smoothing. Advantages of this
algorithm are that data can be smoothed to the extent
necessary, the derivative field is computed directly by
the smoothing algorithm, and predictions can be made
where data are missing. Figure 1 shows an example of a
smoothed SST field.

The most-probable track

The Kalman filter and the maximum likelihood prin-
ciple supply estimates of the model parameters and the
predicted track. A point on the predicted track at any
given time point is calculated using all observations
available at that time: âi ¼ Eðaijy1; . . . ; yiÞ. Better
estimates can be produced once the entire track is
known. The most-probable track is calculated using all
observations after all parameters have been estimated:
âijT ¼ Eðaijy1; . . . ; yTÞ.

The actual computation of the most-probable track
is made in a single backwards updating sweep of the
predicted track. The last point of the most-probable
track is identical to the last point of the predicted
track, as all observations were available to the pre-
dicted track at the final point. The last point of the
most-probable track is known âTjT ¼ âT and the
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prediction error of the last point PT|T ¼ PT. The
following equations are used to compute the previous
points of the most-probable track:

âijT ¼ âi þ P?
i ðâiþ1jT � âi � ciþ1Þ;

update position given all observations; ð15Þ

PijT ¼ Pi þP?
i ðPiþ1jT �Piþ1jiÞP?0

i ; where P?
i ¼ PiP

�1
iþ1ji:

ð16Þ

This technique is known as ‘smoothing’ in text-
books on the Kalman filter (e.g. Harvey, 1990), as the
resulting track most often is smoother than the pre-
dicted track. The matrix Pi|T is the covariance esti-
mate of the ith position estimate on the most-probable
track measured in nautical miles. Pi|T is a measure of
the variability of the position estimate after all obser-
vations (past and future) have been taken into account.

Fixed pop-up position

If the last position is known without error, or with an
error term which is negligible compared with the light-
based geolocations, it can be used as a fixed point. This
corresponds to setting the measurement error and the
measurement bias to zero for the last observation

((HT)1,1, (HT)2,2, (dT)1, and (dT)2 all zero). This re-
sults in a predicted (and most-probable) track ending
up in the fixed pop-up location.

A software package to run the model described has
been developed and is publicly available (Nielsen and
Sibert 2005).

RESULTS

The tags on both drifter tags reported on schedule.
PAT 21760 should have transmitted 6024 readings for
both depth and temperature. For the raw depth his-
togram data, only 107 readings were received (1.8% of
all possible readings). For the raw temperature histo-
gram data, only 96 readings were received (1.6% of all
possible readings). For the profile of depth-temperature
data (PDT), only 92 readings were received (1.5% of
all possible readings). From the PDT data the average
of the daily SST temperature readings at the surface
were taken. Software from the manufacturer (Wildlife
Computers, Redmond, WA, USA; dated March 2003)
was used to estimate geolocations for the PSAT and
167 estimates were given (66.5% of all possible days).
As a comparison, the GPS drifter buoy over the same
time period transmitted 7316 geolocations (more than
one per hour) and 1166 SSTs (or 19.4%).
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Figure 1. The observed fine-scale sea surface temperature field from the first week of January 2001 (left), and the (5% nearest
neighbor fraction) smoothed version used by Kalman filter (right).
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PAT 21765 should have transmitted 5856 readings
for both depth and temperature. For the raw depth
histogram data, only 81 readings were received (1.4%
of all possible readings). For the raw temperature his-
togram data, only 71 readings were received (1.2% of
all possible readings). For the PDT data, only 92
readings were received (1.6% of all possible readings).
Software from the manufacturer was used to estimate
geolocations for the PSAT and 154 estimates were
given (63% of all possible days). As a comparison, the
GPS drifter buoy over the same time period trans-
mitted 7521 geolocations (more than one per hour)
and 1234 SSTs (or 21.1%).

The shark affixed with PSAT 13093 spent 90% of
its depth at 100 m or less. The shark with tag 13097
spent 90% of its time at 160 m or less and had a high
correlation between average nighttime depth and

lunar illumination indicating a pronounced diel depth
pattern. For PSAT 13097, at liberty for 233 days, 47%
of the possible raw depth and temperature data and
42% of geolocations were received. For PSAT 13097,
at liberty for 102 days, 50% of the possible raw depth
and temperature data and 42% of geolocations were
received.

Analysis of the two-tagged female blue sharks with
the method using only the light-based geolocations
and the extended method with SST showed pro-
nounced differences in the estimated, most-probable
tracks (Figs 2 and 3). The longitude estimates for the
most-probable tracks remained fairly unchanged by
the inclusion SST. The latitude estimates of the most-
probable tracks were dramatically changed by inclu-
sion of SST (Figs 2 and 3). These results are not
surprising as longitudinal SST gradients are small
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Figure 2. Most-probable track for blue shark number 13097 (right) fitted with (thick line) and without sea surface temperature
(SST) information (thin line). Thin white line connects the raw light-based geolocations. Left column shows how well the
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while latitudinal SST gradients are large in this region.
The variation of the latitude observations (second plot
in left column) around the most-probable track is
much larger than the variation of the tag’s SST
measurements compared with the remotely sensed
SSTs along the most-probable track (third plot in left
column).

To quantify the difference between tracks estima-
ted with and without SST measurements, the covari-
ance of each point on the most-probable track was
calculated from the covariance matrix Pi|T in Eqn 16.
The resulting covariance for each point along the
track matrix is transformed into degrees of longitude
and latitude by the delta method, Vi ¼ ẐiPijTẐ0

i . Vi is
now an estimate of the covariance of the ith point on
the most-probable track expressed in degrees of lon-
gitude and latitude. This variance could for instance

be used to construct confidence intervals (ellipses) for
each point on the track.

The longitude variance (Vi)1,1 of both tracks was
not changed much by including SST. This was
expected, as the SST field is fairly constant longitu-
dinally. For track number 13097 the latitude variance
(Vi)2,2 was also very similar. The average latitude
variance with SST was 0.73 compared with 0.75
without SST. This was slightly surprising. A closer
look revealed that this blue shark was swimming at
latitudes where the temperature gradient was not very
steep (compare Fig 2 with 1). For track number 13093,
the latitude variances were much lower when SST
measurements were included. The average latitude
variance with SST was 0.59 compared with 2.9 with-
out SST. The latitude standard deviation for each
point on the most-probable track estimated with and
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Figure 3. Most-probable track for blue shark number 13093 (right) fitted with (thick line) and without sea surface temperature
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without SST measurements (Fig. 4) illustrates the
difference. The latitude standard error of the purely
light-based method is between 1.5� and 2�, meaning
that a 95% confidence interval could span up to 8�.

The standard error of the method including SST is
between 0.4 and 1.5, and about half of the time around
0.5, which corresponds to a 95% confidence interval
spanning only 2�. The average longitude variance was
2.3 for track number 13093 and 0.54 for track number
13097, both estimated in the model with SST.

The double-tagging buoy experiment was not de-
signed to evaluate the method of incorporating SST,
but to investigate the error structure of light-based
geolocations. Unfortunately the light-based latitude
information from these specific tags produced esti-
mates with huge geolocation errors (Figs 5 and 6).
With measurement errors of up to 50� latitude, this
information is practically useless. However, the dou-
ble-tagging buoy experiment offers a unique oppor-
tunity to test the SST method in the absence of
consistent latitude information on a moving tag.

The first double-tagging buoy experiment (Fig. 5)
showed that the SST-enhanced method is able to
estimate the actual track of the drifter buoy. The
estimated longitude coordinates from the most-prob-
able track match the GPS-determined longitude very

0 20 40 60 80

0.0

0.5

1.0

1.5

2.0

Days at liberty

S
D

 (
m

os
t p

ro
ba

bl
e 

la
tit

ud
e)

Figure 4. Estimated standard deviation for the latitude
component of the most-probable track 13093 estimated with
(lower thick line) and without sea surface temperature
information (upper thin line).
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Figure 5. Most-probable track for drifter buoy 21760 (solid line) compared with the raw observations (crosses left plot), and to
the true positions from global positioning system measurements (dashed lines right plot). The shaded area indicates a time period
when the buoy was beached on an island.
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closely, as expected (the root mean squared, or RMS,
difference ¼ 0.31�) and are slightly better than the
raw longitude (RMS difference ¼ 0.36�). The latitude
coordinates are also close to the GPS-determined
latitude (RMS difference ¼ 0.99�), which is more
remarkable, as the raw latitude was not very helpful
(RMS ¼ 29.23�). The most-probable latitude track is
derived almost solely from SST information. The buoy
beached itself for a period of 3 weeks and then went
back into the water (Fig. 5). The buoy kept trans-
mitting and recording, and the reconstructed track
seems unaffected by stranding.

The second double-tagging buoy experiment
(Fig. 6) is more problematic to evaluate, as the buoy
was caught on a reef about half of the time. The most-
probable longitude track agrees well with the GPS
information (RMS difference ¼ 0.15) and is better
than the raw longitude estimates (RMS difference ¼
0.32). Raw latitude measurements had errors up to 60�
(RMS difference ¼ 36.17) compared with the actual
track. The most-probable latitude track is off by only

1� or 2� from the actual track and had smaller RMS
differences (1.00). The buoy entered Maro Reef after
120 days at liberty and remained within the reef
complex for the last 4 months (Fig. 6). The PSAT
functioned normally during this period recording data
and transmitting on schedule.

To illustrate the sensitivity of the degree of
smoothing to the SST temperature field, three dif-
ferent degrees of smoothing were tested on the four
tracks. Normal (5% nearest neighbor fraction), twice
as coarse (10%), and twice as fine (2.5%). Here fine
refers to less smoothing, which is closer to the ob-
served SST field. This sensitivity analysis showed
only minor differences between the reconstructed
tracks (Fig. 7). In fact, most of the tracks were
identical. In one case, the very finest smoothing
seemed to give a more variable track in a few
points.

The degree of smoothing used in the track analysis
was chosen simply by looking at the smoothed fields
compared with the observed fields. A more objective
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Figure 6. Most-probable track for drifter buoy 21765 (solid line) compared with the raw observations (crosses left plot), and to
the true positions from GPS measurements (dashed lines right plot). The shaded area indicates a time period when the buoy was
caught on a reef.
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and automatic approach would be to select the degree
of smoothing based on a cross-validation scheme
(Efron and Tibshirani, 1993).

DISCUSSION

Geolocation based on indirect measurements is un-
likely to ever achieve the precision of GPS methods,
but combining several indirect measurements in a
coherent manner is the best solution possible. The
latitude variance estimates, (Vi)2,2, are substantially
lower that those anticipated by Smith and Goodman
(1986) and approach the theoretical limit discussed by
Metcalfe (2001).

The general approach of matching individual
measurements to a corresponding externally deter-
mined field, within the milieu of the Kalman filter, can

potentially be used to further improve (or replace)
light-based geolocation by including more measurable
or detectable environmental variables. For instance
salinity, geomagnetism, chemical tracers, or water
depth for demersal species (Hunter et al., 2003). The
present paper demonstrates the use of supplementary
fields by illustrating how the inclusion of SST meas-
urements is able to reduce the geolocation error sub-
stantially (Fig. 4), and even reconstruct a track where
the light-based latitude measurements were practically
useless (Fig. 5). Reduction in geolocation error is
greatest in the directions and areas where the gradient
of the ancillary field is steepest. In the case of SST, the
SST field in the study area had steepest gradients in
the latitude direction, which is also the direction
where light-based geolocation is poorest. When con-
sidering to include additional variables to improve
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geolocation, it should be a concern whether or not
that information is really already implicitly represen-
ted. For instance, if the SST and salinity fields are
proportional in the study area, it would not contribute
much to include them both. The state space Kalman
filter approach (Sibert et al., 2003) is an important
part of the presented method. It ensures that the
matching between tag observations and the underlying
field is made locally. The field can potentially have
many areas where the value matches the tag observed
value, and the Kalman filter provides an objective
method to select the value that is most consistent with
all observations.

Drifter buoys are not the perfect tools for evaluating
how well this method works on live animals, as their
behavior is somewhat different. Free-ranging large
pelagic fish make vertical excursions in the water
column and do not run aground. These abnormal
periods could have influenced the SST measurements.
The 3-week beaching seems not to have influenced
the measurements or the reconstructed track. The
4 months at a fixed position in the shallow waters of a
reef might have given slightly higher SST readings
than if a tagged individual was swimming freely in the
surrounding waters. This may account for the more
southerly estimated track. Despite these difficulties the
drifter buoy experiments demonstrate that SST is
useful in estimating latitude, even when the light-
based latitude is practically useless.

The inclusion of ocean temperature in the Kalman
filter estimation process could result in more accurate
geolocations for several pelagic species. Light-based
geolocations are problematic for species with large
diurnal vertical migrations (e.g. swordfish, bigeye
tuna and thresher sharks). These species descend
before dawn to occupy mesopelagic depths during the
day and ascend after dusk to occupy near-surface
depths at night. Latitude estimates are often inac-
curate because of dim ambient light at mesopelagic
depths and extensive vertical movements at the time
of dawn and dusk (Musyl et al., 2001). However,
these species often occupy the mixed layer during the
night and SST information could improve the geo-
locations. Takahashi et al. (2003) used a searching
algorithm to match tag temperatures at 0, 80 and
160 m to ocean temperatures at a monthly 2� lati-
tude and 5� longitude scale to estimate latitudes from
an archival tag recovered from a swordfish. A similar
approach could be envisaged in a Kalman filter pro-
cess whereby tag temperatures at several depths could
be linked with observed temperature-at-depth data or
Oceanic General Circulation Model (OGCM) model
output.

A simple sensitivity analysis was conducted to
illustrate the effect of smoothing the SST temperature
field. While current results indicate only minor differ-
ences when using three different degrees of smoothing,
further work is required to investigate the spatial as
well as temporal effects of scale and smoothing. The
appropriate scale of SST data and smoothing will
depend on several factors such as the ocean dynamics
in the study area and data quality because of cloud
cover. Scale and smoothing considerations would be
different for an analysis of a western boundary current
(Kuroshio, Gulf Stream) region compared with a less
stratified mid-ocean gyre. The abundance of clouds
may dictate the scale and smoothing required as the
Kalman filter requires that all points be included in
the study area and smoothing was necessary to remove
SST pixels with no data (excessive cloud cover),
especially in the fine-scale (9 km) data.

Use of the average of the water temperature meas-
urements collected from the tag at depths <15 m is an
arbitrary choice. Using for instance the median or the
mode might work equally well (or better) within the
framework of the outlined method. Similarly, other
sources and scales of SST fields should be considered.

The application of SST to estimation of positions
from archival tag data inevitably requires some arbi-
trary decisions: a specific SST product, scale, and
resolution must be selected; a means to estimate SST
from data recorded by the tag must be devised; a cri-
terion to determine what constitutes a match between
environmental and tag SST estimates must be speci-
fied. Modifications to the Kalman filter model des-
cribed here eliminate the third decision by including
the SST variance in the likelihood function (Eqn 14)
in a statistically consistent way with other sources of
variance. Furthermore, smoothing the SST surface and
the use of averaging to compute the tag SST mitigate
the consequences of the first two decisions. Other
temperature correction methods assume that the light-
based longitude estimates are either error free or have
errors that can be reduced to near zero by removal of
outliers. The Kalman filter makes no such assumptions
and uses all of the data. In principal, inclusion of SST
also enables correction of longitude errors where tracks
cross regions with large longitudinal SST gradients.
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