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Abstract

Models of population dynamics are commonly used to predict risks in ecology, particularly risks of population decline. There is often
considerable uncertainty associated with these predictions. However, alternatives to predictions based on population models have not been
assessed. We used simulation models of hypothetical species to generate the kinds of data that might typically be available to ecologists and
then invited other researchers to predict risks of population declines using these data. The accuracy of the predictions was assessed by
comparison with the forecasts of the original model. The researchers used either population models or subjective judgement to make their
predictions. Predictions made using models were only slightly more accurate than subjective judgements of risk. However, predictions using
models tended to be unbiased, while subjective judgements were biased towards over-estimation. Psychology literature suggests that the bias
of subjective judgements is likely to vary somewhat unpredictably among people, depending on their stake in the outcome. This will make
subjective predictions more uncertain and less transparent than those based on models.
© 2004 Elsevier SAS. All rights reserved.
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1. Introduction Fieberg and Ellner, 2000) and perhaps debilitating (Beiss-

inger and Westphal, 1998) uncertainty associated with these

Models of population dynamics are often used to predict
risks faced by threatened species, pests and harvested re-
sources, and to assess the effectiveness of strategies to man-
age uncertainty (Boyce, 1992; Burgman et al., 1993;
Possingham et al., 1993; Shea, 1998). There is often consid-
erable (Taylor, 1995; McCarthy et al., 1996; Ludwig, 1999;
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predictions. Resource managers require information on eco-
logical risks for effective decision making. The need for
prediction is not removed by the presence of uncertainty
associated with using models. Therefore, it is useful to know
the relative performance of alternative approaches in estimat-
ing risk. One alternative of using a mathematical model, is
for experts to make subjective judgements of risk (Burgman,
2000), a technique used to list endangered species in the US
and elsewhere (Committee on Scientific Issues in the Endan-
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gered Species Act, 1995). Psychology literature suggests that
subjective judgements of risk are likely to be at least some-
what unreliable (Tversky and Kahneman, 1974; Ayton and
Wright, 1994; Gigerenzer and Hoffrage, 1995; Anderson,
1998), so it is important that they be assessed.

Ideally, predicted risks of population decline would be
evaluated with field data by studying the persistence of rep-
licated populations. However, attempts to test predicted risks
of species decline with field data have limited replication
(Hanski, 1997; Brook et al., 2000; McCarthy and Broome,
2000; McCarthy et al., 2000, 2001; Ellner et al., 2002; Lin-
denmayer et al., 2003). Consequently only certain aspects of
the models can be tested, and regardless of the amount of data
that can be realistically collected, the reliability of the predic-
tions remains at least somewhat uncertain (McCarthy et al.,
2001). In these circumstances, it is possible to use simulation
models of hypothetical species to generate the kinds of data
that might typically be available to ecologists (Fieberg and
Ellner, 2001; McCarthy et al., 2003) and then invite other
researchers to predict risks of population decline using these
data (Cooke, 1995; Millner-Gulland et al., 2001). The accu-
racy of the predictions can be assessed by comparison with
the forecasts of the original model. Given acceptable as-
sumptions, this approach has the compelling advantage that
the truth is known precisely, something that is invariably
lacking in the real world. We used this approach to assess
different methods for predicting risks of population decline.
In particular, we compared predictions made using models
with those based on subjective judgement.

2. Methods

We created a set of nine hypothetical species to represent a
range of life history types (Table 1), and used an international
web-based competition as an incentive for other researchers to
make predictions of the risks of population decline for these
species. Each species was represented by a complex model,
which was used to simulate its population dynamics and gen-
erate data. The underlying model was not disclosed, and acted
as the truth against which the predictions could be assessed.
One component of the competition consisted of five species
where spatially explicit data were provided (a butterfly, owl,

Table 1

passerine bird, salmon, and shrub), and a second component
consisted of four species where no spatial data were provided
(a frog, snail, small mammal, and small plant).

Ten years of data were generated for each species and
supplied to people making predictions. The data provided at
least some information on population sizes in different years.
To reflect the fact that biologists never have perfect informa-
tion available to them, a range of sampling strategies were
simulated, so that for some species the data were of high
quality and in other cases it was of low quality (see Appen-
dix). The people entering the competition used these data to
make predictions about the risks of population decline under
a range of scenarios. In addition, some extra information,
such as body size and diet, was provided about each species.
In an effort to simulate the role of an expert, the modellers
were able to ask a “Sensible Biologist” (the person who
created the true models) about each species. The Sensible
Biologist judged what was likely to be known about each
species and answered accordingly. The information available
to each modeller, and the questions and answers to the
Sensible Biologist were then made available at:
http://www.nceas.ucsb.edu/~mccarthy/ComplIntro.htm.

Invitations to enter the competition were sent to electronic
mailing lists and to individuals who were likely to be interested
in participating. Entries were open to anyone, and a range of
people entered the competition using a range of methods.
Entrants included professional population modellers, graduate
students in population modelling courses, academic experts in
population modelling, and an undergraduate student. There
were six entries in the spatial part of the competition, with five
using models and one using subjective judgement. There were
22 entries in the non-spatial part of the competition, 12 using
models and 10 using subjective judgement.

To avoid confusion with the term “model”, the models of
the hypothetical species that were used to generate the data
will be referred to as “true models”, the data generated as
“data” and the actual risks of population decline for the
hypothetical species as the “truth” or the “true risks”. Models
constructed by the assessors and used to make predictions
will be referred to as “assessor’s models” and the predictions
of all assessors (regardless of the method used to make the
predictions) as “predicted risks”.

The nine hypothetical species and associated features of the models that were used in the competition. These features were the presence of spatial structure,
abiotic interactions, density dependence, the inclusion and type of trophic dynamics, the presence of inbreeding depression and the trend in the amount of habitat
available to the species. Density dependence is classified according to its position on the scramble/contest competition continuum

Species Spatial structure  Abiotic interactions Density dependence Trophic dynamics Inbreeding depression  Trend in habitat
Small mammal No Weather Contest Prey No No

Small plant No Rainfall Scramble None Yes No

Snail No Rainfall Scramble Cannibalism No No

Frog No Rainfall Scramble None Yes No

Passerine Yes None Contest None Yes No

Salmon Yes Harvesting Contest None No Increasing
Butterfly Yes Weather Scramble Parasitoid No No

Shrub Yes Weather and fires Scramble None No Fire occurrence
Owl Yes Logging Contest None No Decreasing
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The aim of the competition was to determine whether the
accuracy of the predicted risks was influenced by the method
used (models versus subjective judgement), characteristics
of the models, differences between modellers, and the time
frame of the predictions. We also investigated whether
changes in risks due to changes in parameters (relative risks)
could be predicted more reliably than the actual values (abso-
lute risks, McCarthy et al., 2003). Entrants were required to
predict the risk of extinction, risk of decline to 25% or less of
the initial population size within the time frame of the simu-
lations, and the risk of decline to 50% or less of the initial
population size. In addition, the entrants were required to
predict the threshold population size (as a proportion of the
initial population size) such that the risk of decline to this
level was 50%. This latter value is the median minimum
population size (see McCarthy and Thompson, 2001). The
initial population size was the population size in the final
year for which data were provided. This figure was not
provided to the entrants, so they had to estimate it. Predic-
tions were made over 10 and 50 years. To determine how well
the models could be used to assess the value of management
strategies, the same predictions were also required for a 20%
reduction in the fecundity rates, and also a 20% increase in
the carrying capacity. We refer to the predicted risks of
decline as the absolute predictions and the predicted changes
in the risks of decline with changes in fecundity and carrying
capacity as the relative risks (McCarthy et al., 2003). Thus,
four measures of risk were required for each of the three
management scenarios (no change in management, increase
carrying capacity, reduce fecundity) and two time periods,
leading to 24 predictions for each species.

The accuracy of the predicted risks was assessed by com-
paring them to the results from the true model. The true risks
were obtained from 1000 iterations, over 10 and 50 years
from the end of the 10-year survey period. The true risks and
the predicted risks of decline can be compared by examining
the quasi-extinction risk curve (Fig. 1; Burgman et al., 1993).
However, this is difficult to present for all species because of
the large number of comparisons (nine species and six curves
for each species, representing two time frames and three
management scenarios). Instead, overall accuracy was mea-
sured by taking the absolute value of the differences between
each of the predictions and the truth, and averaging these
differences over each species or each assessor (the average
deviation). Bias was measured by subtracting the average of
the true risks from the average of the corresponding predicted
risks. In this case, the median minimum population size
(which takes a value of O when the risk of extinction is 1) was
multiplied by —1 to ensure that it was consistent with the
probabilities of decline (i.e. it increased as risks increased).
The same analyses were also done for the relative predictions
to determine the accuracy with which changes in risks could
be predicted. Therefore, positive values for bias indicate that
risks (or changes in risks) were over-estimated.

Our aim was to evaluate the predictions of models made
by experienced modellers, so three of the model entries for
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Fig. 1. The true quasi-extinction risk curve (line) and predicted risks of
decline for the small plant, illustrating the smaller bias of models versus
subjective judgement, with the average of the models close to the true
quasi-extinction risk curve. Predictions using subjective judgement invaria-
bly over-estimated risk. The quasi-extinction risk curve shows the probabi-
lity of declining to or below the threshold population size at least once within
the next 10 years (Burgman et al., 1993). Population size (V) is expressed as
a proportion of the initial population size, and in this case there were no
changes in management strategies. The averages of each group are given by
horizontal bars (models) and crosses (subjective judgements). The predic-
tions have been offset slightly along the x-axis to improve clarity. The three
model predictions that were analysed separately have been excluded from
this figure.

the non-spatial part of the competition were analysed sepa-
rately because they were expected to provide less reliable
predictions. Two of these were models based on analytical
diffusion approximations (Dennis et al., 1991; Foley, 1994),
which we believed a priori would make inaccurate predic-
tions for these species (Wilcox and Possingham, 2002). The
third was an entry from an inexperienced modeller where the
risks of decline were unreasonably high, given the data.
These three entries performed consistently poorly when as-
sessed in terms of absolute error and bias, although their
relative predictions were comparable to the other entries. All
of the subjective judgements were obtained from ecologists
familiar with a variety of quantitative methods.

The modellers used a range of approaches for making
predictions, ranging from Bayesian models constructed spe-
cifically for the task (Maunder, in press), simple models of
population dynamics, and commercial packages for popula-
tion modelling. The different assessors making subjective
judgements also used a variety of approaches. These included
simply reading the material and thinking of appropriate values
for the answers, through to assigning points based on the
attributes of the species (such as population size, trends, fluc-
tuations, etc.), and then using subjective judgement to convert
the sum of these points to a probability of decline. Providing
details of the range of methods would be unwieldy; however,
there was no obvious relationship between the characteristics
of the method used and the accuracy of the predictions.

3. Results

In the non-spatial component of the competition, there were
nine entries by people using models (not including the three
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Fig. 2. Average overall error (a) and bias (b) of absolute predictions versus
the average error of the relative predictions for models and subjective
judgements in the non-spatial part of the competition. Overall error is
measured by the absolute value of the difference between each of the
predictions and the truth and averaging these values across species. Bias is
measured by the difference between the average of the predictions and the
truth. The three model entries considered separately are shown as open
squares. Each point represents an individual assessor, with the average taken
across all the predictions of the four species.

analysed separately) and 10 entries where people used subjec-
tive judgement. The results were initially analysed by examin-
ing the average error for each assessor. Models and subjective
judgements performed similarly in terms of absolute errors
and relative errors when averaged over the four species
(Fig. 2a). Four of the five best predictions (as measured by
absolute error averaged over the species) were from models,
although this apparently superior performance of the models
could have occurred by chance alone (P = 0.119, based on
combinatorial probabilities using the hyper-geometric distri-
bution). If a real difference in accuracy exists, it is unlikely to
be substantial (Fig. 2a). In contrast, the predictions of asses-
sors using models were noticeably less biased than those using

subjective judgement. The five least-biased predictions were
all from models, an wunlikely chance occurrence
(P=0.011=9%x8x7x6%x5)/(19x 18 x 17 x 16 % 15), based
on combinatorial probabilities). The subjective judgements
tended to over-estimate risks (Fig. 2b), a result that may have
been predicted by research on cognitive psychology in risk
perception (Anderson, 1998). In contrast, the predictions of
the models tended to be unbiased, which is consistent with a
previous test of population models (Brook et al., 2000).

As expected (McCarthy et al., 2003), the changes in risks
of decline were predicted more accurately than the absolute
risks (Fig. 2a). The absolute error for assessors using models
was 0.23 while the relative error was 0.14, averaged over the
four species and all nine assessors. For subjective judge-
ments, the corresponding values were 0.27 and 0.15. How-
ever, the quality of the absolute predictions by an entrant did
not necessarily reflect the quality of the relative predictions;
there was relatively weak correlation between the two
(Fig. 2; for the model predictions, Pearson’s r = 0.20 for
overall error). Similarly as expected, predictions over shorter
time frames tended to be more accurate than over longer time
frames. The average error for model-based predictions was
0.18 over 10 years, and 0.28 over 50 years. For subjective
judgements, the corresponding values were 0.25 and 0.29.

The results obtained in the spatial component of the com-
petition were consistent with those obtained in the non-
spatial component. The five entries from assessors using
models were less biased than the single subjective judge-
ment, averaged over the five species in this part of the com-
petition. Relative risks were more accurate and less biased
than absolute risks when averaged over the five species
(Fig. 3). Risks that were predicted by the models over
10 years were more accurate than that over 50 years (average
overall error of 0.13 versus 0.28).

The results are qualitatively the same when each species is
analysed separately, averaging over the different assessors
(Table 2). The absolute errors are not consistently different
between subjective judgements and model-based assess-
ments, and there is little difference between species, with the
errors being approximately between 0.1 and 0.3 (Table 2).
However, the bias towards over-estimation of risk by subjec-
tive judgement is apparent, with the average bias being posi-
tive for all but one of the nine species. For three of the four
species for which there were multiple assessors, which al-
lows 95% confidence intervals (mean = t x S.E.) to be
constructed, there is clear evidence of bias because the con-
fidence intervals are far from zero (Table 2). In the case of
predictions using models, six of the nine species had positive
bias, which is not very different from the 4.5 that would be
expected. Additionally, only one of the 95% confidence inter-
vals did not encompass zero (the owl), providing only a little
evidence of bias, although the bias could be large for some of
the other species (e.g. the small plant and the snail).

There was a bias towards under-estimating relative risks
(changes in risks) in both components of the competition,
with the bias (averaged over the species) being negative for
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Fig. 3. Average overall error (a) and bias (b) of absolute predictions versus
the average error of the relative predictions for models and subjective
judgements in the spatial part of the competition. Each point represents an
individual assessor, with the average taken across all the predictions of the
five species.

all but one assessor (Figs. 2b and 3b). In the non-spatial
component, this bias was predominantly due to the predicted
effect of parameter changes on the small plant being under-

Table 2

estimated. The bias in the relative predictions of the models
for this species was —0.26 when averaged over assessors,
while it was —0.03 for the small mammal, —0.03 for the frog
and 0.02 for the snail. Similar biases were evident for the
subjective judgements when averaged over the assessors
(-0.34 for the small plant, —0.05 for the small mammal,
—0.02 for the frog and —0.01 for the snail). Biases in the
relative predictions for the species in the spatial component
of the competition were of a similar magnitude for the five
assessors who used models (0.02 for the butterfly, 0.07 for
the owl, —0.14 for the passerine, 0.01 for the salmon and
—0.02 for the shrub). The large biases in the relative risks for
the passerine and small plant appear to have occurred be-
cause the inbreeding effects were large when fecundity was
reduced, leading to larger relative risks than predicted by the
assessors. Although the frog had an inbreeding component in
the true model, it had little influence on the dynamics even
when fecundity was reduced.

4. Discussion

Subjective judgements can be thought of as predictions
based on a mental model of the dynamics of the species. The
main question being addressed in this paper is whether the
predictions of these mental models are superior to those that
are explicitly written down and analysed mathematically.
Our results suggest that the quality of the predictions of these
methods is similar, although the models were slightly supe-
rior. Predictions of the mathematical models were marginally
more accurate than subjective judgements and considerably
less biased. The use of simulated species to evaluate the
methods means that the results should be treated with some
caution. For example, models may have been at an advan-
tage, because the modellers knew that the data were them-
selves derived from models. However, people making sub-
jective judgements had the same information, and the detail
in the models meant that it was impossible for entrants to
replicate the models by chance. The models used by the
assessors were always considerably less detailed than the
true model. Therefore, we do not believe that predictions
based on models had an unfair advantage.

A second possible limitation is that a much greater range of
information is usually used when making subjective judge-

The average overall error and bias (S.E. in brackets) for the predictions for each of the nine hypothetical species, separated on the basis of predictions made with
models. Averages are taken over the predictions of the assessors (n = 9 assessors for species without spatial structure and n = 5 for those with) and subjective

judgement (n=10and n=1)

Average error for models Average bias for subjective judgements

Average bias for models

Species Average error for subjective judgements

Small mammal 0.28 (0.04) 0.17 (0.03)
Small plant 0.31 (0.02) 0.24 (0.03)
Snail 0.19 (0.04) 0.24 (0.10)
Frog 0.31 (0.03) 0.27 (0.03)
Passerine 0.34 (-) 0.20 (0.04)
Salmon 0.26 (-) 0.12 (0.08)
Butterfly 0.17 (=) 0.26 (0.04)
Shrub 0.16 (-) 0.15 (0.10)
Owl 031 (- 0.30 (0.01)

0.26 (0.05) -0.02 (0.06)
0.03 (0.03) -0.15 (0.06)
0.18 (0.04) 0.23 (0.11)
0.31 (0.03) 0.09 (0.09)
0.33 (-) 0.13 (0.06)
0.26 (-) 0.06 (0.09)
0.02 (-) 0.12 (0.09)
~0.09 () -0.11 (0.10)
031 (-) 0.30 (0.01)
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ments than that presented in the competition. However, we do
not believe this is important because when available, this same
information should also be used to construct models and inter-
pret their predictions. Our study ensured that the same infor-
mation was available to all entrants, regardless of the method
they used to make their predictions. The question is whether
the use of explicit models improves the predictions, because
modellers would rarely ignore subjective judgements, in that
they construct models that are thought to be reasonable. Com-
pared to subjective judgement alone, our results suggest that
the use of models can improve predictions of risk, especially
by reducing bias, but the benefits may not be particularly large
in terms of the accuracy of the predictions.

While the subjective judgements took between 1 and 2 h
for most entrants (most of that time involved analysing the
information provided), the predictions using models took on
the order of 1-2 days. Given the comparatively good perfor-
mance of the subjective judgements in terms of overall error,
a question remains; is it worthwhile developing population
models to predict risks? In terms of the usefulness of the
predictions, it is possible that subjective judgements are
cost-effective. This is especially true when one considers that
unforeseen events have been largely ignored in this study
(e.g. novel changes in the environment), and any difference
in predictive performance may in reality be masked by these
additional uncertainties. A noticeable case where assessors
were surprised was when fecundity was reduced and inbreed-
ing caused a larger than expected decline in the passerine and
small plant. In this case, assessors under-estimated the
change in the risk of decline. Unforeseen events, whether
they have a positive or negative impact, are likely to lead to
greater errors in both subjective judgements and model-
based assessments than those reported here.

While the models performed only marginally better, they
have other advantages over subjective judgements. When
using models, the rationale behind the predictions is explicit,
and models are open to analysis, criticism and modification
when new information becomes available. Models can help
ensure that predictions are not arbitrary or capricious, al-
though there may be arbitrary choices when deciding on the
structure of models. Nevertheless, these choices are stated in
the structure of the model but are difficult to disclose when
making subjective judgements. Assessments based on sub-
jective judgement can give the illusion that they are not
scientifically rigorous (Burgman, 2000), regardless of
whether they are or not. The assumptions underlying models
can be tested. Models can be used to help design data collec-
tion strategies. They can help to resolve and avoid inconsis-
tencies, and the rigorous analysis of data can help to clarify
thoughts. These benefits are difficult, if not impossible to
achieve with subjective judgement.

An additional advantage of using models instead of sub-
jective judgement is that the biases of the latter are likely to
vary somewhat unpredictably among people, depending on
their stake in the outcome (Tversky and Kahneman, 1974;
Ayton and Wright, 1994; Gigerenzer and Hoffrage, 1995;

Anderson, 1998). In contrast, our results and previous work
(Brook et al., 2000; Lindenmayer et al., 2003) suggest that
provided there are no surprises (such as unexpected de-
clines), models of population dynamics can be used to make
unbiased predictions of risks and changes in risks due to
management. We conclude that when the aim is to assess
risks of decline or extinction, development of a model ap-
pears to be the most transparent, accurate and precise method
of those available. Subjective judgements may have substan-
tial utility, especially when resources and appropriate exper-
tise for modelling are unavailable. However, models are
often most valuable for their heuristic rather than predictive
capacities (Brook et al., 2002).
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Appendix. Descriptions of species

A range of simulated hypothetical species was chosen to
reflect a variety of life history types (Table 1). Very detailed
population models with various characteristics were written
for each of these species. The characteristics considered were
inbreeding depression, deterministic trends in abundance,
trophic dynamics, and dynamics in response to weather,
although not all features were included in all the models
(Table 1). The aim of the model development was to produce
arange of hypothetical species that had sufficient detail such
that they could be considered as being representative of real
species. Not all the attributes were included in each hypo-
thetical species. This was partly to ensure that there was
some diversity in the combination of the attributes.

The population dynamics of the small mammal were influ-
enced by weather conditions, the availability of prey, age
structure, density dependence and mate-finding ability.
Weather was modelled by drawing standard normal deviates
for rainfall and temperature for 6-month periods (“winter” and
“summer”). Survival rates and fecundity rates both declined
with population density according to a negative exponential
function. Temperatures in each 6-month period were positively
correlated, and precipitation was negatively correlated with
temperature in winter and summer. Prey (nominally thought of
as insects) were modelled using a stochastic Ricker density
dependence function. Stochasticity in the prey dynamics en-
tered through the influence of the temperature over the winter
and the rainfall of the current summer. The quality of the
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environment for the small mammal in summer was influenced
by the abundance of prey and by an extra source of stochastic-
ity. This influenced their survival and reproduction over sum-
mer. Survival of adults and newborns over winter was influ-
enced by a combination of winter rainfall, winter temperatures
and the quality of the preceding summer. Intermediate tem-
peratures and rainfall lead to the highest survival rates. To
incorporate senesence, survival of older adults was reduced by
5% for each year beyond their fifth. The rate of pregnancy of
females declined with the density of males (Dennis, 1989;
McCarthy, 1997). Inbreeding was not incorporated because
the populations have been isolated for long periods on an
ecological time scale. The data provided to the competition
entrants were the number of individuals in each sex and age
class immediately prior to breeding.

The population dynamics of the small plant were influenced
by rainfall, age structure, inbreeding depression, a soil seed
bank, and density dependence in survival, seed-production
rates and selfing rates (proportion of a plant’s seeds that are
self-pollinated). Rainfall was modelled as a correlated process
in a manner similar to that used for the small mammal. Most
plants died after 1 year, although some lived into a second year.
Inbreeding depression was modelled for each individual by
assigning alleles to 10 genes for each individual. Genes were
passed from adult plants to seeds by randomly assigning one
allele for each gene from each parent. The selfing rate in-
creased as population sizes declined. For non-selfed seeds, the
source of the pollen was determined by choosing a plant
randomly from the population. The level of heterozygosity in
individuals (proportion of genes with the same two alleles)
influenced their survival as seeds in the soil, their survival as
adults, and their production of seeds. Germination rates and
survival rates of adults to their second year were enhanced by
annual rainfall. Seed-production and survival rates declined as
population size increased. Sampling of the plant population
was simulated by making annual counts in quadrats, assuming
that the number of plants per quadrat was approximately dis-
tributed as a negative binomial distribution.

Rainfall, age structure, density dependence in survival,
and cannibalism of eggs influenced the population dynamics
of the snail. Recruitment and survival rates increased with
rainfall. Younger individuals had lower fecundity rates. Sur-
vival rates declined and cannibalism rates of eggs increased
with population density. The population was sampled using
theory for estimating abundance in closed populations, with
the chance of detection varying randomly with an average of
approximately 10%.

Rainfall, age structure, density dependence in reproduc-
tive opportunities, and inbreeding depression influenced the
population dynamics of the frog. Recruitment rates were
maximised at intermediate levels of rainfall. Low levels lim-
ited tadpole development and high levels led to loss of eggs
and tadpoles that were washed into a downstream dam.
Younger individuals had lower fecundity rates. Survival rates
were greatest for frogs of an intermediate age. Females had
higher survival rates than males. Inbreeding was simulated in

the same way as for the small plant. Inbreeding depression
acted only on survival of tadpoles. The population was
sampled each year using simple surveys that mostly sampled
a small proportion of the total population. The actual propor-
tion seen, varied randomly and as a function of rainfall levels.
No frogs were marked in the assessment.

The population dynamics of the passerine bird were influ-
enced by age structure, density dependence in reproductive
opportunities, inbreeding depression, and the spatial structure
of the available habitat. The model was based on helmeted
honeyeaters (McCarthy, 1996). Inbreeding depression (using
the same method of assigning alleles as in the small plant)
influenced survival of offspring, and territoriality was influ-
enced by competition for breeding habitat that was arranged on
a hexagonal grid. Dispersal rates between discrete habitat
patches depended on the sex of the individual, with females
dispersing further than males. The population was sampled by
counting the number of breeding pairs and tracking the dis-
persal of banded offspring from a single population.

The population dynamics of the salmon were influenced by
age structure, density dependence, fishing rates and movement
of individuals among breeding populations. Fish returned to
breed at either 3 years (half of the surviving fish), 4 years (80%
of the surviving fish) or 5 years (all the surviving fish) of age.
Most returned to spawning in their natal stream, but a small
proportion (<5%) returned to other breeding sites. In 13 areas,
spawning occurred in spring (headwater streams), while
spawning occurred in autumn in two areas. Dispersal between
these breeding areas was limited but did occur. The number of
offspring produced, depended on the availability of suitable
spawning sites, and their subsequent survival was also density
dependent. All individuals died after spawning. Fishing re-
moved spawning individuals from the population. In the fu-
ture, a dam was to be removed and the quality of that stream as
breeding habitat increased. The population was censured by
counting the number of spawning individuals.

The population dynamics of the butterfly were influenced
by weather, density dependence, parasitism and movement
of individuals among breeding populations. The dynamics of
a specialist parasitoid was controlled by its attack rate on the
butterfly larvae and rate of spread among the 52 habitat
patches. After metamorphosis, female butterflies searched
for mates, laid eggs and possibly moved between habitat
patches on a daily basis. Dispersal rates depended on the size
of the current patch and the proximity and size of potential
target patches. The daily survival rate (and hence the annual
fecundity) depended on weather conditions. The survival
rates of caterpillars depended on population density and the
amount of rainfall. Impacts of generalist parasitoids were
embedded within the density dependent function. The popu-
lation was sampled by establishing line transects within each
patch. The number seen was sampled from a negative bino-
mial distribution, assuming that the average would be propor-
tional to the density of butterflies within each patch. Addi-
tionally, results of a mark-recapture analysis from a single
population were available.
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The population dynamics of the shrub were influenced by
weather, age structure, density dependence in reproductive
opportunities, random fires, and the spatial structure of the
available habitat. Habitat occurred continuously throughout
a network of gullies, and was represented by an array of cells
on a square grid. Germination only occurred following fires,
when all burnt individuals died. Occurrence of fires within
grid cells was spatially correlated (McCarthy and Linden-
mayer, 1998). There was no soil-stored seed bank. The
amount of seed on each plant was maximised at 40 years of
age. The probability of fire increased with time since the last
fire, and as the amount of rainfall in the previous year de-
creased. Flower production decreased with increases in the
density of adult plants, and germination rates declined with
increases in the density of germinants. The germination rate
and survival rate of adults increased with rainfall. A small
number of seeds dispersed to adjacent cells. The population
was sampled by establishing quadrats in which the number of
individuals were counted, assuming the counts were distrib-
uted as a negative binomial distribution.

The population dynamics of the owl were influenced by
age structure, density dependence in reproductive opportuni-
ties, and logging of habitat. Suitable habitat was distributed
among 16 patches. The owl was relatively long-lived with
low reproductive output. Juveniles were more likely to dis-
perse to nearby rather than more distant habitat patches, but
the majority stayed in their natal patch. Once a breeding
territory was established, adults did not move from that
patch. The number of breeding territories within each patch
was limited by the amount of suitable breeding habitat.
Logging at various rates in different patches reduced the
amount of habitat available. Sampling was conducted by
recording the response of owls to amplified territorial calls at
several points within each patch.
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