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Abstract

Several methods used in fisheries stock assessment models that can be applied to population viability analysis are presented. (1) Integrated
analysis allows the use of all information on a particular population, and ensures that all model assumptions and parameter are consistent
throughout the analysis, that uncertainty is propagated throughout the analysis, and that the correlation among parameters is preserved. (2)
Bayesian analysis allows for the inclusion of prior information, and is a convenient way to represent uncertainty. (3) Random-effects models
based on hierarchical modeling allow information to be shared among parameter estimates and allow the separation of process error from
estimation error. (4) Non-parametric representation of parameters allows for a more flexible relationship among the parameters. (5) Robust
likelihood functions provide an automatic method to reduce the influence of outliers when the data sets are large. These methods are applied
to artificial data sets provided by the Extinction Risk Working Group of the National Center for Ecological Analysis and Synthesis (NCEAS)

using AD Model Builder software (Otter Research™).
© 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Population viability analysis (PVA) is a tool commonly
used in conservation biology to evaluate the risk of extinction
and to evaluate management strategies. In general, PVA uses
a population dynamics model and estimates of the model
parameters to project the population forward in time. Typi-
cally, demographic stochasticity is added to the model to
provide an indication of the future uncertainty. This requires
projecting the model forward in time multiple times with the
demographic parameters randomly selected from appropri-
ate distributions. Demographic stochasticity is only one com-
ponent of the total uncertainty and is often less than the other
components, which include parameter and model structure
uncertainty. Parameter uncertainty is usually included by
representing parameters with distributions rather than point
estimates. These distributions are usually taken from inde-
pendent analyses (e.g. mark-recapture studies). Model struc-
ture uncertainty is seldom included in PVA, and is usually
used only as a sensitivity analysis.
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PVAs, in the form outlined above, usually do not use all
available information. Some ignore dependencies. There
may be additional information about the parameters of the
PVA model in the data used in the independent analyses that
is not available to the PVA, and other types of data (e.g.
abundance trend) are not included in the analysis. It is not
common practice to fit conservation biology models to mul-
tiple data types. The assumption that parameters are indepen-
dent may produce greater levels of uncertainty and unrealis-
tic model predictions. For example, low biomass and high
survival or high biomass and low survival may produce
realistic abundance trends, but not high biomass and high
survival or low biomass and low survival. Fitting the model
to abundance trend information would allow the estimation
of this correlation.

Fisheries stock assessment modeling has been based on
the need to provide advice in an environment lacking in data
(this is less true for some areas, including Europe and the east
coast of the United States and Canada, that have a long
histories of collecting catch-at-age information). Therefore,
fisheries modelers have strived to include information from
wherever possible and to represent the uncertainty in model
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estimates. This has led to the development of several methods
that add information to the analysis: (1) integrating multiple
data types; (2) sharing information among populations or
species (meta analysis); (3) sharing information among pa-
rameters that differ by time or another factor (hierarchical
models, random-effects, random walks, and smoothing pen-
alties); (4) prior information (Bayesian analysis); and includ-
ing scientific understanding (structural models and func-
tional forms). The complex models used in fisheries require
statistical estimation methods that are efficient and robust to
data contamination.

In 2002 the Extinction Risk Working Group of the Na-
tional Center for Ecological Analysis and Synthesis
(NCEAS) held a competition to predict the probability of
extinction and population decline for several artificial data
sets (McCarthy et al., in press). The competition was de-
signed to determine how well models could predict the prob-
ability of extinction and population decline, and how these
predictions compared to subjective estimates. The numbers
of individuals of each of four hypothetical populations (a
frog, snail, small mammal, and small plant) were projected
over time, and artificial data sets were created. In addition to
the data, a brief description of each population, including
notes on its biology, was provided. The characteristics used
to represent the populations included prey, cannibalism, in-
breeding, and dynamics in response to weather. The data
included line transects, quadrat surveys, and total counts.
Some of the data sets were stratified by age, stage, and/or sex.
Not all the population characteristics or data were included
for each population. For a full description of the populations,
see McCarthy et al. (in press).

I applied recent developments in fisheries stock assess-
ment modeling to these data sets to determine how well they
would work on non-fish species, particularly species for
which I have little prior knowledge. On average, these analy-
ses performed better than most of the quantitative analyses
and subjective judgments submitted to the competition that
were carried out by researchers working in the field of extinc-
tion risk for terrestrial species and the predictions were of
comparable quality to those that were closest to the truth
(Fig. I; McCarthy et al., in press). The recent developments I
applied included integrated analysis (e.g. Fournier and
Archibald, 1982; Methot, 1990; Fournier et al., 1998; Maun-
der, 2001a,b), Bayesian analysis to represent uncertainty and
include prior information (see the reviews in Punt and Hil-
born, 1997; McAllister and Kirkwood, 1998; e.g. McAllister
et al., 1994; McAllister and lanelli, 1997; Maunder et al.,
2000; Maunder and Starr, 2001), random-effects (hierarchi-
cal) modeling of process error (e.g. McAllister et al., 1994;
Maunder and Watters, 2003), and non-parametric parameter
representation (e.g. Fournier et al., 1998; Haist et al., 1999).
The use of likelihood functions that are robust to outliers are
important because of the large data sets used in these models
(Fournier et al., 1990; Fournier et al., 1998). The models I
applied to the artificial data sets were implemented with AD
Model Builder (Otter Research™; see the review by Maun-
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Fig. 1. Comparison of results from the methods presented in this paper (AD
MODEL) applied to the data from the Extinction Risk Working Group of the
National Center for Ecological Analysis and Synthesis (NCEAS) competi-
tion compared with other quantitative analysis and subjective judgment
entries (data from McCarthy et al., in press).

der, 2000). In this document I describe these recent develop-
ments in fisheries stock assessment in relation to modeling
endangered species and the prediction of the probability of
extinction and population decline. Further details of these
methods can be found in the relevant fisheries literature cited
in the respective sections. Readers requiring a foundation in
statistical model fitting and Bayesian analysis should refer to
Hilborn and Mangel (1997).

2. Integrated analysis

The aim of integrated analysis is to include all data for a
single population into one analysis. Traditionally, data are
often analyzed in one analysis, and the summary statistics are
used in a second analysis. For example, survival is estimated
from mark-recapture data, and then used in a population
dynamics model. Maunder (1998) suggested that the two-
step procedure described above has several disadvantages,
due to the fact that (1) information is often lost in the mark-
recapture analysis, (2) assumptions in the mark-recapture
analysis are often inconsistent with those of the population
dynamics model, (3) uncertainty may not be adequately
transferred from the mark-recapture analysis procedure into
the fitting of the population dynamics model, and (4) the
separation of the analyses may reduce the ability to diagnose
any lack of fit. Maunder (1998, 2001a,b) and Maunder and
Watters (2003) suggest that combining the analyses can over-
come many of these problems. Integrated analysis ensures
that model assumptions and parameter estimates are consis-
tent throughout the analysis, that uncertainty is propagated
throughout the analysis, and that the correlation between
parameters is preserved (Maunder, 1998). Integrated analysis
is based on non-linear model estimation, and therefore pro-
vides a flexible framework to develop the appropriate model
for each individual application.

There have been several examples of integrated analysis
applied in fisheries stock assessment. Fournier and Archibald
(1982) developed methods to integrate multiple data types
into a single analysis and Methot (1990) developed this into a
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general stock assessment model. Fournier et al. (1998) inte-
grated length-frequency analysis with a stock assessment
model. Maunder (2001a) developed a general method to
integrate the standardization of catch and effort data into
stock assessment models. Fournier and Archibald (1982)
integrated the estimation of the stock-recruitment relation-
ship into a catch-at-age stock assessment model. Maunder
and Watters (2003) developed a general method to integrate
environmental indices into population dynamics models.
Ishii (1979) integrated effort data into a mark-recapture
model for which the dynamics were based on those used in
population dynamics models. Richards (1991) integrated
tagging data into a simple stock assessment model, and
Maunder (1998, 2001b) integrated tagging data into a catch-
at-age stock assessment model.

The general method used to integrate two analyses is to
parameterize them in such a way that both have parameters in
common, and then simultaneously estimate all the param-
eters with the values of the parameters in common shared
between the two analyses. The objective functions of the two
analyses are combined, and the estimation procedure opti-
mizes this combined objective function.

Take an example with two types of data (data, and data,),
one for each analysis, two sets of parameters (0, and 0,)
consisting of n parameters for the first analysis, m parameters
for the second analysis, and p parameters that are common
between the two analyses. Let 6, = {ab,c,d} and
0, = {c,def} so 0,00, = {c,d,} and the parameter set for
the integrated model is 6; = 6,000, = {a,b,c,d,f}. The likeli-
hood for the integrated model is L(data,,
data,\0, = L(data,10,)L(data,|0,), and the parameters are esti-

mated by Max | L(data,, data, |6,)] 6 €R""" .

To illustrate integrated analysis, I describe the integration
of mark-recapture data into the population dynamics model.
Take a population that has age-specific release and recapture
data and the annual measurement of effort used to sample the
population. In this example, the individuals examined for
marks are assumed to die. The population dynamics are
modeled as N,y ,,; =N, .0, — C, ., where N, , is the number
of individuals of age a at time ¢, ¢, is the survival rate of
individuals of age a, and C, , is the number of individuals of
age a examined for marks in time 7. It is assumed that all
individuals die after age A (p, = 0). The parameters of the
population dynamics model that must be estimated are the
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initial numbers in each age class, the numbers in the first age
class each year, and the age-specific survival rates
{Ni1s s Nya» Noys ooy Npyy @45 ooy 941}, where T is the
number of time periods and A is the maximum age in the
model.

The release and recapture data comprise releases at age
{R,, ..., R, } that were released at time 7 = 1 and recaptures at
time and age {m,,, ..., my4}. The numbers of marked indi-
viduals are modeled with the same dynamics equation as the
total population with removal of the marked animals that are
observed M, .., =M, ., — m, .. The initial numbers at age
in the marked population are set to the number of releases
multiplied by the age-specific marking related mortality,
M, ,= R, u,. The parameters of the mark-recapture model to
estimate are {@, ..., @4_;, U, ..., U, }. Finally, the sampling
effort is used to predict the numbers at age examined for
marks. The predicted number of individuals examined for
marks is (A?t’a = Eq,N,,, where E, is the sampling effort
expended in time 7 and ¢, is the age-specific catchability
parameter. The parameters estimated to predict the number
of individuals examined for marks are
{Ni1s s Nyas Noys ooy Nty @45 ooy @a_ys Gys -os Ga ). The
combined set of parameters from the population dynamics
model, the mark-recapture model, and the model describing
the number of individuals examined for mark includes the
initial numbers at age, the recruitment for each time period,
the survival at age, the age-specific catchability, and the
initial mark-recapture induced mortality at age
(N1 oos Ny s Ny 1y eoos N1y @1 s @15 Qs oo Gas Uy ooy Ug )

There are two components to the likelihood function: (1)
the mark-recapture data conditioned on the number of indi-
viduals examined for marks; and (2) the number of individu-
als examined for marks, given the amount of effort deployed.

The likelihood for the mark-recapture data, given the
individuals examined for marks {C, ,, ..., C74}, is based on
the binomial distribution (i.e. an individual examined for
marks is either marked or not marked). Because I have
reparameterized the models so they have parameters in com-
mon, I define the probability of an individual being marked
as the ratio of the number of marked individuals to the total
number of individuals, M, , N, ,. Note that in this example not
all age classes will have the possibility of marked individuals
because releases occurred only in the first time period, and
this must be taken into consideration when performing the
calculations.

C )Hﬁ Mta mr,al Mta
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standard deviation, ¢, which is estimated simultaneously
with the other parameters.

Cm—mm

(400 ) =
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Note that this likelihood will cause numerical problems if
the observed or predicted number of individuals examined
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and this is maximized while estimating the combined set of
parameters, including the standard deviation of the fit to the
number of  individuals examined for  marks,
(N1 s Nias Nogs ooy Nty 014 ooy Qa1 Qs oeos Gas Uy oo
u,, o }. I used this method to analyze the snail data set. More
complex dynamics, multiple releases, different likelihood
functions, or additional data types can also be modeled (e.g.
Maunder, 1998; 2001b).

3. Bayesian analysis

Bayesian analysis is a convenient method to include prior
information into models and to represent parameter estima-
tion uncertainty. Bayesian analysis can be considered as a
traditional PVA (Boyce, 1992) that includes a sensitivity
analysis and is fit to data. In a PVA, estimates of the model
parameters are generated with data outside the population
dynamics model (e.g. estimating survival with mark-
recapture data). For some parameters (e.g. initial numbers at
age), fixed values are used, and for other parameters (e.g.
survival) the distribution of estimated values are used so as to
include stochastic variation in the forward projections. Sen-
sitivity analyses are carried out with alternative values for the
parameters that have fixed values. If the sensitivity analyses
are repeated numerous times with the values for the fixed
parameters drawn from the distribution of estimates, this is
equivalent to including prior information on parameters in a
Bayesian context. An additional aspect of a Bayesian analy-
sis is that each realization is weighted by how well it fits the
data (e.g. the fit to a relative abundance time series), rather
than giving each realization of the stochastic projections
equal weight. This requires simulation over the historical
timeframe and into the future. Traditionally, PVAs have ig-
nored trend data. Fitting to a time series of abundance helps
estimate the correlation between parameters. For example,
low biomass and high survival or high biomass and low
survival may be possible, but not high biomass and high
survival or low biomass and low survival. A simple method to
implement a Bayesian analysis is to place the likelihood of
the fit to the data of each realization into a bin. Each bin
represents a range of values of the quantity of interest, and
the sum of the likelihood within each bin represents the
relative probability for the range of values represented by that
bin (Maunder et al., 2000). In addition to the parameter
uncertainty, process error in demographic parameters such as
survival and recruitment can be incorporated into forward
projections.

for marks is zero. The total likelihood is the product of the
two likelihood components,

’NT,1’¢0’ s Py g5 Uy ...,uA)=
,CT,A,ul, ...,uA)x
Oy 15y sy T )

In formal terms, the posterior distribution of the param-
eters, given the data, P(fldata), that are used for inference, is
proportional to the likelihood of the data given the param-
eters, L(datal@), multiplied by the prior probability of the
parameters before the data were observed, P(6). This is
modified by the  probability of the data,
P(data) = [L(datal@)P(0)df, to ensure that the posterior
L(datal®)P(0)

P(data)
A simple introduction to Bayesian analysis in an ecological
context can be found in Hilborn and Mangel (1997).

I implemented the Bayesian analysis with the Markov
Chain Monte Carlo (MCMC) method. MCMC is imple-
mented in ADMB, and is more efficient than the simple
method described above. The details of MCMC and other
methods used to implement Bayesian analysis can be found
in Punt and Hilborn (1997). All priors that do not have
information to create them are either uniform or uniform on a
log scale. This is a lazy attempt to provide priors that are
uninformative; however, uniform priors are often informative
about some quantities of interest, and the sensitivity of re-
sults to the prior distributions should be investigated (see
Punt and Hilborn, 1997 for a discussion of the use of infor-
mative and uninformative priors). Each step of the MCMC
algorithm samples a value for each of the model parameters
from the posterior distribution, P(fldata). The model param-
eters can be used to calculate any derived values or to per-
form forward projections. By performing multiple steps of
the MCMC algorithm, the distribution of the quantities of
interest from these steps can be used as an estimate of the
posterior distributions for those quantities.

For each set of parameters sampled with the MCMC
procedure, which describes the current population size and
structure and the dynamics of the system, the population
model is projected forward in time with a new set of random
numbers for the process error (e.g. random variation in
births or survival). The quantities of interest (e.g. the ratio
of the population size at the end of the projection period to
the population size at the beginning of the projection pe-
riod) are saved and the procedure repeated for each sample
from the MCMC algorithm (or a subset of the samples to
reduce correlation). The quantities of interest that are saved
can then be used to describe the distribution of these values.
For example, the probability that the population will de-
cline over the projection time period is equal to the number
of samples for which the population size at the end of the
projection period is less than that at the beginning of the
projection period divided by the total number of samples.

distribution integrates to one. P( Oldata ) =
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Fig. 2. The cumulative probability of the population size after 60 years
(Nend) as a ratio of the population size at the start of the projection (Nstart)
for the snail data set.

Extinction is often calculated as arbitrarily occurring when
the adult population size is reduced below a certain number
of individuals.

An informative prior was used for the survival rate in the
analysis of the snail data set. The information provided was
that snails in captivity had an annual survival rate of 0.8. I
assumed that the prior was normally distributed, with a mean
of 0.8, an arbitrary standard deviation of 0.2, and limited to
the range 0-1.

(5-0.8)*

1
P(p)= - 0<p<l
’ \/Z_nO.Zexp{ 2<o.22)} ’

A prior that is limited to the range of 01, such as the beta
or logit-normal, is more appropriate for survival parameters.

A cumulative probability graph can be used to determine
the probability of the population declining below a certain
size. For example, Fig. 2 shows that there is about a 70%
probability that the snail population will decline in abun-
dance over the next 60 years.

4. Hierarchical analysis

Models are only a simplification of reality, and there are
many ways in which the model can misrepresent the real
population. This is often called process error. One type of
process error is random change in parameter values over
time. It is important to include this variability in forward
projections because stochastic variation can modify the prob-
abilities of decline or extinction. One method to estimate this
variability is to estimate an independent parameter for each
time period, and then sample either parametrically or non-
parametrically from the estimates and use these samples in
the projections. However, there is often insufficient informa-
tion in the data to reliably estimate a parameter for each time
period, or there is so much uncertainty in some of the esti-
mates that the variation is driven primarily by estimation
uncertainty. The most appropriate method is to define the
parameter as a random variable or, equivalently, a random-
effect. This requires defining a distribution for the parameter

and estimating the parameters of this distribution during the
estimation procedure. The distribution is often called the
hyperdistribution, and the parameters describing the distribu-
tion called the hyperparameters (Gelman et al., 1995). The
value of the parameter for each year comes from this distri-
bution. The appropriate method of estimation uses a marginal
likelihood that integrates over the parameter for each year.
Fortunately, this is automatically carried out if Bayesian
integration is used as the estimation procedure (e.g. McAllis-
ter et al., 1994). However, most fisheries stock assessments
fix the variance of the distribution, and do not use a marginal
likelihood (this is often referred to as a penalized likelihood,
e.g. Maunder and Starr, 2001). The estimated hyperdistribu-
tion can be sampled to add process error in the forward
projections.

One advantage of the random-effect approach is that it is
often possible to estimate the variation due to parameter
estimation uncertainty (observation error) separately from
stochastic variation in parameters (process error). Estimation
of these two types of variation reduces the contamination of
the estimates of stochastic variation in demographic param-
eters by parameter estimation uncertainty. Separating the two
types of variation also indicates what portion of the uncer-
tainty can be reduced by collecting additional data to reduce
estimation error. Methods used to implement the random-
effects models estimate both the standard deviation (or re-
lated parameter) of the random-effects distribution and the
standard deviation of the likelihood function (or effective
sample size) and can be quite complex (e.g. Maunder and
Deriso, 2003).

In Bayesian analysis, the random-effects model can be
implemented with a hierarchical approach. In practice, this is
implemented by penalizing the estimates of the parameters
for each year. In fisheries, the most common parameter to
treat as a random-effect is recruitment, which is usually
defined as the number of individuals in the first age-class of
the model at the start of each time period. For simplicity,
recruitment is the only process error I have included in my
applications to the simulated data. However, other param-
eters, such as survival, can be modeled by the same method.
See Maunder and Deriso (2003) for more details.

Recruitment is defined as average recruitment, u,, multi-
plied by the deviate from the average for that time period, ¢,.
It is common in fisheries to assume, that recruitment is
lognormally distributed, and this is implemented by using the
exponent of a normal deviate with a lognormal bias correc-
tion term, —0.56,°.

R, =uexp( (8[—0.505e ).

The penalty on the deviate is included in the total likeli-
hood (which now becomes proportional to the posterior
probability), and can be considered a prior.

2

1 &
Peloy)=T1———exp| —5 |,
K t \/Q;O-R 20123
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where oy, is the standard deviation of the temporal recruit-
ment deviations and is a parameter included in the Bayesian
integration. In a penalized likelihood context, the objective
function to be maximized is

L(data| 0)P(e | o)

with both ¢ and 0 estimated, but usually with g, fixed.
However, as mentioned, a more appropriate method is to
integrate across the random-effects ¢ and estimate gy as
described below.

During the forward projection part of the Bayesian proce-
dure the same equation, R, = pexp(&~0.50% ), is used to
represent recruitment with each deviate, ¢,, being a random
number from N(0, 6°).

When using full Bayesian integration, priors are required
for the hyperparameters. These priors are called hyperpriors
(Gelman et al., 1995). In formal terms, the posterior distribu-
tion of the parameters, 6, and the hyperparameters, v, given
the data, P(6,vldata), which is used for inference, is propor-
tional to the likelihood of the data given the parameters,
L(datal®), multiplied by the probability of the parameters
given the hyperparameters P(0lv), multiplied by the prior
probability of the hyperparameters before the data were ob-
served, P(v). This is modified by the probability of the data,
P(data) = [[L(datal®)P( 0lv)P(v)dOdv, to ensure that the
posterior distribution integrates to one.

L(data | 0)P(0 | v)P(v)
P(data)

PO, v data) =

For the example using a random-effect for the annual
recruitment anomaly, v = gg and 0 = {¢g, ..., €, 0, ..., 0,,}
where 6, ..., 0, are the other model parameters. The param-
eters represented by v and 6 are all estimated in the Bayesian
analysis.

When parameters of the population dynamics models
have trends or are related to environmental factors, it has
been suggested that the most appropriate method is to inte-
grate the trend or environmental factor into the analysis and
use random-effect models (Link, 1999; Maunder and Wat-
ters, 2003). This reduces bias caused by estimation error,
provides additional information to estimate the model pa-
rameters, and improves the performance of hypothesis tests.
For example, if recruitment is related to an environmental
variable I, R, =y, exp(a + fI, + ¢,), where I, is the value of the
environmental time series at time 7 and the parameter «
ensures that ug is equal to the mean over the whole time
period. Therefore, a removes the lognormal bias and bias
caused by an unnormalized environmental time series,

T
“ n(Eexp(sﬁﬁL))’

where T is the number of time periods and the penalty on the
annual deviates, P(¢log), described above, is included in the
total likelihood (posterior).

5. Non-parametric parameter representation

It is common in fisheries modeling to represent param-
eters that may change over time, or with some other charac-
teristic (e.g. age), by a functional form. This is because the
information in the data is insufficient to reliably estimate all
the values as independent parameters, and parameters that
represent characteristics that are similar (e.g. consecutive
years or ages) are expected to be similar. For example, vul-
nerability to the fishing gear at age is often represented by the
logistic function. However, these functional forms are often
insufficiently flexible to represent the parameters and may be
inappropriate for a particular application, leading to biased
results (Haist et al., 1999).

Fournier et al. (1998) suggested using a non-parametric
approach to represent the function form. This method in-
volves estimating the parameters as separate values, but in-
cluding a smoothing penalty so that parameters representing
characteristics that are similar have similar values (see Haist
etal., 1999). The penalty helps avoid overparameterization of
the model. In fisheries applications, these smoothing penal-
ties are often based on the difference equation approximation
to the first, second, and/or third derivatives of the curve. The

i=n-1
first difference, 4, X [0-0,, ]2, penalizes the objective
function if the pararln_elter is not constant, the second differ-
i=n-2
ence, 2, = [0-20,,, + 0..,]°, penalizes the objective func-
tion if thlé]relationship among parameters is not linear, and

i=n-3
the third difference, 2, = [-0,+30,,,-30.,,+0,,1%, pe-
nalizes the objective function if the relationship among pa-
rameters is not parabolic. The As determine the strength of
the penalties. If /4 is large the penalty will act more like a
constraint.

A penalty can also be used to make the relationship among

i=n-1

parameters monotonically increasing, 2~ X 1(0,>0,,,)
[0-0.,,1°, where I( ) is an indicator function that equals
1 when the inequality is true and O otherwise. It may be used
to create desired characteristics. The smoothness penalties
described above are applied to the objective function when it
is in the form of a negative log-likelihood, so the value needs
to be negated and then exponentiated before combining it
with a likelihood function.

I used the non-parametric representation of parameters to
define the initial numbers at age and the survival rate at age
for the small mammal population. I base the penalties on the
logarithm of the selectivity parameters to avoid scale-related
problems and improve the stability of the estimation proce-
dure (James Ianelli, US National Marine Fisheries Service,
Seattle, USA, personal communciation).

The smoothness penalty on the survival parameters was
implemented as a first difference.

a=8
;LZI (In(p,)-In(p,, )"
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The initial numbers at age a were penalized for being
different from the initial numbers at age a — 1 multipled by
survival for age a — 1. The oldest age-group was modeled as
a plus group that accumulates all individuals age nine and
older and the algebraic representation of the summation over
an infinite number of older age-classes was used.

A(In(N, o)~ In (N, 9/ (1-)) ) +
a=17
;{Zl [ ( ln(Nl,a + 1) - ln (Nl,agpu) )2] ’

where N, , is the number of age-a individuals at time ¢ and ¢,
is the annual survival rate of individuals of age a. The objec-
tive function was formed by adding the penalties described
above to the negative log-likelihood. For Bayesian analysis
this objective function is negated and then exponentiated to
form the posterior probability.

One remaining area of research is methods to determine
the weighting factors for smoothness penalties. As might be
expected, different weighting factors can lead to different
results in some applications. Maunder and Harley (2003)
used cross validation to investigate appropriate weighting
factors for age-specific selectivity parameters of a fisheries
stock assessment model.

6. Robust likelihood functions

Data from natural populations often have more extreme
values than expected from standard statistical theory
(Fournier et al., 1990). These data points could be due to
several sources of error (e.g. inaccurate recording of results)
or rare processes that are not important to the overall dynam-
ics and may have an undue influence on the results. In
applications with only a few data points, these extreme val-
ues can be removed from the analysis to determine their
influence on the results. Unfortunately, due to the large
amount of data often used in integrated analysis (e.g.
Fournier et al., 1998), this is not possible. Therefore, auto-
matic methods are required to downweight extreme values or
remove them from the analysis. One method is to modify the
likelihood functions so that outliers do not have a large
influence on the results. This is achieved by assuming that the
data come from two distributions, one that describes the
majority of the data and a heavier-tailed distribution that
describes the outliers (Fournier et al., 1990). The heavier-
tailed distribution describes the contamination in the data.
Fournier et al.’s (1990) robust likelihood function adds
0.01 to the normal likelihood, which ensures that the influ-
ence of observations reduces rapidly as their distance from
the predicted value becomes greater than about three stan-
dard deviations. L., (data | ) = L(data | 6) + 0.01. Other
formulations of robust likelihoods that may be more appro-
priate for certain applications are also available. Simulation
analysis has shown that these robust likelihood functions
perform only slightly worse than a standard likelihood func-
tion for which there are no outliers, but perform substantially
better when outliers are present (Chen et al., 2000).

7. Implementation in AD Model Builder

AD Model Builder (ADMB, Otter Research, http://otter-
rsch.com/admodel.htm) is becoming the predominant pro-
gramming environment for producing complex highly-
parametrized fisheries stock assessment models (see
Maunder, 2000, for a review), particularly for researchers
working in the west coast of North America and in the south
Pacific.

ADMB is a set of libraries for C++ and a template to
simplify setting up the model. ADMB uses the C++ library
AUTODIF, which calculates the derivatives of all the opera-
tions analytically. (AUTODIF has precompiled adjoint code
for the derivatives of commonly-used array and matrix op-
erations and the reverse mode of automatic differentiation for
other operations). The exact derivatives make the minimiza-
tion procedure more efficient and stable. Most modern statis-
tical modeling packages use finite difference approximations
for these derivatives, leading to two major limitations. First,
the inaccuracy of the derivative approximations causes insta-
bility in the minimization process and produces unreliable
results for ill-conditioned problems. Second, finite difference
approximations take n+1 function evaluations to obtain the
finite difference approximation for a function with » inde-
pendent variables. In contrast, ADMB can compute exact
values for the derivatives at the same time as it evaluates the
function. This additional computation requires only about
four times as much time as it takes to calculate the function
itself, resulting in a substantial saving of time relative to the
approaches that use the finite difference approximation.
Schnute et al. (1998) showed that ADMB was significantly
superior to the statistics packages GAUSS, MATLAB, and
S-Plus, which use finite difference approximation, for esti-
mating the parameters of a catch-at-age model. ADMB took
only 3% of the time of the next-best package for a 37-
parameter model and less than 1% of the time for a model
with 100 parameters. Therefore, ADMB is more appropriate
for the implementation of integrated analyses that have large
amounts of data and numerous parameters to estimate.

The template used in ADMB allows for definition of data
to be read in, definition of estimated parameters, and format-
ting of output. The template also sets up all the code needed
to carry out the estimation. All the underlying code used to
define the model and objective function is coded in C++
(mainly C). Therefore, ADMB is very flexible, and allows
experienced C++ programmers to create their own libraries
that can be used in conjunction with the ADMB libraries.

ADMB provides a flexible stepwise process to sequen-
tially estimate the parameters, and allows the placing of
bounds on all estimated parameters that restrict the range of
possible parameter values. ADMB also contains automation
of likelihood profiles and a MCMC algorithm for Bayesian
integration. The MCMC algorithm implemented in ADMB
has jumping rules that are based on the variance-covariance
estimated at the mode of the joint posterior distribution and
starts at the mode of the joint posterior, which makes the
algorithm more efficient (i.e. reduces the burn-in time).
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Other software is available that can be used to carry out the
analyses presented here. One popular program is BUGS
(Spiegelhalter et al., 1995), which has been used to perform
Bayesian analysis for fisheries and wildlife applications (e.g.
Meyer and Millar, 1999; Link et al., 2002).

8. Discussion

I present several methods used in fisheries stock assess-
ment models that can be applied to population viability
analysis. Integrated analysis allows the use of all information
on a particular population, ensures that all model assump-
tions and parameters are consistent throughout the analysis,
that uncertainty is propagated throughout the analysis, and
that the correlation among parameters is preserved. Bayesian
analysis allows for the inclusion of prior information, and is a
convenient way to represent uncertainty. Random-effects
modeling allows information to be shared among parameter
estimates, and allows the separation of process error from
estimation error. Non-parametric representation of param-
eters allows for a more flexible relationship among the pa-
rameters, while still avoiding overparameterisation. Robust
likelihood functions provide an automatic method to reduce
the effects of outliers when the data sets used are large.

Bayesian analysis and integrated analysis provide a com-
prehensive framework for including all available information
(priors and data) into a single analysis and the representation
of uncertainty. Due to uncertainty, management decisions
have multiple possible outcomes, so it is important for man-
agement to know the probabilities of the outcomes of the
various management decisions that are under consideration.
Because Bayesian analysis produces these probabilities, it is
an appropriate method for analysts to use for providing
management advice. For example, management of the New
Zealand sea lion population involves closing a squid fishery
if too many sea lions are caught by the fishery in a given year.
Maunder et al. (2000) used Bayesian analysis to determine
the effect of different sea lion mortality limits on both the sea
lion population and the squid catch. Decision makers were
presented with the probability that the sea lion population
would rebuild and the expected loss in squid catch so that
they could make an informed decision based on the tradeoff
between these two factors. The analysis also makes it clear to
all user groups what the tradeoff is, rather than just setting
conservative criteria.

When stochastic variation in demographic parameters is a
central component in determining the probability of extinc-
tion or population decline, it is important to provide accurate
estimates of the variation that will be used in the forward
projections. Therefore, the analyst must separate the true
variation in the demographic parameters from the estimation
uncertainty. The estimation uncertainty comes from the fre-
quent problem that there is insufficient information in the
data to estimate the parameter for each time period. If the
estimates of the parameter for each time period are used to

determine the temporal variation in that parameter, the tem-
poral variation will be biased upward because it includes
both the temporal variation and the estimation error (Maun-
der and Deriso, 2003). An appropriate method to separate the
temporal variation from the estimation error is the random-
effects approach, which is becoming popular in fisheries and
wildlife modeling (e.g. Link, 1999; Maunder and Deriso,
2003).

The methods presented here all appear reasonable, and it
would be beneficial to employ them all for conservation
biology applications. However, due to the complexity of the
models and the large data sets, these analyses are often
difficult to apply. They can require large amounts of com-
puter memory and CPU time. Often there are multiple local
solutions. Sometimes, Bayesian integration methods do not
perform well. Model selection becomes difficult because
multiple data types are combined and different weighting
among data sets can produce different answers. In addition,
diagnostics for complex non-linear models are relatively
undeveloped, compared to those for linear models. These
issues should be addressed in future research.

The recent developments in fisheries stock assessment
that I have presented are also beginning to be used in conser-
vation biology. Bayesian analysis has been used for several
conservation biology applications (see Ecological Applica-
tions volume six number four for a special section on Baye-
sian methods) including PVA (Ludwig, 1996; Taylor et al.,
1996; Goodman, 2002; Wade, 2002; Breen et al., 2003).
Random-effects models have been used to determine indi-
vidual heterogeneity in breeding and survival rates (Link et
al., 2002), temporal variability in survival rates (Burnham
and White, 2002), and population trends (Sauer and Link,
2002). White and Lubow (2002) described methods to fit
population models to multiple sources of data. Integrated
analysis has been used to model patterns in collections of
parameters in a random-effects context (Link, 1999). It ap-
pears that the modeling methods used in conservation biol-
ogy and fisheries stock assessment are converging, and may
provide a general framework for all ecological modeling as
promoted by Shea (1998).

The four artificial data sets created by the Extinction Risk
Working Group of the National Center for Ecological Analy-
sis and Synthesis (NCEAS) are examples of different types
of situations that are experienced when modeling popula-
tions. The frog data are from a population whose estimated
parameters are uncertain, whereas the snail data are from one
for which the parameters are well estimated and there is little
annual variability. Neither of these populations show a de-
cline in population size. In contrast, the herb and small
mammal populations show declining trends. The snail popu-
lation was estimated to have a zero probability of extinction
because there is no declining trend in abundance, low inter-
annual variability, and low uncertainty in parameter esti-
mates. The frog population was estimated to have a small
probability of extinction due to uncertainty in parameter
estimates. The herb and small mammal populations were
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estimated to have high probabilities of extinction because of
the declining trends in abundance. However, the true popula-
tions did not have trends in abundance. This indicates that
detecting trends in abundance, in this case through trends in
birth rates, is an important factor in estimating the probability
of extinction. Therefore, predicting trends in model param-
eters and correlating them with measurable variables (e.g.
habitat size) is an important requirement for conservation
modeling. Random-effects models appear to be the most
appropriate method to model these trends and correlations
(Link, 1999; Maunder and Watters, 2003; Maunder and De-
riso, 2003). Fisheries models differ from most conservation
models because the catch, which is a main component that
causes decline in population size, is often recorded reason-
ably accurately. Therefore, it is easy to investigate the effect
that catch has on the probability of decline. However, for
conservation problems, the reasons for decline are often
unknown or, if known, difficult to obtain data for. Therefore,
it is difficult to determine the effect that this factor has on the
probability of decline or extinction.

Risk of extinction in these models was based on parameter
uncertainty, annual variability in recruitment, and, in the case
of the herb and small mammal applications, trends in biom-
ass. In many populations, catastrophes are the most likely
cause of extinction. In these cases, looking at the probability
distribution of catastrophes and the distribution of catastro-
phe effects may be a better method to determine extinction
(Gerber and Hilborn, 2001). Breen et al. (2003) included
catastrophes in a Bayesian and integrated analysis of New
Zealand sea lion.
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