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An advection-diffusion-reaction model for the
estimation of fish movement parameters from
tagging data, with application to skipjack tuna
(Katsuwonus pelamis)

John R. Sibert, John Hampton, David A. Fournier, and Peter J. Bills

Abstract: The mobility of fish populations is often ignored in population dynamics models. However, in many cases
(with tunas being a prime example), movement and spatial heterogeneity may be striking features of the fish
populations and their exploitation. We describe a general quantitative framework to estimate movement and mortality
of fish populations from tagging data. Movement is represented by an advection—diffusion process, which is the
population equivalent of individual movement based on a biased random walk. Finite difference approximations for
solving the partial differential equation are provided. The model is parameterized by assuming that movement
parameters are homogeneous within specified geographical regions and seasons, that fishing mortality is proportional to
fishing effort, and that natural mortality is constant over area and time. All model parameters are estimated
simultaneously by maximum likelihood. The method is illustrated by application to skipjack tuna (Katsuwonus pelamis)
in the western Pacific Ocean. Skipjack movement is shown to be highly variable at both seasonal and interannual time
scales. Comparison with the results of a spatially aggregated analysis of the same data reveals that the spatial model
provides a much better fit to the data and, unlike the spatially aggregated model, enables estimation of the natural
mortality rate free of the effects of movement within the model domain.

Résumé : La mobilité des populations de poisson est souvent ignorée dans les modeles de dynamique des populations.
Cependant, dans de nombreux cas (celui des thons au premier chef), les déplacements et 1’hétérogénéité spatiale
peuvent étre des caractéristiques marquantes des populations de poisson et de leur exploitation. Nous décrivons un
cadre quantitatif général permettant d’estimer les déplacements et la mortalité des populations de poisson a partir de
données de marquage. Les déplacements sont représentés par un processus d’advection et de diffusion, qui est, pour
une population, 1’équivalent des déplacements aléatoires biaisé€s d’un individu. Nous fournissons les approximations en
différences finies nécessaires pour résoudre 1’équation différentielle partielle. Nous avons paramétré le modele en
supposant que les parameétres des déplacements sont homogenes dans les régions et saisons spécifiées, que la mortalité
par péche est proportionnelle a I’effort de péche et que la mortalité naturelle est constante dans 1’espace et dans le
temps. Tous les parametres du modele sont estimés simultanément selon le maximum de vraisemblance. Nous. avons
appliqué notre méthode a la bonite a ventre rayé (Katsuwonus pelamis) de 1’ouest du Pacifique. Nous avons montré
que les déplacements de ce poisson sont trés variables d’une saison et d’une année a 1’autre. La comparaison avec les
résultats d’une analyse spatialement agrégée des mémes données montre que le modele spatial donne un bien meilleur

ajustement aux données et, a la différence du modele spatialement agrégé, permet d’estimer le taux de mortalité
naturelle sans qu’interviennent les effets des déplacements dans le domaine du modele.

[Traduit par la Rédaction]

Introduction

Although fish are mobile, the explicit effects of mobility
on fisheries management policies are usually neglected. In
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cases where fishing is distributed uniformly over the range
of the exploited fish species, movement may not be relevant
in models of population dynamics (Beverton and Holt 1957).
For tunas, however, fishing is certainly not uniform and is
often restricted to a fraction of the range of the exploited
species. Therefore, neglecting movement may lead to errors
in estimates of exploitation rates (Lalo& 1989; Die et al.
1990).

Tuna movements have been the subject of many field
studies that depend on a variety of tagging and tracking
techniques (see review by Hunter et al. 1986), and extensive
collections of tag release and recapture data are maintained
by various organizations dedicated to the scientific analysis
of tuna populations. These data have yielded important in-
sights into the exploitation and population dynamics of tunas
(e.g., Bayliff 1971; Kleiber et al. 1987).
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Quantitative analyses of tuna movement have been slower
to develop, with treatment often confined to drawing arrows
on maps to represent the long-range movement of a few
tagged individuals. In fact, several general classes of models
can be applied to the quantitative analysis of fish movement.
Bulk transfer models, where exchange rates between large
regions are characterized by transfer coefficients, were first
outlined by Beverton and Holt (1957). Models of this type
have been applied to yellowfin tuna (Thunnus albacares) in
the eastern Pacific (Ishii 1979a, 1979b), to skipjack tuna
(Katsuwonus pelamis) in the western Pacific (Sibert 1984;
Hilborn 1990), and to southern bluefin tuna (Thunnus mac-
coyii) (Hampton 1991). In some cases, these models have
closed-form solutions, are easily implemented in computer
code, and have parameters that can be estimated statistically
from tagging data. Although bulk transfer models can pre-
dict changes in population size in arbitrary regions, they
cannot be used to predict the changes in population density
at an arbitrary point within a region because they are not
continuous in space.

Models based on diffusion concepts are continuous in
both space and time. These models have a long history in
animal ecology (Skellam 1951), and their potential applica-
tion to fisheries population modeling dates back at least to
Beverton and Holt (1957) and Jones (1959). Although the
diffusion concept suggests that the population moves at ran-
dom, it does not require that individual fish move randomly.
The small-scale movements of individuals, which are surely
nonrandom, may, in a large population, produce a net distri-
bution that gives the appearance of being the result of ran-
dom movements. Because purely diffusive movement will
ultimately produce a uniform distribution of the population
at equilibrium, other factors such as directional movement or
spatial variability in recruitment, mortality, or population
growth rate (Mullen 1989; MacCall 1990) are required to
maintain persistent gradients in population density. Direc-
tional movements are easily incorporated into a diffusion
model by introducing “advective” terms. Okubo (1980) pre-
sented an insightful derivation of the advection—diffusion
equation as the limiting form of a biased random walk.
Thus, the advection—diffusion model can be viewed as being
equivalent to the individual-based modeling approach (Tyler
and Rose 1994; Porch 1995) in the same sense that Eulerian
and Lagrangian approaches are complementary views of
fluid movement. Further discussion of the theoretical basis
for the use of diffusion models in the analysis of fish move-
ment is presented in Appendix A.

The application of advection—diffusion models to fish
population dynamics has grown recently. MacCall (1990)
developed an elegant theory relating movement, population
growth, and habitat selection that, to a large extent, is based
on an advection—diffusion model. Deriso et al. (1991) ap-
plied a Markovian transition matrix approach to estimating
diffusion and advection parameters for eastern Pacific yellow-
fin tuna. Kleiber and Hampton (1994) applied an advection-
diffusion model to the analysis' of tagged skipjack tuna
movements in relation to fish-aggregating devices.

The present paper extends previous work by providing a
formal derivation of a general advection—diffusion—reaction
model for the analysis of tagged fish movement. We provide
a flexible means of parameterizing movement through
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grouping of parameters by geographical regions and seasons
and describe the maximum likelihood estimation of parame-
ters from tagging data. We apply the model to the analysis
of variability in skipjack tuna movement in the western Pa-
cific Ocean, using tag release and recapture data from the
1977-1982 South Pacific Commission Skipjack Survey and
Assessment Programme (SSAP) (Kearney 1982a, 1983).
These results are contrasted with analysis of the same data
using a spatially aggregated model.

The model

An advection—diffusion—reaction model is used to describe
the movement and mortality of tagged skipjack tuna. Let
N, symbolize the density of tagged tunas (numbers of
tagged fish per unit of surface area) at point (x,y) in the
ocean at time ¢ of tag release cohort c. The aggregate density
of tagged tunas (or simply, tags) from all cohorts released up

to time ¢ is given by
C

1) Ny =2 Ny
c=1

Assuming that the tag cohorts move independently, the ag-
gregate tag density satisfies the following partial differential
equation:

) aN= 0 DaN + d DaN
ot ox\| ox ) dy{ dy
) 0
-2 Ny -2 (wN)-2N.
Bx(u ) ay(V )

Equation 2 partitions the local rate of change of tag density
at point (x,y) into “dispersive” movements, “directed” move-
ments, and mortality. The first two terms on the right-hand
side of eq. 2 characterize dispersive movements in terms of
a “diffusion” parameter D. The next two terms in eq. 2 char-
acterize directed movements in terms of two “advection” pa-
rameters (u,v) that describe east-west (positive toward the
east) and north-south (positive toward the north) move-
ments. Note that the movement parameters u, v, and D may
vary in space and time. The final term in eq. 2, the “reac-
tion” term, describes the loss of tagged fish due to mortality
from all sources. Since movement is explicit in this model,
the mortality term does not include local losses due to emi-
gration away from the fishing grounds.

Solution of the partial differential equation

Equation 2 is solved using a finite difference method on a
regular grid with a spatial resolution of 60 nautical miles
(Nmi), i.e., Ax = Ax = 60 (60 Nmi = 111.12 km), and a dis-
crete time step. The numerical solution of eq. 2 is used in a
numerical function minimization procedure to obtain esti-
mates of model parameters. Therefore, the solution method
must be fast because the partial differential equation (PDE)
will be solved hundreds of time, and it must also be robust
because function minimization algorithms may test parame-
ter values that are not necessarily conducive to numerical
stability. These two criteria are often conflicting. Speed is
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Fig. 1. Cross section of a computational grid showing grid point
labels and closed boundaries.
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achieved by using large time and space steps, while stability
is often achieved by using small time and space steps.

The finite difference approximation used for the time de-
rivative is

aN n+1 Nl,,,}.l —N"

) B
@ ot At

The subscripts i, j denote the spatial location of a grid point
with position (iAx, jAy); superscript n refers to time level n
At.

Two schemes for the approximation of the first derivatives
in the directed movement terms were considered: approxi-
mation by two-point “backward” differences, a scheme
known as “upwind” or “upstream” differencing (Roache
1972; Press et al. 1988), and approximation by two-point
centered-space differences.

Upwind differencing is very robust, but contributes nu-
merical (i.e., nonbiological) diffusion to the solution field,
which may confound estimation of the actual (i.e., biologi-
cal) random movement parameter values for tagged tuna
(O’Brien 1986). Upwind differencing of the directed move-
ment terms at time level n takes the form

n n
i iNEj —uig ;N2 50
" ’ Ui j
(4) ouN ~ ) Ax
n n
Ox lij |y Nl j —u ;N 0
£ ui,j <
Ax
no_y. . NP
vi,jNi,j vt,]—th,]—l vi. >0
n ’ iLj
OvN Ay
n n
dy ij | VigaNEa =viiNE; v <0
’ ij
Ay

Centered-space differencing is a nondispersive alternative
approximation to upwind differencing but introduces grid-
scale oscillations into the solution field if advective terms
are large relative to diffusive terms (Price et al. 1966;
Roache 1972; Leonard 1979; Neuman 1981; Abbott and
Basco 1989). In preliminary tests, such oscillations were
large enough to cause negative values for tag density, and
the parameter estimation procedure (see below) did not con-
verge. All subsequent analysis was done using upwind dif-
ferencing.

The second derivatives in the random movement terms are
approximated using three-point finite differences as follows:

927
n
D_,.+D,:
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n
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Boundary conditions must be specified in order to solve
the PDE. Closed boundaries occur naturally around islands
and along continental coastlines. Either closed or open
boundaries may be applied to the edges of the model region.
Closed boundary conditions are appropriate where the model
region encompasses a large proportion of the tagged fish dis-
tribution. For closed boundaries, a simple reflection condi-
tion on N and an impermeability condition on the normally
directed component of movement are used. Thus:

(6) N =0 andu=0
ox
on eastern and western closed boundaries
9N _0 andv =0
dy

on northern and southern closed boundaries.

These conditions ensure that tagged tuna numbers are con-
served in the model when both natural and fishing mortality
are zero.

In the one-dimensional grid point lattice in Fig. 1, the re-
flection conditions on N at each boundary have the numeri-
cal counterparts in the x direction:

)] No=N;and N, =N,

and guarantees tag conservation in the absence of mortality.
A more complete discussion of boundary conditions can be
found in Bills and Sibert (1997).

The obvious initial condition for N is

®) N 2 N:y.0c. over all tag release sites
0 Ty €
0, elsewhere

where ﬁxr y.0c 18 the number of tagged skipjack released at
point (x,, y.) at time O in tag cohort c. In the case of a cohort
release s at a subsequent time 7, and at position (x,, y,), the
density of tags at that point is reassigned the sum of its pres-
ent value and the cohort value, viz.:

9)  NO,yst) < N(x,yt) + N,y t,).

The complete numerical approximation to the PDE is
given by substituting finite difference approximations for the
movement terms taken at appropriate time levels into the
right-hand side of eq. 2. A combination of time levels n +
1/2 and n + 1 leads to the well-known alternating direction
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Table 1. Values of bounds applied to
parameter estimates and tag density in the
penalty functions.

Parameter Lower bound Upper bound
M 0 0.5

QO 0 0.1

u -1 500 1500

v -1 500 1500

D 0 500 000
N, 0 None

implicit (ADI) method. This method is robust and converges
to a solution unconditionally for all step sizes (Carnahan et
al. 1969; Press et al. 1988).

Reparameterization

All of the solutions of the PDE described above require
specification of each model parameter at every grid point.
The 60 x 35 grid used in the present example requires val-
ues of each parameter u, v, D, and Z in eq. 2 to be specified
at each time step at each of the 2100 grid points, a total of
8400 parameter values per time step. Direct estimation of so
many parameters is impractical, and some means of reduc-
ing the number of parameters is required.

Tuna movement patterns are frequently represented by ar-
rows on maps, often with months or seasons specified, to
suggest the general trend of population movement at differ-
ent times and places (e.g., see Kearney 1982b; Hunter et al.
1986). This point of view implies that fish movement may
be time and site specific. Consistent with this possibility,
“regions” are defined as subdivisions of the model domain
over which the movement parameters u, v, and D are con-
stant, and “seasons” are defined as periods of time during
which the parameters within a region are constant. Let R;; be
a matrix that contains the region number for each model cell
indexed by (i, j) and S” be a vector that contains the season
for each time step indexed by n. In other words, R;; maps the
model domain into specified regions and $” maps calendar
time to seasons. The model parameters are specified at each
grid point by the following equations:

(10) [l =ug .

vil= VR, 5"
[Dj] =Dy s

where u, v, and D are matrices of parameters to be esti-
mated. For a model with 10 regions and two seasons, u, V,
and D are 2 x 10 matrices, containing the 60 movement pa-
rameters required to specify values for u, v, and D at the
2100 points in the model domain used in the present analy-
sis. The matrices u, v, and D are collectively referred to as
movement “patterns” or “hypotheses” below.

Total mortality Z is separated into two components in a
conventional manner by

(11) Zp =M+ Fj

where Fj is the n{ortality due to fishing by fishing fleet f
operating in computational element (i, j) during time step n
and M is mortality due to other causes or “natural” mortality.
Natural mortality is assumed to be constant at all places,
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over the period of time that the tagged fish are at liberty.
Fishing mortality is assumed to be a simple function of ob-
served fishing effort:

(12)  Fj =0, x Ely

where EJ; is the observed fishing effort of fleet f operating
in element (i, j) during time step n and Qg is a fleet-specific
proportionality constant or “catchability coefficient”. This
parameterization enables the specification of mortality at all
grid points in terms of a small number of parameters of di-

rect relevance to the dynamics of exploited populations.

Parameter estimation
The predicted number of skipjack tags returned during
1 month is given by
. By g
Cr =B, Z{ (1—e“)N"
ij

(13)

where B, is the reporting rate, ie., the proportion of tags
captured by fleet f returned with usable recapture informa-
tion, and N satisfies eq. 2 for time step n. For the example
presented here, B, is assumed to be 1.0 for all fleets.

Observed numbers of tag returns, CJ, are related to pre-
dicted numbers of tag returns, C/, by a Poisson likelihood
function:

[

L(ua v, D’ Q’ Ml Cl'jlf’ El;lf) = H nf
ijnf igf -

ér cye ¥
(14) €™ .

This function assumes that the predicted number of tag re-
turns in each cell during 1 month is the expected value of a
random variable with a Poisson distribution. This distribu-
tion is appropriate for an observation of a rare event such as
the radioactive decay of an atom (Feller 1968) or the recap-
ture and return of a tagged skipjack. Maximum likelihood
parameter estimates are obtained by finding the values of the
parameters that maximize eq. 14. The maximization is ac-
complished by minimizing the negative log of eq. 14 using a
quasi-Newton numerical function minimizer, which, in turn,
depends on the gradient of partial derivatives computed us-
ing adjoint functions (Griewank and Corliss 1991).

Additional information is provided to the function mini-
mizer through the use of penalty functions (Bard 1974).
These functions are continuous functions of the upper and
lower bounds of the parameters and are interpreted as prior
probability distribution functions added to the likelihood
function. Penalty functions also restrict the minimization
process to a region constrained by feasible parameter values.
The net effect of the penalty functions is a more efficient
minimization process. The values of the upper and lower
bounds used in the penalty functions are given in Table 1.
Certain combinations of parameter values will produce grid-
scale oscillations in the solution of eq. 2. If these oscillations
are large, the local tag density may take on negative values.
A penalty function is therefore added to the likelihood func-
tion to prevent the function minimizer from seeking parame-
ters that destabilize the numerical approximation of eq. 2.
This penalty is equal to the sum of the squares of the local
negative tag densities.
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Fig. 2. Map of the southwest Pacific Ocean showing the location of the 10-region model area used for the skipjack tuna analysis.
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Simulations have shown that parameter estimates for re-
gion x season strata for which few tag returns were observed
may be inaccurate (Sibert and Fournier 1994; Bills and Si-
bert 1997). The (spatial) gradients of the movement parame-
ters are therefore constrained to be small by imposing a

small penalty on the curvaturze of ghe n;ovement fzield. That
is, penalties are applied to M, M, B_D, and a—D These
ox? 9y? ox? ay?

penalties help to ensure that estimates of movement parame-
ters in regions with few tag returns will be similar to esti-
mates in neighboring regions.

Estimates of the variance of the parameter estimates are
computed from the Hessian matrix, H, the elements of
which are

9%(=log L)
(15) H;=———"2°=*
700,00,

where 6, and 6; are any two model parameters. The approxi-
mate covariance matrix, V, is given by the inverse of the
Hessian matrix V =~ H™! (Bard 1974). This procedure pro-
vides other useful information about the minimum attained
by the function minimizer. If H is not positive definite, the
minimizer has found a saddle point or has not converged.
Such a condition occurs when the minimum is not well de-
termined by the data, as may occur when the likelihood
function is dominated by constraints on parameter ranges or
by various penalties.

Application to western Pacific skipjack
tuna

Data sources and treatment

Skipjack tag releases within the model area (Fig. 2) dur-
ing the period 1 October 1977 to 31 August 1980 were se-
lected from the SSAP database. The selected data set
comprised 94 430 releases and 5319 reported recaptures. Of
these recaptures, 92 occurred outside the model area and
were excluded from the analysis. The model considers tag

returns by the five main fishing fleets active in the area at
the time: the Japan pole-and-line, Japan purse seine, Fiji
pole-and-line, Papua New Guinea pole-and-line, and Solo-
mon Islands pole-and-line fleets. Tag returns by other fleets
(188 recaptures) were excluded from the analysis. Tag re-
leases and returns were stratified by release “cohorts”, each
consisting of releases in a one-degree geographic area dur-
ing a calendar month. Returns from each cohort were further
stratified by one-degree area, calendar month, and recapture
fleet. Recaptures that could not be so stratified (828 recap-
tures) because of missing or inaccurate data were also ex-
cluded from the analysis. The tag recapture period used in
the model extended until 31 August 1983, which encom-
passed all observed tag recaptures. The final data set ana-
lyzed therefore consisted of 4211 returns, or 79% of the total
reported recaptures. The rejection of recaptures from the
analysis effectively contributes to nonreporting and therefore
could be explicitly included in the analysis by adjustment of
B; in eq. 13. We have opted not to do so in the present anal-
ysis because the other sources of nonreporting cannot be
quantified.

Fishing effort data, stratified by one-degree area, calendar
month, and recapture fleet, for the period 1 October 1997 to
31 August 1993 were compiled from South Pacific Commis-
sion databases.

The model regions and computational grid are shown on
the map in Fig. 2. The boundaries of the model domain were
assumed to be closed. Representations of coastlines and is-
lands at a resolution of one degree (about 60 Nmi) inevita-
bly cause errors in the locations of fishing events (tag
release, tag recapture, fishing) that occur within 60 Nmi of a
shoreline. In some cases, fishing events may appear on land
when mapped at one-degree resolution. Such events were ar-
bitrarily shifted to an adjacent one-degree area. Tag releases,
recaptures, and fishing effort positions that appeared on land
at one-degree resolution were all shifted consistently.

Results
Interaction between the solution of the PDE and the func-
tion minimizer should be considered before the results of the
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Fig. 3. Effects of time step size on the value of the negative log likelihood function at convergence (solid line, solid circles) and the
number of evaluations of eq. 15 required for the function minimizer to converge (broken line, open circles).
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Fig. 4. Effect of length of recapture period (time since last tag
release) on estimation of natural mortality rate (solid circles).
Also shown is the value of the negative log likelihood function
at convergence (triangles) and the predicted number of recaptures
(open circles).
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parameter estimation are presented. Solutions to eq. 2 using
different approximations and different time steps are in effect
different models from the standpoint of maximizing eq. 14.
The effects of step size on the function minimization process
are shown in Fig. 3 for the upwind approximation. Similar
solutions were reached at most time steps. Six time steps per
month is the method used unless otherwise noted.

The estimate of M is dependent on the time elapsed since
the last release of tagged fish. Figure 4 shows the change in
likelihood and change in the estimated value of M as the
time since the last release is increased. It appears that it nec-
essary to wait at least 2 years after all tags have been re-
leased before a reliable estimate of M can be obtained. A 36-
month recapture period was routinely used for the results
that follow.

Variability of movement was explored by comparing mod-
els with different numbers of “seasons”. The single-season
model with 10 regions (Fig. 2) has 36 estimated parameters:
three movement parameters for each of the 10 regions, one
catchability coefficient (Qy) for each of the five fleets, and
one natural mortality coefficient (M). All possible models
with two seasons of 6-month duration were estimated. The
two seasons per year models each have 66 parameters: three
movement parameters for each of the 10 regions for each of
the two seasons in addition to the six parameters for M and
Q. Table 2 shows the values of the likelihood function for
these models. The best fit is obtained for a model in which

the seasons start in March and September. Other two-season
models are possible, but only those with seasons of 6-month
duration were tested.

The best two-season model (model 2) can be compared
with the single-season model. The single-season model has
36 estimated parameters with a negative log likelihood value
of 4214.79. In contrast, the best two-season model has 66
estimated parameters with a negative log likelihood value of
4007.71. The significance of the improvement in fit of the
two-season model over the one-season model can be tested
using a likelihood ratio test (Brownlee 1965) in which twice
the difference between the negative log likelihood for the
two models is interpreted as a x? variable with degrees of
freedom equal to the difference in numbers of parameters es-
timated in the two models. In this case, the x> value is
414.16 with 30 df, and the difference is significant with P <
0.001. A two-season hypothesis is therefore more consistent
with the observed tag returns than is a single-season hypoth-
esis.

The preceding process was extended to compare all possi-
ble models with four seasons of 3-month duration. These re-
sults are also presented in Table 2. The increase to four
seasons produces a significant improvement in fit, with the
best fit occurring for a seasonal pattern with seasons begin-
ning in March, June, September, and December. The nega-
tive log likelihood decreases from 4007.71 (66) to 3854.56
(126) or x2(60) = 306.30, again significant with P < 0.001.

Increasing the number of strata always increases the pos-
sibility that some strata will not contain any observations.
Bills and Sibert (1997) showed that parameters for season x
region strata with low numbers of tag returns are not esti-
mated accurately in simulations. Some of the strata in the
four-season models had no observations, as indicated in Ta-
ble 2. Therefore, no movement hypotheses with more than
four seasons were tested.

Variability in movement was further tested by dividing the
data into two periods spanning the early and late parts of the
SSAP study. The tag release interval for the first period was
October 1977 through December 1979 with recaptures
through January 1980. The tag release interval for the sec-
ond period was February 1980 through August 1980 with re-
captures through August 1982. The M and Q, were fixed at
the estimates for the two-season model (see discussion on
effects of the length of the recovery period on estimates of
mortality). The results are presented in Table 3. The aggre-
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Table 2. Hypothesis tests for increasing the number of “seasons”
per year.

931

Table 4. Comparison of tropical (regions 1-8) and subtropical
(regions 9 and 10) movement parameters for model 2 and
division of the study into two periods.

Empty
Starting month  ~log L strata Season Region lul vl D
Model 1. Single season 4214.79 March-August Tropical 120.9 99.6 7504.3
(n = 36) (cool) Subtropical 101.7 100.21 845.7
September— Tropical 132.6 50.5 24 376.5
Model 2. Two seasons 1,7 4056.46 February Subtropical 04 38.3 29.2
(n = 66) 2,8 4020.03 (warm)
3,9 4007.71 Note: lul and Ivl are the root mean squared averages of u and v,
4, 10 4059.42 respectively, and D is the arithmetic mean of the estimates of D over the
5 11 4092.81 indicated region.
S’ 12 ié?gzg returns summed over the entire model domain as a function
’ of the time that the tagged fish were at liberty. Again, agree-
Model 4. Four seasons 1. 4.7. 10 388639 2 ment in time of recapture betwpen observed and predicted is
(= 126) 2.5. 8. 11 396192 3 good even for short times at liberty.
3. 6.9, 12 385456 | The estimated movement pattern 'for the two-§eason_, IQ-
4710, 1 388138 2 region model (model 2) shows considerable spatial variabil-

Note: The movement hypotheses are identified by the number of
seasons per year (single, two, or four), number of parameters estimated
(n), and the starting month of each season in the hypothesis. The
underlined likehood values indicate the best fit to the data within each
model. The number of season x region strata with no reported recaptures
is given for the four-season hypotheses. No emply strata occurred in the
single- and two-season models.

Table 3. Hypothesis testing for dividing the SSAP tagging study
into two periods.

Model 2 Model 2A  Model 2B Model 2C
Two seasons Period I Period II  Aggregate
Cohorts 159 124 35 159
Tags 94 430 64 186 30244 94 430
released
Tags 4211 2 495 1716 4211
recaptured
—log L 4007.71 1726.49 1767.67 3494.16
Parameters 66 66 66 132
Empty strata 0 0 1 1

Note: “Aggregate” is the sum of periods I and II. The underlined
likehood value indicates the best fit to the data.

gate likelihood for the two periods is 3561.51 and the 2
value is 1027.10, a significant improvement in fit at P <
0.001. The hypothesis in which the seasonal movements
vary among years is more consistent with the observed tag
returns than is a hypothesis in which the same pattern of
movement repeats each year.

Spatially resolved models predict both temporal and spa-
tial distributions of tag recaptures. Figure 5 displays the ag-
gregate distribution of observed and predicted tag returns
from model 2 summed over the entire period of the analysis.
Agreement is generally good, particularly for grid cells with
large numbers of returns. Figure 6 shows the total observed
and predicted returns from model 2 summed over the entire
model domain plotted by calendar month. Sharp peaks in tag
returns occur immediately following releases of large tag co-
horts. These large numbers of returns are predicted fairly
well by the model. Figure 7 shows observed and predicted

ity in both directed and random components of movement,
but with suggestions of large-scale spatial consistency
(Fig. 8). There is consistent eastward and southward directed
movement in regions 3, 5, 6, 7, and 8 during the September—
February season. Directed movements in region 10 are
northward in the March—August season and southward in the
September—February season. Seasonal differences are more
pronounced when the tropical (regions 1-8) and subtropical
(regions 9 and 10) model regions are compared (Table 4).
During the March—August period (the Southern Hemisphere
cold season), the zonal and meridional components of di-
rected movement are of about equal magnitude in both tropi-
cal and subtropical regions; diffusive movement is greater in
tropical than in subtropical regions. In contrast, during the
September—February period (the Southern Hemisphere warm
season), the zonal component of directed movement is much
greater than the meridional component in the tropical region,
whereas the reverse is true in the subtropical region; diffu-
sive movement is much greater in the tropical than in the
subtropical region.

Estimates of all parameters and approximate coefficients
of variation for the two-season fit (model 2) are tabulated in
Appendix B for reference.

Discussion

Accurate finite difference approximation of the advective
terms in eq. 2 is a well-known problem in numerical analy-
sis. The upwind difference approximation introduces “nu-
merical viscosity” into the solution that stabilizes the
numerical solution, but may also introduce bias in the esti-
mates of the diffusion coefficients, D. Low estimates of D
are evident in some of the region x season strata shown in
Fig. 8. Nevertheless, the model appears to give accurate pre-
dictions of both the temporal and spatial distribution of tag
returns. This result and the results reported by Bills and
Sibert (1997) show that introduction of numerical viscosity
is probably not important as long as the parameter values es-
timated using the upwind approximation are used in predic-
tion algorithms that also use upwind approximations. In this
sense, the computer program (approximation method, time
step, spatial resolution, and boundary conditions) rather than
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Fig. 5. Spatial distribution of observed and predicted (model 2) skipjack tuna tag returns summed over time. Each one-degree area of
the model region is divided into two triangles, the northwest triangle representing the observed and the southeast triangle representing
the predicted tag returns. The color of the triangles represents the number of returns on a logarithmic scale. Two triangles forming a
square of uniform color indicate close agreement between observed and predicted recaptures in a one-degree geographic area.

Geographic boundaries are the same as in Fig. 2.

the PDE is the model. Discrepancies might occur if specific
numerical values of the diffusion parameters were of inter-
est. For example, if comparison of estimates of movement
parameters between species or computation of movement
parameters from environmental information were of interest,
alternative approximations to the advective terms might be
more appropriate. Less dispersive approximations are avail-
able in the numerical methods literature (e.g., Leonard 1979;
Roe 1996), but they tend to be more difficult to implement
and require more computational steps. These methods are
currently under investigation for use in tuna movement anal-
ysis. In the meantime, O’Brien’s (1986) criticism of the use
of upwind differencing in fluid dynamics models suggests a
potentially useful method to approximate the amount of nu-
merical dispersion introduced by upwind differencing. A
derivation of the correction is given in Appendix C, and
“corrected” diffusion estimates based on it are included in
Appendix B.

The model presented in this paper introduces a quantita-
tive framework for expressing the movement of tagged fish
and, perhaps more importantly, introduces means to objec-
tively test alternative movement hypotheses. Statistically
significant differences in skipjack movement patterns are de-
tectable in the SSAP data, and movement appears to be
highly variable in time and space. There is, however, some

degree of spatial consistency in the estimated patterns. The
north—south movements noted in region 10 were previously
noted in the context of exchange of fish between Fiji and
New Zealand (Kearney 1982; Argue and Kearney 1983) and
in the context of interaction between widely separated fish-
eries (Kleiber et al. 1984). Whether this particular move-
ment represents a response to seasonal changes in habitat
quality or to trophic and spawning taxes is a matter for spec-
ulation (Gauldie and Sharp 1996). Variability in movement
on annual or longer time scales is not surprising given the
likely response of tuna populations to environmental varia-
tion, such as that mediated by the El Nifio — Southern Oscil-
lation (Lehodey et al. 1997).

In general, agreement in both time and place of predicted
and observed tag returns is excellent. Sporadic, isolated sin-
gle returns are not well predicted, which should not be sur-
prising. More importantly, the agreement between observed
and predicted tag recaptures for short times at liberty in the
aggregate attrition curve (Fig. 7) is very encouraging. This
result represents a substantial improvement over previous
analyses of these data using a spatially aggregated model in
which the data for short periods at liberty were excluded
from the analysis (Kleiber et al. 1987). Spatially aggregre-
gated models make the implicit assumption that tagged fish
mix instantaneously through the population in a very large
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Fig. 6. Observed (solid circles) and predicted (solid line) tag Fig. 7. Observed (solid circles) and predicted (solid line) tag
returns over the time course of the tagging study summed over returns over the life of each tag release cohort summed over the
the model area. The broken line indicates the predicted tag model area. The broken line indicates the predicted tag returns
returns from the spatially aggregated model. from the spatially aggregated model.
800 10000
500 L 1000
400 1
2 2 100
=3 3
© 300 ®
=] o
g g 10
F 200 | F
o e .
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Fig. 8. Estimated movement pattern for model 2. The length of the arrows is proportional to the resultant directed movement
component (u, v), and the areas of the circles are proportional to the random movement component (D). The arrow in the legend inset
represents directed movement of 100 Nmi-month™'; the circle represents random movement of 3000 Nmi’-month~'. Geographic
coordinates are the same as in Fig. 2.
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and undefined area. The model presented here makes the
assumption that mixing of tags occurs within a single com-
putational element of 60 x 60 Nmi, a much weaker assump-
tion.

We fitted a model similar to that of Kleiber et al. (1987)
to the same data used in the present analysis, obtaining esti-
mates of m and g, as the spatially aggregated analogs of
patural mortality and catchability coefficients. This six-
parameter model has a negative log likelihood function
value of 5023.04. The likelihood ratio comparison with
model 2 is 2030.66 with 60 df, significant with P < 0.001.
The predicted tag returns from the aggregated model are
also shown in Figs. 6 and 7 and demonstrate clearly the lack
of fit at short times at liberty.

The spatially resolved estimate of natural mortality is
about one half of the analogous estimate from the spatially
aggregated model. The usual interpretation of “natural” mor-
tality includes losses from the tag population that cannot be
attributed to the recapture of tagged fish. Therefore, M is
like fishing mortality for a fishing fleet that never reports
catches. This distinction is important because the catch-
ability coefficients, Qf, are closely related to the predicted
recaptures, whereas M is a “residual” mortality related to
tagged fish that were never recaptured or were recaptured
outside the model domain. In the spatially resolved model,
the model domain is precisely defined, and movement of
tagged fish within the model domain is explicitly parameter-
ized. In a spatially aggregated model, the model domain is
not well defined, and emigration of tagged fish from the
fishing grounds could be a major component of natural mor-
tality. The extent to which such movement is explicitly cap-
tured by the spatially resolved model depends on the size of
the model domain in relation to the distribution of the
tagged population and whether closed or open boundaries
are specified. In the present analysis, using open boundaries
or increasing the size of the model domain had little effect
on the estimate of M, indicating that emigration from the
model domain is probably not a major component of the es-
timated M.

Estimates of skipjack natural mortality from spatially
aggretated analyses are known to be size dependent, with
highest mortality at smallest and largest sizes (South Pacific
Commission 1996). However, since most of the fish tagged
by the SSAP were greater than 40 cm fork length, the as-
sumption of constant M is justified for most of the period at
liberty. The overestimation of recaptures at times at liberty
greater than 18 months (Fig. 7) could be attributed to in-
creasing natural mortality for these older fish. Age- or size-
structured versions of the diffusion model are possible, re-
quiring solutions of eq. 2 for each age or size cohort. Such
models are probably feasible with the current generation of
personal computers.

Interpretations of the estimates of M and @, are compli-
cated by nonreporting of tag recaptures. Our analysis as-
sumes complete reporting; failure of this assumption would
tend to cause overestimates of M and underestimates of O
If the numerical values of these parameters are of interest,
accurate estimates of tag-reporting rates are required (Hamp-
ton 1997).

Tuna populations often span entire ocean basins. They are
not uniformly distributed within their range, and the fisher-
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ies that exploit them are also not uniformly distributed. In-
clusion of movement in assessment models for such widely
distributed and mobile resources would seem essential. The
diffusion equation appears to be well suited to describe the
dynamics of tag movement, and using modern computer
hardware and efficient estimation algorithms, it is possible
to estimate movement parameters from tagging data. The
diffusion equation may thus be a useful framework for quan-
titatively considering spatial heterogeneity when devising
precautionary policies for “management...of highly migra-
tory fish stocks in their entirety” (Lévy and Schram 1996,
emphasis added).

Work is in progress to improve the approximation of the
directed movement terms and to apply the model to other
large-scale tagging data, including data for other species.
Future work will be directed to inclusion of size-related nat-
ural mortality and selectivity, environmentally mediated
movement (Bertignac et al. 1999), and estimation of move-
ment in circumstances where extensive tagging data are not
available.
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Appendix A. Applicability of diffusion models to fish movement

The applicability of diffusion models to fisheries in general and to skipjack tuna in particular has been criticized recently
(Gauldie and Sharp 1996). These criticisms are based on common misconceptions about diffusion models. We present some
general material that we hope will clarify diffusion models and correct some erroneous interpretations. The following presen-
tation is based loosely on material presented by Okubo (1980) and Feller (1966, 1968). Readers requiring more detail and
complete mathematical derivations are referred to these references.

The diffusion equation can be derived from the concept of a simple random walk in which an animal is assumed to move a
constant small distance, A, in a constant small interval of time, T, as shown schematically below in one dimension:

A A

Xo— A X Xg+ A

t+7 t t+T

At time 0, the animal is at position x, and can move either to the right with probability P; or to the left with probability P,. At
time ¢ + T, the animal is at position x, + A with probability P, or at position x, — A with probability P,. The difference in proba-
bility of moving to the left or to the right is € = Py — P,, or bias.

Okubo (1980) showed that

(Al) lime W=z lmAi(p=2
AT,e—0 AT—0 2

and that the rate of change in density of animals at a point can be expressed as

2
(A2) IN :__uQ]! +28_N
ot ox 2 ox?

This equation is the special case of eq. 2 in one dimension without mortality and gradients in # and D. The quantity A/t has
the dimensions of speed. The constant movement implied by this quantity is characteristic of obligate swimmers such as tu-
nas, and the presence of such a quantity in the derivation of the diffusion equation argues strongly for its applicability to skip-
jack. There is no direction implied by A/1. Direction is given to movement by the bias, €. Thus, it is possible for the directed
movement term, u, to be zero without implying that the animals are immobile. Rather, u = 0 because there is no preferred di-
rection to their movements. The quantity A/T also appears in the diffusion parameter D and can be interpreted as a “character-
istic speed” parameter.

The model presented in this paper implicitly interprets € and A, and hence u and D, to be determined by time and place
(i.e., season and region) as might be appropriate for an animal with well-defined seasonal migratory pathways. In principal, it
is equally possible to parameterize € and A in terms of gradients in environmental variables such as sea surface temperature,
depth of the oxycline, or forage (Bertignac et al. 1999). The result would be a model in which all movement is determined by
features of the environment.

The diffusion equation is closely related to the normal probability distribution. Feller (1968) showed that if the probability
of observing an animal at point x at time ¢ is given as a normal probability density function

1 (x—un?
e 2 Dt

(A3) ptx)

1
21Dt

the function p uniquely satisfies eq. A2. In other words, if animals are dispersing according to eq. A2, after a period of time ¢,
their mean position will be given by ut and the variance of their position will be Dr. Thus, u can be considered to be the aver-
age rate of displacement (which may be zero) and D a measure of the rate at which the variance of the displacement increases
with time, or spreading rate (Feller 1966).

Simple diffusion models are not very interesting without augmentation. If « = 0 in eq. A2, the equilibrium condition is
achieved when all horizontal gradients in population density vanish, i.e., no spatial heterogeneity, oON/ox = 0. This case is, of
course, the “heat equation” used to describe the distribution of heat in a uniform plate. Various authors who have used diffu-
sion models to describe spatial heterogeneity have introduced additional structure into the diffusion framework. For instance,
MacCall (1990) introduced spatially variable logistic population growth and linked the advective parame:er u to the instanta-
neous growth rate. Similarly, Mullen (1989) also introduced spatially variable logistic population growth, but linked the diffu-
sive parameter to local carrying capacity.

Spatial heterogeneity can also be achieved using a diffusion model in which there are spatial gradients in the advective
terms, i.e., du/dx # 0. Such variability can be introduced explicitly as in eq. 2 with the term (9/0x)uN). Alternatively, the dif-
fusive term can be expressed as (9%/9x2) (DN), which introduces “implicit” advection equal to dD/dx (which has the same
units as velocity). This parameterization may be preferable in some situations (Okubo 1980) but limits the amount of
advection that can be expressed by the model.

The diffusion model presented in eq. 2 is one of a large class of models that can be applied to the analysis of spatial varia-
tion in ecology and fisheries. Other models can be derived by making alternative assumptions about the underlying process,
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e.g., random walks where the step size is not uniform (Schlesinger and Klafter 1985) or correlated (Okubo 1980). The chal-
lenge for fisheries is not whether the diffusion framework is suitable, but rather to explicitly include population movement
and spatial structure in stock assessment models. Diffusion models are one class of models that appear to work.
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Appendix B. Numerical values of all estimated model parameters with coefficients of variation

Table B1. Estimates and coefficients of variation (CV) of natural mortality, M, and catchability
coefficients, Q for the best two-season x 6-month model (2).

Estimate CvV Estimate from aggregated model

M (month™) 0.11 0.013 0.20
O, of fleet

Pole-and-line, Papua New Guinea 0.00041 0.0016 0.0000052

Pole-and-line, Solomon Islands 0.00040 0.0025 0.00000029

Pole-and-line, Fiji 0.0046 0.0040 0.0000080

Pole-and-line, Japan 0.00083 0.0058 0.000000094

Purse seine, Japan 0.0057 0.018 0.0000032

Table B2. Estimated movement parameters with approximate coefficients of variation given in parentheses.

Season  Region  Tag returns  u (Nmi-day™) v (Nmi-day™") D (NmiZ-month™) D + D (Nmi®month™)

1 1 30 4.9 (0.021) -0.30 (0.0013) 0.047 (0.021) 4 600 (0.020)
2 2 8.9 (0.057) ~7.9 (0.043) 17 000 (0.23) 32000 (0.11)
3 73 1.8 (0.017) 0.64 (0.0057) 34 000 (0.093) 36 000 (0.087)
4 238 -1.0 (0.0074) -0.75 (0.0030) 4 100 (0.027) 5700 (0.019)
5 779 -0.14 (0.0010) -0.41 (0.0012) 510 (0.0026) 999 (0.0015)
6 3 —4.8 (0.027) 4.7 (0.017) 1 600 (0.079) 10 000 (0.018)
7 285 ~-0.20 (0.0010) —0.70 (0.0016) 110 (0.0095) 920 (0.0020)
8 2 —0.14 (0.0065) 1.4 (0.0097) 2 400 (0.042) 3900 (0.025)
9 2 4.5 (0.0067) 0.78 (0.0023) 2 400 (0.013) 7 100 (0.0051)
10 1309 0.87 (0.0011) 2.2 (0.0016) 8.5 x 107 (0.0087) 2 800 (0.0012)

2 1 114 0.68 (0.021) 0.34 (0.018) 120 000 (0.012) 120 000 (0.012)
2 47 -8.1 (0.031) -0.22 (0.0085) 40 000 (0.12) 47 000 (0.10)
3 125 5.6 (0.020) -0.989 (0.0069) 8 900 (0.048) 15 000 (0.028)
4 251 0.67 (0.0059) 17 (0.0039) 3.0 (0.055) 2200 (0.0031)
5 137 2.7 (0.0048) 1.5 (0.0047) 1400 (0.015) 5200 (0.0043)
6 35 5.0 (0.033) 0.40 (0.0070) 11 000 (0.10) 16 000 (0.074)
7 259 049 (0.0016)  -0.56 (0.0019) 41 (0.017) 990 (0.0016)
8 1 5.1 (0.036) 4.0 (0.016) 12 000 (0.0540 20 000 (0.035)
9 20 0.017 (0.0082) 1.3 (0.0037) 2.9 x 1073 (0.034) 1 200 (0.0036)
10 490 0.0021 (0.0016) -1.2 (0.0014) 58 (0.0088) 1 200 (0.0015)

Note: D + D is the “corrected” estimate of total diffusive movement based on the derivation presented in Appendix C.

Appendix C. Approximating numerical dispersion

O’Brien’s (1986) criticism of the use of upwind differencing in fluid dynamics simulations suggests a potentially useful
method to approximate the amount of numerical dispersion introduced by upwind differencing. It is necessary to assume that

there are no spatial gradients in the movement parameters to apply this correction, i.e., to assume that
ou = i3 = 9D 9D 0. Under these assumptions the upwind difference approximation, eq. 4, of the directed movement
dx dy dx dy

term for u; > 0 is

oN _ N, —Ni,

U =U

e e =2u.u;l.
v ox

Cl . .
€h Y Ax Y 2Ax
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Adding a very particular zero, the approximation becomes
w, ON gy Ni=Nist g, Nt =N
Yox Y aax Y 2Ax
which upon rearrangement yields
€3) u a_N:uij Ax Ny —2N; +Niy Ty Niyy =Niy
x 2 ) (aw? 2

(C2)

The right-hand term in eq. C3 is the centered-space approximation of the directed movement term, appropriate when ? =0.
X

The left-hand term is a finite difference approximation for a second partial derivative in the x direction used for the random

movement term appropriate when g—D =0. The numerical dispersion introduced by upwind differencing is approximately
X

u,-j(%]for u;; > 0. Similar derivations apply for u; < 0 as well as for the terms involving v;;. The approximate amount of nu-
merical dispersion is thus

(c4) D :%(Aﬂmwym).

Equation C4 approximates the bias introduced into the estimates of the random movement parameter by the use of upwind
differencing in areas of the model domain where gradients in the movement parameters (&, v, D) are small, such as the interior
parts of regions.
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