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1 Model description

The state-space extended Kalman filter model applied to the analysis of data
from archival tags has been refined and extended since 2001 when Sibert et
al. (2003) was submitted for publication. The model and extensions used in
this paper are completely described here.

1.1 The basic model

The basic model for an observed track is a state-space model, where the
state equation describes the movements of a fish in an axis—parallel plane. A
biased random walk model is assumed:

= 1t+c+mn, 1=1,....T (1)

Here «; is a two dimensional vector containing the coordinates at time ¢;, ¢; is
the drift (or bias) vector describing the deterministic part of the movement,
and 7); is the noise vector a describing the random part of the movement. The
deterministic part of the movement is assumed to be proportional to time:

o= (o) @

The random part is assumed to be serially uncorrelated and follow a two
dimensional Gaussian distribution with mean vector 0 and covariance matrix

Q;, where
2D AL, 0
Qi = ( 0 2DAt > ' 3)

The measurement equation of the state—space model is a non—linear map-
ping of the coordinates on the axis—parallel plane to the sphere. The original
coordinates are in Nautical miles and the coordinates on the sphere are in
degrees of longitude and latitude. The measurement equation describing the
actual measured position y; is:

yz:Z(az)+dz+5u ’L:l,,T (4)



where z is the coordinate change function given by:

Qi1
Z(CYZ) — ( 6OCOS(aio’¢2Z;/180/60) ) (5)
60
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and g; is the measurement error which is assumed to follow a Gaussian dis-
tribution with mean vector 0 and covariance matrix H;, where

o2 0
=5 o) )

The variance of the latitude measurements is closely related to the equinox.
Measurements close to the equinox have large latitude errors. The following
variance structure is assumed:

o2 =02 / (cos (27 (J; + (—1)"by) /365.25) + ao> ®)

d; is the observation bias:

where J; is the number of days since last solstice prior to all observations,
s; is the season number since the beginning of the track (one for the first
182.625 days, then two for the next 182.625, then three and so on). ag, by

and o are model parameters.

1.2 The extended Kalman filter

As the model described in the previous section is non-linear, an approxima-
tion is needed to apply the Kalman filter. The extended Kalman filter simply
uses a first order Taylor approximation around the optimal estimator a;;—;:

2(a;) = z(a;-1) + Z (0 — ag-1) (9)

Here Z; is the first derivative (or the Jacobi matrix) of the function z, which
is calculated as:

o ; 1 o 17 sin(ag 2-m/180/60)
Z,(OZZ‘) — Za(ocj) — < 6OCos(ai,2(-)7r/180/60) 180(60Cos(ozi,lz~7T/180/60))2 (10)
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The optimal estimator a;;_; is inserted into the matrix in to obtain Z
The updated Kalman filter equations are written as:

Ajli—1 = Qj—1 + C; (11
Pjio1 =P+ Q; (12
Fy = ZiPyiZ] + H; (13

(14
a; = Q-1+ Pi\ifl/Z\Z{F;'_lwi (15
b= Py — Pz‘|z'—1/Z\£Ffl/Z\iPi|z’—1 (16

Wi = Yi — Z(ai\i—l) —d;

)
)
)
)
)
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The filter is started by calculating ag = 27 (yy) and assuming this position
to be known without error (Py = Oaxs).

1.3 Pop—off model

If at any point during the observed track the tag came off the fish, the move-
ment pattern would be expected to change instantaneously. The measure-
ment equation (4)) is unchanged, as it only describes how the true position of
the tag is translated into the observed measurements. The movement pattern
is described by the state equation modified to accommodate variation in
¢; and 7; along the track.

Consider a given pop—off time 7. If the tag came off the fish after 7 days
at liberty, the parameters describing the movement of the tag (u, v and D)
would be expected to be different while the tag was on the fish, than while
the tag was simply floating by itself. Denote the parameters before pop—off
as u1, v1 and Dy, and after pop—off as us, v, and D.

Observations are only available at discrete time points, so the movement
between two observations may be partly before the pop—off and partly after.
As a consequence the terms c¢; and 7; should be calculated as a weighted
average. For instance the first coordinate of the drift term ¢; should be
w; At;, where

def U1l s if 7 Z tz

~ ef ) 7=t T :

U; = Wave(ul, U, ti_1, ;s T) = A;i Ul + A_tiu2 , if i1 <1<t
Us it <t

(17)



Following this example the second coordinate of ¢; should be v;At;, and the
diagonal elements of the covariance matrix @); of n; should be 2D;At;, where

’l,)vi = WaVG(Ul,Ug,tifl,ti,T) & /5; = WaVG(Dl,DQ,tifl,ti,T). (18)

The basic model is clearly a sub—model of the pop—off model, as it correspond
to the case where u; = uy, v1 = v and Dy = D,. Compared to the basic
model, the pop-off model has four additional parameters (7 and the three
extra movement parameters).

In the actual implementation of the pop—off model a smooth (differen-
tiable) version of the wave function was used. This modification allows for
automatic differentiation of the model and the approximation error is negli-
gible.

A smooth (differentiable) approximation of the wave function defined in
is found in the following way. The wave function can also be defined as:

- I
U; = Wave(ul, Ua, tifl, ti, 7') = AL / 1{t<T}u1 + 1{t27—}u2 dt (19)

ti—1

This view on the weighted average function inspired the approximation. The
smooth weighted average function swave is defined as:

- I tan(S(t — 1
u; & swave(uy, ug, t;i_1,t;,T) def. / (ug — uy) (a an(S(t — 7)) + —) + uy dt

Atz tio1 s 2
(20)
_w—u o oyl 200 _ V2 11
= TALS (S(t, T)atan(S(t; — 7)) 210g(S (t;—7)°+1) (21)
Ul + Usg

S(t; — m)atan(S(t; — 7)) + élog(sz(ti —7)? + 1)) + 5

Here S is the scaling constant. Large values of S gives a close approximation
of the weighted average function wave. In the implementation a value of
S = 100 was used, which gives a very close approximation.



1.4 Maximum likelihood principle

The negative log—likelihood function for the Kalman filter is given by (Harvey,
1990):

T T
((0) = —log L(Y]0) = Tlog(2m) + 0.5 "log(|F|) + 0.5>  w/F 'w;. (22)
i=1 i=1
The estimated values of the model parameters are found by minimizing the
negative log-likelihood function as a function of the model parameters.
§ = argmin £(6) (23)

0€®

where O is the domain of the model parameters expressing upper and lower
bounds.

Let M, denote the pop—off model and M, denote the basic model. The
model parameters of model M are 6y = (uy, ug, v1, s, D1, Do, T, by, by, 04, 0y, bo),
and the model parameters of model M, are 6y = (u,v, D, by, by, 04, 0y, bp).
The standard likelihood-ratio test can be used for any fixed 7 to compare
the two models M; and Ms,, where M, is a sub—model of M; The test is
calculated as:

L, (Y1]0)
Ry oy, = ————=% 24
Mt L (YV]6) (24
P-valuey, s, = P (Xi > —2log RM1HM2) (25)

The four degrees of freedom is calculated as the difference between the num-
ber of parameters in the two models.

The P-value computed by equation is only exact if the value of 7 is
fixed. Our method searches for the value of 7 which maximizes the likelihood
ratio, and thus the P-value is not an accurate measure of the desired prob-
ability. Nevertheless, the likelihood ratio is a sensitive measure of deviance
and a valid criterion for estimating 7. Nielsen (2004) presents a computer
intensive method for estimating a more exact P-value.

1.5 Locating the pop—off position 7

The most probable pop—off position is the maximum likelihood estimate of
the model parameter 7 in the pop—off model. 7 denotes the maximum likeli-
hood estimate of 7. 7 describes the optimal position to divide the movement
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model of the track into two, or in other words the ‘cut—position’ resulting in
the highest likelihood.

It proved difficult to do a standard minimization of the negative log like-
lihood /¢ corresponding to the pop—off model, as random fluctuations of the
track can result in many local minima. To ensure that a global minimum is
found, the following ‘brute force’ algorithm was used.

Initial scan: For a number (20 or so) of different fized values of 7 covering
the entire track, the negative log likelihood corresponding to the pop—
off model is minimized by estimating the remaining parameters u, us,
v1, Vg, Dy, Dy, by, by, 05, 0, and by.

Final minimization: Starting from the pop—off position 7 where the ini-
tial scan returned the smallest negative log likelihood value, a final
minimization of the negative log likelihood corresponding to the entire
pop—off model is done. In this minimization the parameters uq, us, vy,
vo, Dy, Dy, by, by, 04, 0y, by and 7 are included.

If enough fixed values of 7 is included in the initial search, this algorithm
will return the global minimum.

1.6 The most probable track

The Kalman filter and the maximum likelihood principle supply estimates
of the model parameters and the predicted track. A point on the predicted
track at any given time point is calculated using all observations available
at that time, that is a; = E(lyr,...,y;). Intuitively, it seems reason-
able that better estimates can be produced, once the entire track is known.
The most probable track is calculated using all observations, and after the
parameters has been estimated. A point on the most probable track is

a; T = E(Oéi|y17 e ,?JT)-

The actual computation of the most probable track is done in a single
backwards updating sweep of the predicted track. The last point of the most
probable track is identical to the last point of the predicted track, as all
observations were available to the predicted track at the final point. The last
point of the most probable track is known arjr = ar and the prediction error



of the last point Prjp = Pr The following equations are used to compute the
previous points of the most probable track.

a;r = a; + P} - (az‘+1\T —a; — Ci—1) (26)
Pyr = P+ P - (Pyyr — Pa) P, where P = PZP;IHZ (27)
This technique is known as smoothing in textbooks on the Kalman filter,
as the resulting track most often is smoother than the predicted track.

1.7 Last point fixed

If the last position is known without error, or with an error term which is
negligible compared to the other observations, it can be used as a fixed point.
This corresponds to setting the measurement error and the measurement bias
to zero for the last observation (Hy = 0Oixo and dy = 02x1). This results
in a predicted (and most probable) track ending up in the fixed pop—off
location. As the last point is now assumed known without error, the number
of observations 7" in the likelihood function should now be replaced by
T-1.

1.8 Multi—segment model

The pop-off model is easily extended to a general notion of change in
apparent behavior. The change in behavior from one movement pattern,
characterized by distinct values of the movement parameters (u,v, D), to
another is signaled by some event. In the pop-off model, the event is the
instant when the time at liberty exceeds the pop-off time, 7. Movement from
one geographic region to another is an alternative way to specify the behavior
change event. The multi-segment model defines a number of geographic
regions consisting of closed polygons defined by a series of longitude and
latitude pairs. Let R; be a 2 X n; matrix containing n; pairs of arbitrarily
specified geographic coordinates defining a region j. In a manner analogous
to equations [17] and [I§] the terms of ¢; and 7; are defined according to ther
current estimate of the tag position a; (equation , by:



u; = u;
a; € Rj ?;v: (] (28)

where (by an abuse of notation) a; € R; means that the point a; lies within
the polygon defined by R;. This parameterization of regional variation in
movement is similar to that used by Sibert et al. (1999) in large scale diffusion
models.

1.9 Multi—track model

The multi-track model is a simple extension of the general model in which
the likelihood is maximized over all tracks with a common set of estimated
parameters. That is the likelihood function ¢(6) in equation [22|is replaced
by

00) =—log L(Y|0) =

m T T
3 {Tk log(27) + 0.5 Zk: log(|Fii|) + 0.5 i w;iFk’ilwki}. (29)

k=1 i=1 i=1

where m is the number of tracks.



2 Markov Chain Monte Carlo Simulation

The state-space Kalman filter model parameters are normally estimated by
quasi-Newton numerical minimization of the extended Kalman filter likeli-
hood function. The minimization algorithm occasionally failed to converge to
a solution for multi-track models, possibly due to multiple local minima. Fur-
ther, the introduction of spatially defined multi-segment tracks causes prob-
lems of non-differentiability in the likelihood function. Markov chain Monte
Carlo (MCMC) optimization was used to estimate approximate probability
distributions of the model parameters for the multi-track and two-region KF
variants. Although MCMC is often associated with Bayesian analysis, the
method is general and has wider applications in optimization (Geyer, 1996;
Gelman, et al. 2004, chapter 11). The state space Kalman filter model
is implemented in ADModel Builder (Otter Research Ltd.) which uses the
Metropolis-Hastings algorithm for MCMC simulation.

We ran 500,000 simulations for each model and sampled the parameter
values after every 100 simulations. Inspection of the sampled Markov chains
indicates whether the algorithm has found parameter values that produce
a relatively stationary likelihood. The mode of the sampled Markov chains
were interpreted as point estimates of model parameters.

In the following, two figures are shown for every set of combined tracks.
The movement parameters (u,v, D) for the offshore areas are shown in the
thick gray (light blue) lines. The Markov chains are shown by plotting the
parameter value against the sample number and by plots of the empirical
likelihood histograms for each estimated parameter. In both cases, the ranges
of the parameter values are scaled to the extremes of last 4,000 samples of
the Markov chains.

The MCMC converged to stationary values within the first 10,000 sim-
ulations (100 samples) for all three sets of tracks from combining the 1999,
2000 and 2002 deployments separately. However some of the combinations
of tracks which combine the 2000 required longer simulation to converge to
a solution. For example, the Markov chains did not reach stationary val-
ues until more than 50,000 simulations had been conducted when the 2000
deployments were combined with the 1999 deployments, Figures [7] and [§]
suggest that the parameters are not well defined.
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Figure 13: Samples of MCMC chain for all tag releases combined.
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