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Abstract. Many species of sea turtles spend part of their life cycle gathered in large
feeding aggregations that combine individuals from widely separated rookery populations.
Biologists have applied methods of mixed-stock analysis to mitochondrial DNA samples
from rookeries and mixed populations to estimate the contributions of different rookeries
to the mixed stock. These methods are limited by the amount of genetic overlap between
rookeries and fail to incorporate ecological covariates such as rookery size and location
within major ocean currents that are strongly suspected to affect rookery contributions. A
new hierarchical Bayesian model for rookery contributions incorporates these covariates
(and potentially others) to draw stronger conclusions from existing data. Applying the
model to various simple scenarios shows that, in some cases, it can accurately estimate
turtle origins even when turtles come from rookeries with high degrees of genetic overlap.
Applying the model to more complex simulations shows that it performs well in a wide
range of scenarios. Applying the model to existing data on green turtles (Chelonia mydas)
narrows confidence intervals but does not change point estimates significantly. Applying
it to loggerhead turtles (Caretta caretta) strengthens the dominance of the large rookery
in south Florida, and brings estimates from a small data set on sea turtle strandings into
line with those from rookery data. Used appropriately, hierarchical Bayesian methods offer
great potential for introducing multiple levels of variation and ecological covariates into
ecological models.

Key words: Bayesian hierarchical model; Caretta caretta; Chelonia mydas; ecological covariate;
genetic overlap; mixed-stock analysis; mtDNA haplotypes; rookery; sea turtles; spatial population
structure.

INTRODUCTION

Many species of sea turtles, including some species
that nest and feed throughout the Atlantic, are threat-
ened or endangered. These species spend part of their
life cycle gathered in large feeding aggregations that
combine individuals from widely separated rookery
populations (Bowen et al. 1996, Bolten et al. 1998,
Lahanas et al. 1998). Biologists have used mixed-stock
analysis to estimate the contributions of different rook-
eries to the mixed stock, allowing them to assess either
the importance of particular rookeries to the health of
the mixed populations, or the impact of mortality in
the mixed populations on the health of particular rook-
eries.

Mixed-stock analysis estimates the contributions of
different source populations (rookeries) to a mixed
population by comparing the distributions of genetic
or phenotypic traits of individuals in the rookeries and
in the mixed population (Fournier et al. 1984). For sea
turtles, mtDNA haplotypes have established contribu-
tions to central mixed populations from rookeries
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throughout a surprisingly wide geographic catchment
basin (Bowen et al. 1996, Bolten et al. 1998, Lahanas
et al. 1998). These estimates have wide confidence in-
tervals (Bolker et al. 2003). As sea turtle biologists and
managers strive for more precise estimates of rookery
contributions, they will need either to gather more data
or to squeeze more information out of existing data.
There are diminishing returns to gathering additional
data of the same type; once one has enough data to
characterize the genotype frequencies within rookeries
and the mixed population accurately, the overlap of
genetic information between rookeries becomes lim-
iting. Current analytic methods are near their limit;
computational Bayesian methods (Pella and Masuda
2001, Bolker et al. 2003) can incorporate prior infor-
mation and improve the accuracy of confidence inter-
vals, but do not improve point estimates (Bolker et al.
2003). One solution to this dilemma is to develop mod-
els that incorporate ecological covariates. Adding eco-
logical covariates will extend the limits of mixed-stock
analysis and will provide information on the ecological
processes driving population dynamics.

This paper explores techniques to incorporate two
simple ecological covariates, rookery size and location
within ocean gyres, into mixed-stock analyses for sea
turtles. A Bayesian hierarchical model (Gelman et al.
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1996, Sauer and Link 2002) is developed that accounts
for variation at the level of sampling error, variation
in the true contributions from each rookery, and var-
iation in the relationship between size and expected
contribution. This technique incorporates ecological
covariates while maintaining the flexibility to accept
that a strong genetic match really represents a larger-
than-expected contribution from a small rookery. At
one extreme, standard mixed-stock analysis methods,
such as unconditional maximum likelihood, UML (Pel-
la and Milner 1987), ignore ecological covariates. At
the other extreme, one could construct a maximum like-
lihood regression model in which the parameters are
the rookery genotype profiles (as in unconditional max-
imum likelihood) and the intercept and slope of the
relationship between rookery size and rookery contri-
bution. One could then estimate the parameters using
the combined multinomial likelihood of the rookery
samples (as in UML) and the mixed-stock sample based
on the estimated size-based contributions. However,
this procedure would classify any deviation from the
best-fit line as error. To gain the benefits of ecological
covariates without losing the ability to use the infor-
mation given by apparent outliers, we use hierarchical
models (Gelman et al. 1996). Hierarchical models fit
into Bayesian frameworks and are also natural exten-
sions of frequentist mixed-model approaches (Dennis
1996).

In this paper we construct and evaluate the perfor-
mance of hierarchical models that address ecological
processes. We apply the models first to ‘‘data’’ from
simple simulations of genetic sampling, to assess their
validity and power, and then to existing data from log-
gerhead (Caretta caretta) and green (Chelonia mydas)
turtles. Finally, we discuss some of the lessons learned,
questions opened, and broader issues raised by using
more complex statistical models incorporating ecolog-
ical covariates to understand patterns in ecological
communities.

METHODS

Hierarchical models allow us to incorporate rela-
tionships between rookery size and rookery contribu-
tion without assuming that any deviation from these
relationships is solely due to sampling error. Rather
than representing ecological relationships as fixed pat-
terns with a single layer of error superimposed, hier-
archical models represent variation at multiple scales.
For example, a hierarchical regression model could al-
low variation of the slope and intercept parameters in
different groups in addition to variation of individual
points around the regression line. The roots of hier-
archical modeling lie in Bayesian estimation: although
frequentist approaches to hierarchical (or mixed) mod-
els exist (Clayton 1996, Pinheiro and Bates 2000), a
broader and more powerful range of tools is available
using a Bayesian framework.

Perhaps the most important aspect of the Bayesian
perspective is that there are no fixed parameters: every
parameter has a probability distribution. The goal is to
use the data to estimate the probability distributions of
the parameters, called the posterior distributions. We
combine a prior distribution, which can be uninfor-
mative or weak (if we have little previous information
or want to make few assumptions about the possible
range of parameters), with a statistical model for the
data that gives the likelihood of observing our data,
given a particular set of parameters. In nonhierarchical
(or non-covariate) Bayesian models, we specify only
the prior distributions of the parameters themselves.
Distributions are typically specified in terms of their
parameters, called hyperparameters: for example, the
means and variances of the slope and intercept would
be the hyperparameters in a linear regression model.
Hierarchical models redefine these constant hyperpar-
ameters as having their own distributions, which in turn
have prior distributions that are defined by another lev-
el of hyperparameters. In the linear regression example
just given, instead of specifying constant values for the
prior means and variances of the slope and intercept,
we would make these means and variances into distri-
butions and specify their prior uncertainty. In principle,
the top layer of the hierarchy can always be replaced
by yet another set of hyperparameters with their own
prior distributions.

The model

This section describes the general framework of the
model; details are in Appendices A and B. The model
extends the original model of Pella and Masuda (2001).
The covariate model adds a hierarchical layer on top
of the rookery contribution parameter; rookery contri-
bution parameters are drawn from probability distri-
butions based on rookery size. Fig. 1 shows the directed
acyclic graph (DAG), which illustrates the structural
dependencies of the model.

In a DAG, circles represent unknown parameters and
squares represent sources of data: both kinds of ele-
ments are called nodes. A node with an outgoing arrow
is called a ‘‘parent’’ and a node with an incoming arrow
is called a ‘‘descendant’’ of that parent. The actual
estimates of different unconnected parameters (such as
the rookery haplotype frequencies and contributions)
may be correlated once the model is estimated from
data. Solid arrows in a DAG indicate probabilistic de-
pendencies, where the value of a descendant node is
drawn from a probability distribution determined by
the parent node(s); dashed arrows indicate logical de-
pendencies, where the descendant parameter has a fixed
value that is simply calculated from the parent node(s).
For example, ‘‘Rookery Contribution Mean’’ is deter-
mined by an algebraic function of three elements:
‘‘Rookery Size’’ and the two parameters ‘‘Intercept’’
and ‘‘Slope’’ (Fig. 1). When identifying parent–de-
scendant relationships in the DAG, the deterministic
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FIG. 1. Directed acylic graph (DAG) of a non-covariate mixed-stock analysis model. The non-covariate model (represented
by the black nodes) is embedded within a covariate model. The covariate model adds the model components shown in gray
and changes the distribution of rookery contributions from Dirichlet to additive logistic normal. ‘‘Rookery Contribution’’ in
the gray nodes is additive log-ratio-transformed (indicated by ‘‘,’’; see Methods: Additive log ratio transformation/logistic
normal distribution). Circles represent unknown parameters; squares represent data. Solid arrows indicate probabilistic de-
pendencies; dashed arrows indicate logical dependencies.

dependencies (dashed arrows) are collapsed so that a
node that depends on another through a series of cal-
culations is counted as a descendant.

Previous non-covariate models (Pella and Masuda
2001) used a Dirichlet distribution as the prior distri-
bution for the contribution parameters (black ‘‘Rookery
Contribution’’ node in Fig. 1). In the covariate model,
we use a more flexible logistic normal distribution (to
be discussed) with mean parameters based on the rook-
ery sizes (Fig. 1).

Additive log ratio transformation/logistic
normal distribution

Analyzing compositional data or estimating com-
positional parameters such as rookery contributions
presents particular technical challenges. Each rookery
contribution must be between 0 and 1 (inclusive), and
the contributions must sum to 1. The summation con-
straint is particularly challenging, as it induces a cor-
relation between the parameters and limits one’s choice
of statistical models. Ordinary linear regression models
neither limit the range of possible contributions nor
constrain the sum to be 1; logistic regression models
limit the range, but can still fail the summation con-
straint. One can fit constrained versions of these mod-
els, but brute-force attempts to fit constrained models
often lead to artifacts.

The additive logistic normal distribution (Aitchison
1986, Billheimer et al. 2001) deals with these problems,
at the cost of making our model slightly less intuitive.
Suppose we pick R 2 1 values (y1, . . . , yR21) from a
multivariate normal distribution. We can transform
these values to a set of R values that sum to 1 and that

are each between 0 and 1 (i.e., that satisfy the con-
straints of compositional data) by saying:

exp(y )ip 5 i 5 1, . . . , R 2 1i R21

1 1 exp(y )O j
j51

R21

p 5 1 2 p . (1)OR j
j51

These data are now distributed (by definition) accord-
ing to the logistic normal distribution. The additive log
ratio (alr) transformation of p 5 (p1,. . . , pR) is

p p1 R21alr(p) 5 log , . . . , log . (2)1 2 1 2[ ]p pR R

The alr is the inverse transformation that allows us to
go from a set of compositional data to a (putatively)
multivariate normal data set. If rookery size and rook-
ery contribution data are logistic-normally distributed,
a variety of sensible statistical models can be defined
in terms of the multivariate normally distributed set of
points that result from the additive log ratio transfor-
mation of the data. For example, we assume that the
additive log-ratio-transformed contributions of differ-
ent rookeries are independently normally distributed
with means that depend linearly on the additive log-
ratio-transformed rookery sizes. The additive log ratio
transformation takes care of the necessarily negative
correlation that occurs because all of the rookeries are
sharing contributions to a single mixed population; be-
yond this correlation, we have assumed that the con-
tributions are uncorrelated. Additional correlations
could be incorporated by modeling the correlation
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structure among the additive log-ratio-transformed
rookery contributions (Billheimer et al. 2001).

Model evaluation

Performance criteria are needed to compare models.
Mean squared error (MSE) is a common criterion for
the performance of statistical methods, but for com-
positional data like ours, the Aitchison distance (Aitch-
ison 1992) is superior. Like the MSE, the Aitchison
distance accounts for both bias and variance; also like
the MSE, a smaller Aitchison distance indicates superior
model performance. Our results for both MSE and
Aitchison distances were qualitatively similar. Models
that incorporate added complexity can only perform
better when they incorporate structure that is present
in the data (and sometimes not even then; Ludwig and
Walters [1985]). Comparing the covariate and the non-
covariate model, we expect the non-covariate model to
perform better (to have smaller Aitchison distance/
MSE) when the covariate model incorporates poor data,
e.g., if there is really no association between contri-
bution and rookery size.

Another performance criterion of a model is the cov-
erage, which indicates the accuracy of the estimated
confidence limits. A region that includes the true value
a% of the time in repeated samples is called the a%
confidence region. Coverage can be estimated by run-
ning many simulations and evaluating the fraction of
the time when the nominal a% confidence region in-
cludes the true value. If the coverage is less than a%,
the confidence region is too narrow, and vice versa.
We must distinguish between the univariate and mul-
tivariate coverage; the multivariate coverage describes
the proportion of the time that the confidence intervals
simultaneously include the true values for all n of the
true parameters, whereas the univariate coverage only
describes the proportion of time that confidence inter-
vals for each individual parameter include the true val-
ues. Therefore, the multivariate coverage is always
more conservative (lower) than the univariate cover-
age. For example, if the estimated rookery contribu-
tions in a five-rookery model are uncorrelated and the
univariate coverage for each of the five rookeries is
95%, then the multivariate coverage will be only
(0.95)5 ø77%.

When data are collected in the field, the true param-
eters are unknown. In this case, plausible fits to the
data can be derived by testing summary statistics sam-
pled from the posterior distribution (Gelman et al.
1996, Congdon 2001). Model selection is a more dif-
ficult problem, which we will discuss further.

Simulation procedures

Simulations were run to illustrate the strengths and
weaknesses of the hierarchical covariate model. The
relative performance of the covariate and non-covariate
model was explored for a wide range of parameter val-
ues. Models were evaluated by comparing performance

under different assumptions regarding the correlation
strength between rookery size and rookery contribu-
tion. When the correlation strength is weak, the co-
variate model should not perform better than the simple
non-covariate model. The other parameters will deter-
mine how strong a true correlation is necessary to jus-
tify using the covariate model, and how much better
or worse the covariate model does for high and low
correlations. Simulations were defined by specifying
three suites of parameters: (1) true rookery contribu-
tions and rookery sizes, (2) true rookery haplotypes,
and (3) the sizes of samples from the rookeries and
from the mixed population.

Rookery sizes and rookery contributions.—To sim-
ulate rookery contributions and rookery sizes for R
rookeries, we start by sampling R 2 1 pairs of values
from a bivariate normal distribution ({xi,yi} ; N (0,M),
i 5 1, . . . , R 2 1), where M specifies the variances
of each variable and the correlation between them (i.e.,
the variance–covariance matrix). Using the inverse of
the additive log ratio transform (Eq. 1) leads to a bi-
variate distribution for the relative rookery sizes and
rookery contributions. The maximum possible variance
of a set of R non-negative values that add to 1 is (1 2
1/R)/R. Numerical simulations show that below this
maximum there is a fairly tight one-to-one relationship
between the variance of the original normally distrib-
uted variable and the variance of the transformed data.
Two different normal variances were used in the sim-
ulations. For the ‘‘high’’ variance case, the bivariate
normal variance s2 is set to 2.5, corresponding to re-
alized variances ( (in rookery contribution) or (in2 2s sc r

rookery size)) of 0.068 6 0.004 (mean 6 1 SD for five
rookeries) and 0.025 6 0.001 (for 10 rookeries). For
the ‘‘low’’ variance case, s2 5 1.5, corresponding to
realized variances ( or ) of 0.044 6 0.002 (for five2 2s sc r

rookeries) and 0.016 6 0.001 (for 10 rookeries). The
correlation observed in simulations with different bi-
variate normal variances and correlations varies wide-
ly. Therefore simulations were conducted over a range
of bivariate normal correlations (r) between 0 and 1.
Subsequently, each simulated data set was assigned a
r value on the basis of its observed correlation.

The statistical distribution underlying the simula-
tions does not match the statistical model underlying
the covariate model (logistic normality of contributions
with a linear dependence on rookery size). One ad-
vantage of this slight mismatch is that it helps to ensure
that the covariate models are robust to misspecification
of the underlying relationships between rookery size
and rookery contribution.

Haplotype frequency profiles.—An R (number of
rookeries) by H (number of haplotypes) matrix repre-
sents the entire distribution of haplotype frequencies
within rookeries (Table 1).

Each rookery has a characteristic haplotype (the di-
agonal elements in the matrix) that is present at high
frequency, classified as common (c). In each rookery,
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TABLE 1. Rookery haplotype frequency structure: c, com-
mon haplotype; i, intermediate haplotype; r, rare haplotype.

Rookery

Haplotype

H1 H2 H3 H4 H5

R1
R2
R3
R4
R5

c
i
r
r
i

i
c
i
r
r

r
i
c
i
r

r
r
i
c
i

i
r
r
i
c

TABLE 2. Scenario 1: confounding between large and small rookeries with three distinct
haplotypes. R1 and R2 have population sizes 19 times larger than R3 and R4.

Rookery

Haplotype

H1 H2 H3

True
contri-
bution Noncovariate Covariate

R1
R2
R3
R4

100
0

50
0

0
100

50
0

0
0
0

100

47.5
47.5

2.5
2.5

21.3 (†, 56.3)
20.3 (0.14, 55.5)
55.6 (†, 98.1)

2.8 (†, 8.4)

39.6 (3.6, 59.1)
40.7 (3.4, 60.2)
16.3 (0.1, 86.7)

3.3 (0.3, 9.4)

Notes: All numbers are expressed as percentages. Rookery contribution estimates are shown
as posterior mean (2.5 and 97.5 percentiles). Sample sizes: 25 (rookeries) and 50 (mixed
population). Dagger symbols (†) indicate values smaller than 0.01%. Relative sizes of the
rookeries are equal to the true contributions.

the haplotypes on either side of the characteristic hap-
lotype are present at intermediate frequencies (i). The
remaining haplotypes are rare (r). The genetic diver-
gence among the rookeries is parameterized by the ratio
of the common and intermediate haplotype frequencies
(c/i): the value c/i 5 2 was used for overlapping genetic
profiles, and c/i 5 6 for distinct genetic profiles. Spec-
ifying the frequency of rare haplotypes, and applying
the constraint that the sum of the haplotype frequencies
equals 1, completes the parameterization. For example,
for five rookeries (R 5 5) with haplotype parameters
r 5 0.01 and c/i 5 2, we can solve c 1 2(c/2) 1 2(0.01)
5 1 to find the appropriate values of c 5 0.49 and i
5 0.245. In general, c 1 2c/(c/i) 1 r(R 2 3) 5 1. For
convenience, the number of rookeries was set equal to
the number of haplotypes (H 5 R). In some of the
specific scenarios that we will present, we impose a
further block structure on the haplotype frequency ma-
trix that mimics the case of two different gyres (large,
circular surface ocean currents) with similar haplotype
profiles within gyres and dissimilar profiles between
gyres.

The combination of the haplotype frequencies and
true contributions determines the haplotype composi-
tion of the mixed population. The frequency of the jth
haplotype in the mixture population, q9j, is

R

q9 5 p q j 5 1, . . . , HOj i ij
i51

where pi is the contribution from the ith rookery and
qij is the frequency of the jth haplotype in the ith rook-
ery.

Sample sizes of the mixed population and rookery
populations.—To complete the simulated samples,
multinomial samples were drawn from the rookeries
and from mixed populations. Baseline sample sizes
were 25 for each rookery and 50 for the mixed pop-
ulation. The samples were distributed among haplo-
types according to the multinomial distribution with
the frequencies determined previously.

RESULTS

Scenario analysis

Three scenarios illustrate the properties and capa-
bilities of covariate modeling. These scenarios are in-
tentionally simplified. The first scenario shows the ba-
sic ability of the covariate model to detect structure
when it is present. The second scenario distinguishes
between size–contribution relationships among rook-
eries in different ocean gyres. The third scenario shows
a slightly more realistic case involving a block of three
different rookeries with overlapping mtDNA profiles.

Scenario 1: an extreme case.—This first scenario
presents a classical problem for mixed-stock analysis:
What happens when different combinations of source
stocks can combine to produce precisely the same pro-
file in the mixed stock (Table 2)? Rookeries R1 and
R2 are each composed entirely of a distinctive hap-
lotype; if they were the only source stocks known,
mixed-stock analysis would be trivially easy. When a
small rookery with haplotypes from both large rook-
eries is added (R3), separating contributions from the
small and large rookeries becomes impossible. Without
more information, even our covariate approach is pow-
erless. Add a small rookery with a distinct haplotype
(R4/H3), however, and we can estimate the relationship
between rookery size and rookery contribution, which
in turn gives us a better estimate for the contribution
of R3. (We could also improve our estimate by assum-
ing prior knowledge of the relationship between rook-
ery size and rookery contribution, but we prefer to be
as conservative as possible by using weak or uninfor-
mative priors.)

In this case, the true rookery contributions exactly
equal the relative rookery sizes, and so a purely size-
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TABLE 3. Scenario 2: estimates for a scenario with eight rookeries in two gyres and eight haplotypes, where genetic overlap
c/i 5 2 and rare-haplotype frequency r 5 0.01.

Gyre
and

rookery

Haplotype

H1 H2 H3 H4 H5 H6 H7 H8

True
contri-
bution

Non-
covariate Covariate

G1
R1
R2
R3
R4

c
i
i
i

i
c
i
i

i
i
c
i

i
i
i
c

r
r
r
r

r
r
r
r

r
r
r
r

r
r
r
r

60.4
24.02

9.61
3.84

38.96 (0.80, 96.92)
19.72 (†, 84.43)
18.99 (†, 82.13)
18.99 (†, 80.15)

47.01 (4.77, 88.71)
23.85 (0.40, 68.51)
14.76 (0.10, 55.73)

9.58 (0.06, 41.51)

G2
R5
R6
R7
R8

r
r
r
r

r
r
r
r

r
r
r
r

r
r
r
r

c
i
i
i

i
c
i
i

i
i
c
i

i
i
i
c

1.54
0.61
0.25
0.10

0.92 (†, 7.15)
0.86 (†, 6.87)
0.84 (†, 6.89)
0.71 (†, 5.95)

2.17 (0.01, 9.00)
1.29 (†, 6.46)
0.83 (†, 4.94)
0.51 (†, 3.31)

Notes: All values are expressed as percentages. Rookery contribution estimates are shown as posterior mean (2.5 and 97.5
percentiles). Dagger symbols (†) indicate values smaller than 0.01%. Relative sizes of the rookeries are equal to the true
contributions within each gyre (e.g., 6004, 2402, 961, 384 for R1–R4 [gyre 1] and 15 400, 6100, 2500, 1000 for R5–R8
[gyre 2]; combined sizes of rookeries within a gyre do not enter the model).

based prediction would provide better point estimates
than the covariate model. However, the covariate model
improves the point estimates, and narrows the confi-
dence intervals to the point where all four rookeries
are contributing at least some turtles to the mixed pop-
ulation. The covariate model’s lack of built-in as-
sumptions about the strength of the size–contribution
relationship allows it to fit well over a broad range of
true scenarios ranging from perfect correlation between
rookery size and rookery contribution to no correlation.

Scenario 2: incorporating ocean gyres.—Assuming
contributions based on rookery size alone can fail if
rookeries in different ocean gyres contribute very dif-
ferent numbers of turtles, or if the relationship between
rookery size and rookery contribution differs in the
different gyres. Adding a factor to the linear model that
allows the slope and intercept to vary by ocean current
mitigates this problem (as described in Methods).

Table 3 shows a test with rookeries in two separate
ocean currents, where the rookeries in the first current
contribute much more to the mixed population under
analysis. A model incorporating rookery size alone
would fail because contribution depends on both rook-
ery size and currents. When ocean currents are included
in the model, it successfully estimates the relative con-
tributions from the rookeries in the first ocean current,
and correctly estimates that the rookeries in the second
ocean current contribute little to the mixed population.
Use of a non-covariate model correctly estimates the
low contribution from rookeries in the second current,
but poorly estimates the relative contributions in the
first current, at least in part, because this scenario is
set up with a great deal of overlap in mtDNA profiles
between rookeries (c/i 5 2).

Scenario 3: an unresolved region.—Finally, consider
a slightly more realistic situation with eight rookeries
within a single ocean current, but where one block of
three rookeries (R2–R4 in Table 4) is very poorly re-
solved by genetic information (c/i 5 1.1). As in the

previous scenarios, the covariate model can resolve the
differences in contribution between these five rooker-
ies. The necessary information exists because the
mtDNA profiles are different enough between this
block and the other rookeries (and among the other
rookeries) to provide information on the relationship
between rookery size and rookery contribution.

Exploring parameter space

Each of the scenarios just presented illustrates a par-
ticular feature of covariate models rather than giving
a general overview of their performance. All three are
also best case scenarios for covariate modeling: there
are ambiguities in the genetic data, but there is always
useful genetic information present in some part of the
data set, and the true relationships between rookery
size and rookery contribution are strong. Some features
of our data sets are known (sample size and the dis-
tribution of rookery sizes), but others are unknown
(e.g., the correlation between rookery size and rookery
contributions). By exploring the relative performance
of the non-covariate and covariate under a range of
conditions, we can decide whether (and when) the co-
variate model is preferred.

For each combination of other parameters (variance,
sample size, etc.), the model is tested across the entire
range of positive correlations between rookery sizes
and contributions. The non-covariate model is tested
only once, because it does not incorporate rookery size
and thus would give the same answer, regardless of the
correlation. Estimates of Aitchison distance and cov-
erage were derived from estimates of rookery contri-
bution resulting from 100 different simulations for each
set of parameters. The general pattern is the same
across all parameters. For high correlations, the co-
variate model outperforms the non-covariate model
(has lower Aitchison distance). The performance of the
covariate model decreases approximately linearly with
decreasing correlations, until at low correlations its
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TABLE 4. Scenario 3: unresolved region, with rookery contribution estimates shown as posterior mean (2.5 and 97.5
percentiles), where c/i 5 1.1 for rookeries R2–R4, c/i 5 6 for rookeries R5–R8, and r 5 0.01.

Rookery

Haplotype

H1 H2 H3 H4 H5 H6 H7 H8

True
contri-
bution Noncovariate Covariate

R1
R2
R3
R4

c
r
r
r

r
c
i
i

r
i
c
i

r
i
i
c

r
r
r
r

r
r
r
r

r
r
r
r

r
r
r
r

60.4
24.02

9.61
3.84

60.38 (44.44, 77.74)
11.92 (†, 43.99)
12.04 (†, 43.63)
11.68 (†, 44.15)

60.62 (45.30, 75.94)
20.34 (1.85, 40.88)
10.35 (0.39, 31.48)

5.31 (0.10, 23.31)
R5
R6
R7
R8

r
r
r
r

r
r
r
r

r
r
r
r

r
r
r
r

c
i
i
i

i
c
i
i

i
i
c
i

i
i
i
c

1.54
0.61
0.25
0.10

1.30 (†, 7.03)
0.86 (†, 5.88)
0.84 (†, 5.75)
0.97 (†, 6.23)

1.65 (0.04, 6.17)
0.89 (0.01, 4.14)
0.52 (†, 2.88)
0.31 (†, 1.97)

Notes: Notation is as in Tables 2 and 3. Relative sizes of the rookeries are equal to the true contribution.

Aitchison distance rises above that of the non-covariate
model (Fig. 2).

The maximum improvement in performance and the
rate of performance loss with decreasing correlation
vary with the other parameters. In general, when there
is little information present in the genetic markers (e.g.,
small c/i, small sample sizes, etc.), the covariate model
performs better than the non-covariate model, provided
the ecological covariates give any true information at
all. Overall, covariate models produce more accurate
estimates of rookery contributions. They are also rea-
sonably robust to variations in the underlying contri-
bution structure: even in the limit of very low corre-
lation, when the non-covariate model performs better,
the covariate model is not much worse. Multivariate
coverages of the non-covariate model are much lower
than the nominal value of 0.95, whereas appropriate
coverage is achieved with the covariate model with
informative covariates (high correlation between rook-
ery size and rookery contribution).

As illustrated in Table 5, the parameters of a stock
mixture (the numbers of rookeries, variance in contri-
butions and rookery sizes, and so forth) fall into two
categories, those that can be known or guessed directly
from ecological and genetic data (‘‘known’’) and those
that can only be determined by mixed-stock analysis
(‘‘unknown’’). Some of the parameters, such as sample
size or the number of rookeries considered, are well
known and are determined by the design of sampling
programs. The variance in rookery size (calculated
from the proportional or normalized rookery sizes, ni/
Sj nj where nj indicates the jth rookery size) is known,
albeit not very accurately, from observations of the
number of nests at the rookeries. The genetic distinc-
tion (c/i) and frequency of rare haplotypes are not
known. Bayesian and unconditional maximum likeli-
hood methods are used to infer the genetic composition
of a rookery using the genetic composition of the mixed
population (Pella and Milner 1987). Nevertheless, in
the spirit of a power analysis, we can estimate ap-
proximately where a particular metapopulation of tur-
tles lies in parameter space, and whether covariate
models are likely to be appropriate.

Estimating the ‘‘unknown’’ parameters is problem-
atic. These quantities, which determine the expected
performance of the covariate model, can themselves
only be determined by mixed-stock analysis. There is
a fundamental circularity involved in trying to estimate
true values of these relationships; how do we know
which assumptions we should make in trying to esti-
mate the appropriateness of the assumptions them-
selves?

The solution to this problem is to develop methods
of model selection that are informative for a given set
of data, which is likely to produce better estimates, but
these are not simple problems (Key et al. 1999, Spie-
gelhalter et al. 2002). We are working toward imple-
menting and evaluating such methods in the context of
stock analysis. A partial solution is to check whether
the posterior distribution of the rookery size–contri-
bution correlation is clearly bounded away from zero,
which would suggest that there is a strong dependence
of contribution and size and, thus, that the more com-
plex model is appropriate. Even if rookery size and
rookery contributions are correlated, the non-covariate
model will tend to underestimate the correlation and
overestimate its own relative performance. (Using the
covariate model to estimate correlation would tend to
overestimate correlations and would definitely risk cir-
cular logic.)

Results from data

What conclusions do the new methods reach about
rookery contributions for Atlantic green (Chelonia my-
das) and loggerhead (Caretta caretta) turtles from ex-
isting data (Bolten et al. 1998, Lahanas et al. 1998)?
How different are the results, either in terms of point
estimates or confidence intervals, from previous results
from non-covariate models? (For details of the statis-
tical models, see Appendix A.)

Posterior predictive checks, calculating the variance
in mixed population sample for random draws from the
posterior distribution, showed that this summary sta-
tistic consistently fell between the data and the pos-
terior distribution. This result indicated that the model
fit the data adequately. The results for green turtle or-



322 TOSHINORI OKUYAMA AND BENJAMIN M. BOLKER Ecological Applications
Vol. 15, No. 1

FIG. 2. Performance of covariate and non-covariate models across parameter space: open circles are low variance, low
overlap (c/i 5 2); open squares are low variance, high overlap (c/i 5 6); solid circles are high variance, low overlap (c/i 5
2); solid squares are high variance, high overlap (c/i 5 6). Non-covariate model (NCM) results are shown at the right of
each figure, along with dotted lines across all values of correlation. Plots show the Aitchison distance [panels (a) and (c)]
or multivariate coverage [panels (b) and (d)] as a function of the simulated correlation between rookery size and rookery
contribution; the covariate model performs better for high correlations.

TABLE 5. Simulation parameters and qualitative results.

Parameter Symbol Values
Covariate model
preferred if . . .

Known parameters
Rookery size variance
Genetic distinction
Number of rookeries

s2
r

c/i
R

high, low
2, 6
5, 10

low
low
high

Unknown parameters
Rookery contribution variance
contribution-size correlation

s2
c

r
high, low
0.0–1.0

low
high

Notes: Known parameters are those that could be estimated at least approximately from basic
genetic sampling and ecological knowledge; unknown parameters are those that can only be
revealed by mixed-stock analysis.
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TABLE 6. Contribution estimates (percentages) for green turtle data, with rookery contribution
estimates shown as posterior mean (2.5 and 97.5 percentiles).

Rookery Size (no. nests/yr) Noncovariate Covariate

FL
MEXI
CR
AVES
SURI

2300
900

93 500
2300
5300

3.86 (†, 15.73)
1.16 (†, 7.73)

78.95 (65.26, 89.44)
11.07 (†, 23.77)

3.44 (†, 17.98)

4.2 (0.3, 13.4)
1.5 (†, 6.1)

79.2 (66.2, 89.2)
6.4 (0.17, 18.6)
7.1 (0.1, 17.1)

BRAZ
ASCE
AFRI
CYPR

900
11 100

7400
400

0.35 (†, 2.94)
0.45 (†, 3.31)
0.54 (†, 3.47)
0.17 (†, 1.64)

0.17 (†, 1.3)
0.67 (†, 3.4)
0.56 (†, 2.9)
0.1 (†, 0.7)

Notes: Dagger symbols (†) indicate values smaller than 0.01%. Rookery abbreviations: FL,
Hutchinson Island, Florida, USA; MEXI, Yucatán, Mexico; CR, Tortuguero, Costa Rica; AVES,
Aves Island, Venezuela; SURI, Matapica, Suriname; BRAZ, Atol das Rocas, Brazil; ASCE,
Ascension Island, UK; AFRI, Pailoa, Guinea Bissau; CYPR, Lara Bay, Cyprus. Gyre 1 contains
the first five rookeries and the mixed stock, whereas gyre 2 contains the rest of the rookeries.
The column ‘‘Size’’ reports average number of nests deposited each year.

TABLE 7. Contribution estimates (percentages) for loggerhead turtle data, with rookery con-
tribution estimates shown as posterior mean (2.5 and 97.5 percentiles).

Rookery Size (no. nests/yr) Noncovariate Covariate

NWFL
SOFL
NEFL–NC

450
64 000

6200

17.14 (†, 64.0)
52.34 (†, 95.3)
10.53 (†, 48.85)

11.3 (1.1, 32.1)
64.2 (26.8, 91.8)
14.4 (0.8, 34.0)

MEXI
GREECE
BRAZ

1800
3000
4000

16.09 (2.13, 48.17)
3.76 (†, 29.24)
0.14 (†, 11.22)

9.2 (0.2, 29.8)
0.6 (†, 5.4)
0.2 (†, 1.4)

Notes: Dagger symbols (†) indicate values smaller than 0.01%. Rookery abbreviations:
NWFL, northwest Florida; SOFL, south Florida; NEFL–NC, northeast Florida to North Car-
olina. MEXI, Quintana Roo, Mexico; GREECE, Kiparissia Bay, Peloponnesus Island, Greece;
BRAZ, Bahia, Brazil. Gyre 1 contains the first four rookeries and the mixed stock; for details
of gyre structure, see Appendix A.

igins are not radically different from those determined
by non-covariate models (Table 6; Lahanas et al. 1998,
Bolker et al. 2003). The major difference is that the
covariate model predicts slightly higher contributions
from Suriname than from Aves Island, whereas the
non-covariate model predicts the opposite. (However,
the confidence intervals are fairly wide in both cases,
supporting either negligible contributions from either
rookery or equal contributions from both rookeries.)

Table 7 shows the mixed-stock analysis results for
loggerhead turtles. The main conclusion of the covar-
iate model is to strengthen the dominance of the large
(64 000 nests) south Florida rookery relative to the
northwest Florida rookery (450 nests). The covariate
model produced narrower confidence intervals. In par-
ticular, the covariate model allowed us to prove that at
least 27% of the turtles in the mixed stock come from
the south Florida rookery, whereas the non-covariate
model was only able to bound the south Florida con-
tribution between 0% and 95%.

How do these data relate to the previous simulations
investigated? The variances of the rookery size within
the main gyre (scaled to sum to one) are 0.179 for
loggerhead turtles and 0.156 for green turtles. To com-
pare genetics in real data sets with simple common/
intermediate/rare structures from our simulations, we

used the divergence statistics of Xu et al. (1994), which
can be applied to more general haplotype frequency
patterns as well as to our simulations. Divergence sta-
tistics based on observations in the main gyre were
0.78 (loggerhead turtles) and 1.52 (green turtles). Di-
vergence statistics for simulated data were 0.802 (five
rookeries, c/i 5 2), 1.852 (five rookeries, c/i 5 6), 2.250
(10 rookeries, c/i 5 2), and 4.142 (10 rookeries, c/i 5
6). The average rookery sample sizes are 41.5 6 34.4
(mean 6 1 SD) for loggerhead turtles and 21.56 6 9.34
for green turtles. The number of rookeries within the
main gyre (which contains the mixed stock) is four for
loggerhead turtles and five for green turtles. The data
fall closest to the five-rookery case with c/i 5 2 (log-
gerhead turtles) and c/i 5 6 (green turtles). Fig. 2 (pan-
els a and b; filled squares and circles) shows that in
this case the covariate model often gives better and
never gives much worse results than the non-covariate
model. For example, when c/i 5 2 with five rookeries,
the covariate model has Aitchison distance ranging
from 5 to 30 as correlation ranges from 1 to 0, whereas
the non-covariate model results in a Aitchison distance
of 24. The multivariate coverage of the covariate model
ranges from 0.98 to 0.69, while the non-covariate mod-
el coverage is 0.96. Furthermore, the point estimates
for the non-covariate model give correlations between
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contribution and size of 0.98 (for green turtles) and
0.92 (for loggerheads), and the posterior distribution
of the slope parameter is bounded away from zero.
Thus, our best guess is that the data for Atlantic green
and loggerhead turtle populations are indeed appro-
priate for covariate modeling.

CONCLUSIONS

The covariate models presented here used informa-
tion on ecological covariates to evaluate hypotheses
regarding sea turtle origins. Results were generally
consistent with previously published theories of the
genetic origins of Atlantic sea turtle populations. For
green turtles, the covariate models provide little ad-
ditional information: their main effect is to lower the
estimates and upper confidence limits of contributions
from rookeries in Brazil, Africa, and Cyprus slightly,
strengthening the conclusion that these rookeries con-
tribute negligibly to the Atlantic mixed stock (Table
6). For loggerhead turtles, the covariate models make
more substantive contributions. They strengthen the
dominant contribution of the large south Florida rook-
ery, relative to the contributions from northwest Florida
and more northern rookeries, and establish that rook-
eries in Greece and Brazil are not contributing signif-
icantly (upper confidence limits of 5.4% and 1.4%, re-
spectively, down from 29% and 11% in the non-co-
variate model).

The proposed modeling framework provides a tech-
nique for incorporating a wide range of ecological co-
variates in statistical models of sea turtle genetics.
Rookery size and ocean currents are just the beginning;
using the logistic-normal framework allows us to in-
corporate a wide range of ecological covariates in our
statistical models. For example, more detailed geo-
graphic information could be incorporated in the model
using conditional autoregressive models, which use
geographic distances between rookeries to structure the
variance–covariance matrix of transformed contribu-
tions (Billheimer et al. 2001). A range of options, from
a simple neighborhood matrix (rookery contributions
are correlated with those of their neighbors) to more
sophisticated distance measures based on oceanograph-
ic data, are possible.

Before charging ahead with ever more complex mod-
els with ever larger sets of covariates, however, we
must develop and test the methods to decide whether
the added model complexity is appropriate. An inherent
danger associated with complex models is that mod-
elers may develop unrealistic or overly complex struc-
tural assumptions. Simulation models such as those
presented here provide one tool to assess whether the
added complexity is appropriate. However, even when
we test performance across a broad range of simulation
parameters, we can never be sure that our simulations
are representative of reality; there can always be un-
realistic structural assumptions built into the model, or
axes of variation that we have not explored. In the

frequentist estimation framework, model fit can be test-
ed against data in the absence of a specific simulation
model (although some null hypothesis is always nec-
essary). For example, parameters can be tested for sig-
nificant difference from null hypothesis values, and
models of appropriate complexity can be selected, us-
ing either likelihood ratio tests or information criteria
(Hilborn and Mangel 1997, Burnham and Anderson
2002). The Bayesian hierarchical framework does not
provide a clear prescription for limiting model com-
plexity. Methods for Bayesian model testing and se-
lection do exist, including Bayes factors, Bayesian in-
formation criteria, posterior likelihoods, and posterior
predictive densities (Carlin and Louis 1996), but these
have rarely been applied to complex hierarchical mod-
els, and we have never seen them applied in ecological
contexts.

In the long run, the way to build better ecological
models is not just to include more plausible covariates,
but rather to incorporate structures that reflect the
mechanistic processes underlying observed patterns.
Our goal is to build into the models any mechanistic
processes that we are sure of, but to remain agnostic
about other aspects of the ecological system. The mod-
els considered here all retain the basic structure that
the mixed-stock haplotype profile is a composition of
the haplotype profiles of the contributing rookeries, in
contrast, for example, to cluster analyses that simply
assess the similarity of different stocks without assum-
ing specific underlying mechanisms (Phelps et al.
1994). Our models are semi-mechanistic (Ellner et al.
1998) because they incorporate ecological process but
allow flexibility in the relationship between ecological
covariates (size, location, etc.) and contribution. Semi-
mechanistic models have two advantages. First, in-
cluding well-established mechanisms in the basic def-
inition of the model increases the overall amount of
information in the model, leveraging the observational
data for more accurate estimates. Second, when models
are semi-mechanistic, the estimates of parameters
themselves give information about the strengths of dif-
ferent mechanistic processes. For example, by includ-
ing rookery sizes in the model, we both improve the
estimates of individual rookery contributions and gain
some insight into the relationship between rookery size
and rookery contribution. Ultimately, we should think
of building semi-mechanistic models at both short
(proximate) and long (ultimate) time scales. Short-term
processes that determine rookery contributions are the
behavioral and energetic rules by which turtles deter-
mine their movements, and the ocean currents that form
the context for movement. Long-term processes include
rookery establishment, the behavioral and stochastic
factors determining homing to and straying from natal
beaches by females, and population genetic processes
such as drift and mutation that change the genetic
makeup of a rookery. Some frameworks already exist
for estimating some of these processes (such as spatial
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coalescent theory for the processes of migration, mu-
tation, and drift: Beerli and Felsenstein [2001]), but
much of it will have to be constructed and integrated
as we proceed toward the goal of a fully integrated
model that describes the ecology and evolution of sea
turtle populations.

ACKNOWLEDGMENTS

We thank Karen Bjorndal and Alan Bolten (Archie Carr
Center for Sea Turtle Research) for useful discussions and
for providing the rookery size data for loggerhead turtles and
green turtles, and George Casella for statistical advice, the
authors of the R and BUGS packages for powerful tools, and
three anonymous reviewers for useful comments. This project
was funded by Cooperative Agreement NA17RJ1230 be-
tween the Joint Institute for Marine and Atmospheric Re-
search (JIMAR) and the National Oceanic and Atmospheric
Administration (NOAA). The views expressed herein are
those of the authors and do not necessarily reflect the views
of NOAA or any of its subdivisions.

LITERATURE CITED

Aitchison, J. 1986. The statistical analysis of compositional
data. Chapman and Hall, New York, New York, USA.

Aitchison, J. 1992. On criteria of measures of compositional
difference. Mathematical Geology 24:365–379.

Beerli, P., and J. Felsenstein. 2001. Maximum likelihood es-
timation of a migration matrix and effective population
sizes in n subpopulations by using a coalescent approach.
Proceedings of the National Academy of Sciences (USA)
98:4563–4568.

Billheimer, D. P., P. Guttorp, and W. F. Fagan. 2001. Statistical
interpretation of species composition. Journal of the Amer-
ican Statistical Association 96:1205–1214.

Bolker, B. M., T. Okuyama, K. A. Bjorndal, and A. B. Bolten.
2003. Stock estimation for sea turtle populations using
genetic markers: accounting for sampling error for rare
genotypes. Ecological Applications 13:763–775.

Bolten, A. B., K. A. Bjorndal, H. R. Martins, T. Dellinger,
M. J. Biscotio, S. E. Encalada, and B. W. Bowen. 1998.
Transatlantic developmental migrations of loggerhead sea
turtles demonstrated by mtDNA sequence analysis. Eco-
logical Applications 8:1–7.

Bowen, B. W., A. L. Bass, A. Garcia-Rodriguez, C. E. Diez,
R. van Dam, A. B. Bolten, K. A. Bjorndal, M. M. Miya-
moto, and R. J. Ferl. 1996. Origin of hawksbill turtles in
a Caribbean feeding area as indicated by genetic markers.
Ecological Applications 6:566–572.

Burnham, K. P., and D. Anderson. 2002. Model selection and
multi-model inference. Springer-Verlag, New York, New
York, USA.

Carlin, B. P., and T. A. Louis. 1996. Bayes and empirical
Bayes methods for data analysis. Chapman and Hall, New
York, New York, USA.

Clayton, D. G. 1996. Generalized linear mixed models. Pages
275–301 in W. R. Gilks, S. Richardson, and D. J. Spie-
gelhalter, editors. Markov Chain Monte Carlo in practice.
Chapman and Hall, London, UK.

Congdon, P. 2001. Bayesian statistical modeling. John Wiley,
New York, New York, USA.

Dennis, B. 1996. Discussion: should ecologists become Bay-
esians? Ecological Applications 6:1095–1103.

Ellner, S. P., B. A. Bailey, G. V. Bobashev, A. R. Gallant, B.
T. Grenfell, and D. W. Nychka. 1998. Noise and nonlin-
earity in measles epidemics: combining mechanistic and
statistical approaches to population modeling. American
Naturalist 151:425–440.

Fournier, D. A., T. D. Beacham, B. E. Riddell, and C. A.
Busack. 1984. Estimating stock composition in mixed
stock fisheries using morphometric, meristic, and electro-
phoretic characteristics. Canadian Journal of Fisheries and
Aquatic Sciences 41:400–408.

Gelman, A., J. Carlin, H. S. Stern, and D. B. Rubin. 1996.
Bayesian data analysis. Chapman and Hall, New York, New
York, USA.

Hilborn, R., and M. Mangel. 1997. The ecological detective:
confronting models with data. Princeton University Press,
Princeton, New Jersey, USA.

Key, J. T., L. R. Pericchi, and A. F. M. Smith. 1999. Bayesian
model choice: what and why? Pages 343–370 in J. M. Ber-
nardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith,
editors. Bayesian statistics 6. Oxford University Press, Ox-
ford, UK.

Lahanas, P. N., K. A. Bjorndal, A. B. Bolten, S. E. Encalada,
M. M. Miyamoto, R. A. Valverde, and B. W. Bowen. 1998.
Genetic composition of a green turtle (Chelonia mydas)
feeding ground population: evidence for multiple origins.
Marine Biology 130:345–352.

Ludwig, D., and C. J. Walters. 1985. Are age-structured mod-
els appropriate for catch-effort data? Canadian Journal of
Fisheries and Aquatic Sciences 42:1066–1072.

Pella, J., and M. Masuda. 2001. Bayesian methods for anal-
ysis of stock mixtures from genetic characters. Fisheries
Bulletin 99:151–167.

Pella, J. J., and G. B. Milner. 1987. Use of genetic markers
in stock composition analysis. Pages 247–276 in N. Ryman
and F. W. Utter, editors. Population genetics and fisheries
management. University of Washington Press, Seattle,
Washington, USA.

Phelps, S. R., L. L. Leclair, S. Young, and H. L. Blankenship.
1994. Genetic diversity of patterns of chum salmon in the
Pacific-northwest. Canadian Journal of Fisheries and
Aquatic Sciences 51(Supplement 1):65–83.

Pinheiro, J. C., and D. M. Bates. 2000. Mixed effects models
in S and S-Plus. Springer Verlag, New York, New York,
USA.

Sauer, J. R., and W. A. Link. 2002. Hierarchical modeling
of population stability and species group attributes from
survey data. Ecology 83:1743–1751.

Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. van der
Linde. 2002. Bayesian measures of model complexity and
fit. Journal of the Royal Statistical Society B 64:583–639.

Xu, S., C. J. Kobak, and P. E. Smouse. 1994. Constrained
least squares estimation of mixed population stock com-
position from mtDNA haplotype frequency data. Canadian
Journal of Fisheries and Aquatic Sciences 51:417–425.

APPENDIX A

The model specification and Markov Chain Monte Carlo are available in ESA’s Electronic Data Archive: Ecological Archives
A015-009-A1.

APPENDIX B

BUGS code is available in ESA’s Electronic Data Archive: Ecological Archives A015-009-A2.


