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State-space model for light-based tracking of
marine animals

Anders Nielsen and John R. Sibert

Abstract: A coherent model is presented to estimate the most probable track of geographic positions directly from a series
of light measurements. The model estimates two geographic positions per day, without reducing the daily light data to two
threshold crossing times, its covariance structure is designed to handle high correlations due to for instance local weather
conditions, and it can estimate the yearly pattern in latitudinal precision by propagating the data uncertainties through the
geolocation process. The model is applied to one mooring study, one GPS drifter buoy study, and numerous simulated
cases. The simulations are performed with realistic assumptions about the relationship between solar altitude and light and

with realistic uncertainty parameters (all taken from real data). The simulations showed that all model parameters were
identifiable, and that all tracks could be reconstructed within 1° or 2° latitude and 0.5° or 1° longitude. The mooring and
drifter buoy data showed that the tracks could be reliably estimated, even in cases where the other methods had completely

failed.

Résumé : Nous présentons un modele cohérent pour estimer directement le tracé le plus probable des positions
géographiques a partir d’une séries de mesures de lumiére. Le modéele estime deux positions géographiques par jour,

sans réduire les données de lumiere journalieres a deux périodes de traversée du seuil ; il possede une structure de
covariance congue pour tenir compte des fortes corrélations dues, par exemple, aux conditions climatiques locales ; il peut
aussi estimer le patron annuel de précision des latitudes en faisant passer les incertitudes des données dans le processus de
géopositionnement. Nous utilisons le modele sur une étude a bouée fixe, une étude a bouée dérivante munie d’un GPS et
plusieurs cas de simulation. Les simulations comportent des présuppositions réalistes concernant la relation entre 1’altitude
du soleil et la lumiere, ainsi que des parametres d’incertitude réalistes (tous tirés de données réelles). Les simulations
montrent que tous les parametres du modele sont identifiables et que tous les tracés peuvent étre reconstitués avec une
précision de 1° ou 2° latitude et de 0,5° ou 1° longitude. Les données obtenues des bouées fixes et dérivantes montrent
qu’il est possible d’estimer les tracés de fagcon fiable, méme dans les cas ou les autres méthodes ont été completement

incapables de le faire.

[Traduit par la Rédaction]

Introduction

Archival tags, also referred to as data storage tags, are elec-
tronic devices designed to be attached externally or surgically
implanted into a live animal to record measurements of the an-
imal’s environment. For terrestrial animals and for marine ani-
mals that stay at the surface for long periods, satellite-based
methods can be used to give a very accurate track. Marine
species live in salt water where radio waves cannot penetrate,
hence these direct position measurements are impossible. For
these species, measurements of light, temperature, and pressure
are typically stored in the tags, in the hope that reliable geo-
graphic positions (geolocations) can be estimated from these
data downloaded from recovered archival tags.

Fisheries research organizations, universities, and govern-
ments spend large amounts of funds on development, procure-
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ment, and deployment of archival tags. This is not because the
technology is fully developed, but simply because there really
is no alternative. Directly observing these animals in situ is
only possible for very short periods. Archival tags can stay on
for years and potentially provide valuable information about
after-release survival, spawning areas, habitat preferences, and
migration corridors (e.g. Arnold and Dewar 2001; Block 2005).

Algorithms for estimating geolocation based on light and
pressure have at least a 20-year history (Smith and Goodman
1986; Musyl et al. 2001; Ekstrom 2004). The algorithms are best
described as threshold algorithms. From the depth-corrected
time series of light measurements, they determine the time when
a certain light threshold is crossed. This threshold is assumed to
correspond to a certain solar altitude (i.e. at two times a day the
solar altitude is (assumed) known). Solar altitude is measured
in degrees above the horizon (negative below). The longitude
can be computed from local noon (the midpoint between these
two times) and latitude from the time elapsed between these two
times (day length). The last part of the algorithms, computing
position from two known times and angles, is unproblematic,
based in celestial mechanics, and well described in textbooks
on astronomical algorithms (Meeus 1998).

The problematic part is associating a threshold with a certain
solar altitude, as the time when the daily light measurements
crosses a certain threshold is influenced by multiple factors
(e.g. local weather conditions). Cloud cover will advance the
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Fig. 1. Four days of raw light measurements from an archival tag.
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time of threshold crossing near sunset and delay it near sun-
rise, so the latitude determined by the difference will be doubly
wrong. Around an equinox, where day lengths are very similar
at all latitudes, even small errors in the crossing times will result
in huge errors in the estimated latitudes. The longitudinal esti-
mates are generally more accurate, as they are computed from
the midpoint of the two daily crossing times. If one crossing
time is delayed and the other is equally advanced, the longitu-
dinal estimate is still correct.

A possible improvement is presented by Ekstrom 2004, where
it is suggested to fit a template function to narrow-band blue
light in the twilight period. In this period, light in these wave-
lengths may be less sensitive to weather conditions.

Many variants of threshold algorithms are in use, but the
details of some algorithms are proprietary, which makes it im-
possible to present the algorithms here and to thoroughly study
them. What can be studied is their performance. Often, tagged
marine animals are mistakenly placed hundreds of kilometres
from their actual location, which can easily be on dry land
(e.g. Welch and Eveson 1999; Musyl et al. 2001; and Sib-
ert et al. 2003). Close to equinoxes, these algorithms frequently
fail completely for the latitude coordinate and produce geoloca-
tions that are up to 40° of latitude from the true locations (Mu-
syl et al. 2001).

Intuitively the solution is simple. Each position should not be
estimated in a knowledge void. The first position is the known
release position. The second position must be expected to be
in the neighborhood of the first, and so on. A statistically for-
mal way to express this is a state—space model (Harvey 1990).
A state—space model works by assuming an underlying move-
ment model, and estimates the track that best matches both
the assumed model and the available data. Even a simplistic
movement model can be helpful. Each point on the estimated
track is a weighted average of the prediction from the assumed
movement model and the estimate from the daily light data.
The weighting is done according to prediction precision of the
assumed movement model and the precision of the data.

The first state—space model for light-based geolocation (Sib-
ertetal. 2003) used the raw light-based daily geolocations as the
only data and assumed a simple random walk as the movement
model. This model greatly improved the estimated tracks and

Time

became widely used (e.g. Musyl et al. 2003, Wilson et al. 2005,
and Wilson et al. 2006). The model was extended to also use
sea surface temperature (Nielsen et al. 2006), which further im-
proved the estimated track, especially the latitude coordinate in
those periods around each equinox where the light-based infor-
mation is most uncertain.

Using the two step approach, of first estimating raw geolo-
cations by threshold algorithms and then using these estimates
as data in a state—space model, is not optimal. The threshold
algorithms are not helped by information from previous posi-
tions, as each raw geolocation is processed independently. This
leads to great uncertainties, especially around equinoxes. Fur-
thermore, the two step approach prevents the state—space model
from getting access to all the relevant light data, as the light data
are reduced to a (possibly poor) geolocation before it is used in
the state—space model. One obvious consequence of this is that
any information about the uncertainty of each raw geolocation
that might have been in the light data is lost, and the state—space
model must re-estimate this information.

This paper presents a coherent state—space model that esti-
mates a track of geolocations directly from light measurements
in the tag. All problems associated with threshold algorithms
are completely avoided, as they are not a part of the model.
This allows all parts of the model movement, covariance struc-
ture, and even the functional relation between solar altitude
and light measurements to be estimated within the model. The
model gives a sound statistical foundation for estimation of the
most probable track, and for quantifying its precision.

Materials and methods

The raw record of an archival tag is a series of measurements
taken at times 71, 2, . .., tyy. Typically these times are equidis-
tant, but values can be missing. At these times, three variables
are measured: depth, temperature, and light intensity. In the
following, only time and light intensity (¢, /) are considered.

Focus on solar event periods

From the raw light record (example in Fig. 1), periods of
daytime and nighttime can easily be identified and in between
are the periods surrounding sunrise and sunset. Light intensity
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is only useful for geolocating if a change in position translates
to a change in light intensity. At midnight, even a fairly big
change in position (say 5°) will not change the light intensity
noticeably — it will still be dark. Similarly at noon, the change
in solar altitude resulting from changing position a few degrees
will change the light intensity slightly, but local weather condi-
tions, cloud cover, and other uncontrollable features dominates
the measured light intensities completely. The periods around
solar events (sunrises and sunsets) are the relevant parts for
geolocation.

An automatic procedure to select the critical periods around
each solar event can be set up in many ways. It is likely not
important which procedure is chosen, as long as the resulting
intervals include the informative parts of data. The following
describes the procedure used in this paper.

First, the raw light record is partitioned into 24 h periods.
Within each of these 24 h periods, two observation times are
selected such that the mean of the light measurements between
the two times (7; and 7; 1) and the mean of the remaining light
measurements times differ the most. In other words:

@))] Tt = argrglax |mean({l‘,~ ta<tj <b))
a,
—mean({lj : t; <a Vb <t}

The times 71, 2, . . . , fan, where N is the number of days in
the light record, are used to select the data intervals to be used
in the geolocation model. The interval around each solar event
i is chosen asymmetrically to be from 14.4 min (1% of 24 h)
towards the nighttime from 7 to 72 min (5% of 24 h) towards
the daytime from 7;. The interval is chosen asymmetrically, be-
cause itis not desirable to include points from the dark nighttime
period or close to the nighttime period, as moonlight can bias
the light measurements in this period. Choosing the length of
these intervals (here 86.4 min) is a trade-off. Longer intervals
include more data in the analysis, but also increase computation
times substantially. Furthermore, the model assumes that hori-
zontal movement within each interval is negligible, and shorter
intervals make this assumption more reasonable. Threshold al-
gorithms assume that movement between two solar events is
negligible, which is clearly less reasonable.

Observation times within the ith interval are denoted 7 =
(rl' e, r,Eﬁ)), and the corresponding light observations are

denoted [ = (1 fi), e, l,(,’;)). Finally, the average observation
time within the ith interval is denoted 7;. These average times
71 < --- <ty will be the times where geolocations are com-

puted by the following model (illustrated in Fig. 2).

Model

The model for the observed light measurements along an an-
imal track is a state—space model, where the transition equation
describes the movements along the sphere, and the measure-
ment equation describes the predicted light measurements at
any given position. For a fixed set of model parameters, the
model reconstructs the track where the movements between
positions best matches the transition equation, and where the
positions yields the best predictions of the actual light measure-
ments.

For the transition equation, a random walk model is assumed:

2) o =ai—1 + ¢ +n;, i=1,...,2N
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Fig. 2. Tllustration of the relationship among 7, T, and ;
around one solar event.
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Here, «; is a two-dimensional vector containing the coordi-
nates (.1, @; 2) in nautical miles (1 nautical mile = 1.853 km)
along the sphere from a translated origin at time 7;. ¢; is the
drift vector describing the deterministic part of the movement,
n; is the noise vector describing the random part of the move-
ment, and N is the number of days in the track. The deter-
ministic part of the movement is assumed to be proportional
to time ¢; = (uAf;, vAf;)'. The random part is assumed to
be serially uncorrelated and follow a two-dimensional Gaus-
sian distribution with mean vector 0 and covariance matrix
Qi = 2DAt;Ihx». Here, D is a model parameter express-
ing the diffusive movement component and /x> is the two-
dimensional identity matrix.

The measurement equation of the state—space model describes
the expected light measurements at the position «; at times
7@ The calculation of the expected light measurements can be
partitioned into three steps. (i) Position ¢; is transformed into
degrees of longitude and latitude by a function z as described
in (Sibert et al. 2003). (ii) Solar altitudes 0 at the position z(c;)
at times ) are calculated from standard astronomical algo-
rithms (Meeus 1998). (iii) Expected light measurements are
calculated from the solar altitudes. The function ¢ describing
this relationship is not a known function, and hence it must be
estimated within the model.

The function ¢ is represented in the model by a cubic spline
Eunction inteipolating the points (01, ¢1), ..., (0, o On ,)» where
6 < ... < 9"«: are chosen equidistant over the angles in the
data. Notice here that the selection of data intervals around so-
lar events substantially narrows the angle interval where this
function is needed. The @s are model parameters. To stabilize
the optimization and to reflect our knowledge about the relation
between solar altitude and light intensities the @s are restricted
to be increasing. Combining steps i—iii leads to the following
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measurement equation:

3) 19D =z (), 1)) + &,

For easier future reference, the entire nonlinear mapping from
position to expected light measurement is denoted A, which
reduces the measurement equation to

i=1,...,2N

@ 1D = A, ) + &, i=1,...,2N

The measurement error ¢; is assumed to follow a Gaussian dis-
tribution with mean vector 0 and covariance matrix - (’), where

5w of +05 +07, _ if j=k
) N exp(—|t}’) — tk(’)|/,o), if j#k
and j,k =1,...,n;. Here, o1, 02, 03, and p are model param-
eters. Each element Eﬁ'}( in this covariance matrix describes the
covariance between two light measurements / ;l) and [ ,E’) taken
around the same solar event. '

The covariance structure in eq. 5 reflects the intuition that
two light measurements taken near the same solar event are
more similar (correlated) than two taken at separate solar events
(o1). If visibility is low one morning, all measurements will be
lowered. The covariance structure furthermore allows the cor-
relation between two light measurements near the same solar
event to decrease as the time between them increases (o7). Fi-
nally, the covariance structure includes a term describing the
independent measurement errors (03).

Now the state—space model is completely defined. All pa-
rameters of this model are

©6) O =@v,D,¢...,0n, 01,02, 03 0)

The following describes how the model is optimized with re-
spect to these model parameters and how the model is used to
reconstruct the most probable track.

Estimation via the unscented Kalman filter

The basic Kalman filter (Harvey 1990) assumes that both
the transition equation and the measurement equation of the
state—space model are linear. The extended Kalman filter (Har-
vey 1990) can handle slight nonlinearities by local first order
Taylor approximations of the nonlinear functions in the model.
The unscented Kalman filter (Julier et al. 2000) is a more re-
cent sequential estimation technique. Instead of approximating
the nonlinear functions, the transformed probability distribu-
tions are approximated directly. This approach gives a sim-
pler implementation, not requiring derivatives of the equations
in the state—space model; it also allows for higher accuracy
— at least corresponding to a second-order Taylor approxima-
tion (Julier et al. 2000).

The unscented transformation

Assume that x is a d-dimensional random variable following
a Gaussian distribution with mean vector @, and covariance
matrix 2. Consider now the distribution of an arbitrary, non-
linear transformation y = f(x)

The first-order Taylor approximation, which is used in the
extended Kalman filter, states that

/
X_Mx) )

ar
) 2o (3

7  y=N (fum, (‘j—f
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The unscented transformation is a different approximation of
the distribution of y. The distribution of x is represented by a
set {x} of 2d cleverly selected points:

®)  {x} = SP(uy, Tx)
= [x’x:u,pl:(x/dﬁx)', i = 1,...,d}
1
where (v/dX,); denotes the ith column of the Cholesky de-
composition of the matrix d X,.

These so-called sigma points are a simple transformation of
the mean and covariance of the distributions they represent,
and the notation SP in eq. 8 is the shorthand notation for this
transformation.

Each of these sigma points are now transformed by the func-
tion f to their corresponding y points:

©) YD = fx,

This set of y points representing the transformed distribution
is denoted {y}, and a shorthand for this transformation of x
points into y points, which is used in the following, is defined
as {y} = f({x}.

The mean vector (eq. 10) and covariance matrix (eq. 11) of
the transformed points are now computed as

j=1,...,2d

2d

1 ,

1 7. = — )
(10)  uy = mean({y}) Zd;_ly

-~

2 R o
(1) Ty =cov({y}) = 2 Z(y(ﬂ — OV =1
j=1

The approximate distribution of y given by the unscented trans-
formation is the Gaussian distribution with mean vector i, and
covariance matrix f),. With the notation introduced here, the
entire unscented transformation can be summarized in

(12)  y = N(mean(f (SP(ix, T1))), cov(f (SP(ix, T))))

Notice when comparing eq. 12 with eq. 7 that the approxi-
mation in the unscented transformation is simpler to compute,
as it does not require derivatives of f. All that is needed is
to evaluate the nonlinear function in a few carefully selected
points.

The unscented transformation is presented here in its sim-
plest form. Other versions include optional scaling of the sigma
points. This is introduced to keep the sigma-points closer to-
gether when the dimension of x is high. In this application
d = 2, so these complications are avoided.

The unscented Kalman filter

The unscented Kalman filter is very similar to the extended
Kalman filter, except that the unscented transformation is used
instead of local Taylor approximations. The following describes
the exact unscented Kalman filter equations for this model.

Step 0: The filter is started by assuming that the first position
@ in the track is known without error (its covariance is
Py = 02x»). This is a reasonable assumption, as the first
position is the release position. The initial set of sigma
points is computed:

(13)  {ao) = SP(@0, 02x2), and seti = 1
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Step 1: From the current set of sigma points and the transition
equation (eq. 2), the prediction of the next position is
calculated, along with its covariance and its sigma point
representation:

(14) ajji—1 = mean({ai—1} + ¢;)
(15) Piji—1 = cov({ai—1} +¢i) + Qi
(16)  {ojji—1} = SP(@jji—1, Piji—1)

Step 2: The predicted light level vectors (eq. 17) correspond-
ing to the sigma points are calculated via eq. 4, along with
their mean vector, covariance, cross covariance, and a
matrix known as the Kalman gain matrix, which is used
when updating the predicted position with the actually
observed light vector:

a7 (19 = Adaiji—1}. )
(18) 1% = mean({IV})

(19) F; =cov({{®}) + =@
20)  G; = cov({aii—1}, {17}
@h  Ki=GiF '

Step 3: Finally, the difference between the predicted light vec-
tor and the observed is calculated, the Kalman update
equations are applied, and an updated set of sigma points
are calculated:

22) w; =10 -7V

(23) a; = jji—1 + Kiw;
(24 P; = Piji-1 — KiF;K]
25  {ai} =SP(@;, P)

Step 4: If i < 2N, increase i by one and go to step 1.

Negative log-likelihood function

The maximum likelihood principle is used to find the esti-
mates of all model parameters (eq. 6). With the definition that
wo = 1O — A@p, @) and Fy = T©, the negative log-
likelihood is given by

2N

(26)  £@)=—) logp(w;,0, F))

i=0

Here, ¢ (w, 0, F) is the density of the Gaussian distribution
with mean vector 0 and covariance matrix F evaluated in w.

Last point known without error

Knowing the last position in the track corresponds to ex-
tending the last observational vector /") with the known two-
dimensional position to / @eN) = (! @N) asy)’ (here expressed
in nautical miles coordinates). The model extension to accom-
modate this extra information is straightforward. A is extended
to also return the predicted position, and the observational co-
variance matrix £ V) is extended by two zero-rows and two
zero-columns to express that the position is known without er-
ror. Everything else remains unchanged.
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Most probable track

The unscented Kalman filter and the maximum likelihood
principle supply estimates of the model parameters and the
predicted track. A point on the predicted track at any given
time point is calculated using all observations available at that
time, that is, @; ~ E(¢; |l(1), ..., 1D). Once the entire set of
light observations are available, it is possible to obtain estimates
with smaller variance. What is here denoted ‘““the most probable
track” is calculated using all observations, after the parame-
ters have been estimated. A point on the most probable track is
Qipy ~ E(ai 1D, ... 1@V,

The actual computation of the most probable track is done
in a single backwards sweep of the predicted track and its co-
variance. The last point of the most probable track is identical
to the last point of the predicted track, as all observations were
available to the predicted track at the final point. The last point
of the most probable track is @aypy = @2y, and its covari-
ance is Pyypny = Pan. The following equations are used to
recursively compute the previous points of the most probable
track:

(27)  @ipy =@ + P @iv1p8 — % — ci1)
(28)  Pipy = Pi + P} (Piyipn — Piynj) P
where P/ =P Pi:-11|i
In general, it is not possible to use these simple formulas
with the unscented Kalman filter, but the transition equation (eq.
2) of this model is linear, so here it is a valid approximation.
A general approach is described in Wan and van der Merwe
(2001). In textbooks on the Kalman filter (Harvey 1990), this
technique is known as smoothing, as the resulting track most
often is smoother than the predicted track.

Simulation of realistic data

Simulating artificial, but realistic, data from the actual model,
is an important tool to investigate most important properties of
the model. The advantage of using simulated data is that they
are cheap, the true tracks and model parameters are always
known, and they can be tailored to focus on specific aspects of
the model.

From a set of known model parameters ¢ and a known first
position ag = 7z~ ! (p), the following steps are used to simulate
data.

(i) The underlying true movements are simulated forward in
time from the first position via the movement parameters
(u, v, D) and the transition equation (eq. 2). The times
used (t1, 2, . . ., tpr) should mimic light sampling rates
from a real archival tag. Depending on tag type, they
could be 20 s or 5 min apart.

(ii) Ateach pointin the true simulated track, the predicted light
intensity is calculated via the function A in eq. 4 and the
parameters g1, . . ., @p , describing the function ¢ relating
the solar altitude to the tag-measured light intensity. Real
estimates of model parameters from an actual tag are used
here to make the simulated data as realistic as possible.

(iii) The uncorrelated part of the observation noise, r; ~
N (O, 032), 1, ..., ty,1s now added to each of these light
predictions.
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Fig. 3. Points on the most probable track from the light-based state—space model (circles), along with raw geolocations from the tag
manufacturer’s threshold algorithm (crosses) and the true track from the satellite-based method (solid line). The shaded areas are 95%
confidence regions estimated by the light-based state—space model. Data indicate longitude coordinate (a); latitude coordinate including
raw geolocations (b); and latitude zoomed to scale of most probable and true track (c).
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(iv) The scanning algorithm, previously described, is applied
to select the solar event times and the surrounding times
and simulated light intensities.

(v) Finally, the remaining part of the observation noise is added.
To the simulated light intensities surrounding the i th solar
event is added a vector e ~ N, S(i)),i =1,...,2N,
wgere S® is equal to ©@ described in eq. 5, but with
oy =0.

The resulting data are a set of time vectors and matching
simulated light observation vectors (r(i), l (i))[: 1....2n- These
artificial observations will follow the model, except for one
minor detail. The model assumes no movement within the time
intervals surrounding each solar event, but the simulation move-
ment continues in these intervals. This is done to better mimic
real data, and to investigate the consequences of this model
assumption.

Results

A Wildlife Computers pop-up archival transmitting tag (ver-
sion 2) was deployed on a drifter buoy near Hawaii in September

15 Jan. 2003 24 Feb.2003 5 Apr. 2003

I I I I I I I
15 May 2003

Date

2002 and set to pop up after 9 months. The software from the
manufacturer was used to estimate threshold-based geoloca-
tions. The resulting latitude reconstruction was extremely inac-
curate (Fig. 3). The data from this type of tag consist of ~ 12
light measurements around each solar event, taken ~ 8 min
apart. These raw light measurements were used in the described
light-based state—space model, without first applying the scan-
ning described. The estimated most probable track, especially
the latitude coordinate, was greatly improved (Fig. 3). The esti-
mated 95% confidence region around the most probable track is
not perfect, but it does seem to have approximately the correct
size. The tag manufacturer’s algorithm for selecting the light
measurements to be included in the data does not seem as ro-
bust as the one described in this paper, so even better results
can be expected if the observation window was selected using
that instead.

An important pattern is clearly identified in the standard devi-
ation of the most probable track (Fig. 4), The standard deviation
of the longitude is fairly constant throughout the year, but the
latitude standard deviation is increasing (doubling) around the
two equinoxes. This pattern is not assumed in the model, as was
necessary in Sibert et al. (2003) and Nielsen et al. (2006), but
is a simple consequence of propagating the data uncertainties
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Fig. 4. Estimated standard deviation (SD) of the geolocations from the light-based state—space model. Vertical broken lines indicate time

of equinox. Data indicate longitude coordinate (a) and latitude coordinate (b).
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Fig. 5. Points on the most probable track from the light-based state—space model (circles here are so close that they appear as a thick
solid line), along with raw geolocations from the tag manufacturer’s threshold algorithm (crosses) and the true track from satellite-
based method (solid line). The shaded areas are 95% confidence regions estimated by the light-based state—space model. Data indicate
longitude coordinate (a); latitude coordinate including raw geolocations (b); and latitude zoomed to scale of most probable and true

track (c).
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Fig. 6. The estimated function ¢ describing the relationship
between solar altitude angle and the expected light measurement
in the tag. The circles are the estimated support points
corresponding to the model parameters &, ..., @y,
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through geolocation process.

A Wildlife Computers archival tag (Mk9, version 1.03) was
attached to a mooring near New Caledonia in September 2003,
and recorded data for close to 8 months. The software from
the manufacturer was used to estimate threshold-based geolo-
cations. The reconstructed latitude was extremely inaccurate
(Fig.5). The raw data contains a light reading every minute. The
most probable track from the light-based state—space model is
significantly biased for the longitude coordinate in the begin-
ning of the track, whereas the threshold-based longitudes are
similarly biased near the end of the track. This bias is likely
a result of the internal clock in the tag being slightly biased
or drifting. The latitude coordinate of the most probable track
is within 0.2° of the true position at all times, and the latitude
confidence region covers the true position. Even including the
longitude bias, the most probable track is within 0.5° of the true
position at all times.

The function ¢ describing the relationship between the solar
altitude and the expected light measurement is an important
part of the model. The function is estimated within the model
for the interval covering the selected light measurements. The
function appears to reliably estimated, as the estimated support
points are in close agreement with a monotonic increasing curve
(Fig. 6). The function ¢ estimated from this mooring study is
used as the basis for the following simulations.

To test the model with realistic movement parameters, two
scenarios were simulated: first, with a moderate diffusion rate
of D = 100 Nm?-day~!, which is in the range of sea turtle
movements (Y. Swimmer, NOAA Fisheries, Pacific Island Fish-
eries Science Center, 2570 Dole Street, Honolulu, HI 96822,
Yonat.Swimmer @noaa.gov, personal communication); second,
with a high diffusion rate of D = 500 Nm?.day~!, which is
in the range of bigeye tuna (Thunnus obesus) movement (Sib-
ert et al. 2003). Three tracks, at three different release latitudes,
were simulated for each scenario. The actual estimated values
from the mooring data were used for the functional relationship
between the solar altitude and light (Fig. 6) and for the param-
eters determining the variance structure (012 = 83, 022 =99,
032 = 2.6, and p = 3.2%). This makes the conclusions based
on these simulations regarding precision of the most probable
track as realistic as possible.

Can. J. Fish. Aquat. Sci. Vol. 64, 2007

Table 1. True parameter values, means, and
standard deviations (SD) of estimates from 100
simulated tracks.

Parameter True Mean of SD of
name value estimates  estimates

u 0.000 -0.138 1.366

v 0.000 0.123 1.310
D 300.000 295.021 34916
P 0.032 0.034 0.006
012 83.000 81.829 5.041
o} 9.900 10.424 1.281
o} 2.600 2.606 0.075
0_s 98.843 98.793 0.550
©o 132.255 132.242 0.407
s 145.571 145.487 0.353

The moderately moving tracks were all estimated accurately
(Fig. 7). The longitude coordinate is within 0.5° of the true track,
and the latitude coordinate is within 1° of the true track. The
estimated 95% confidence region appears to have the correct
coverage. The standard deviation of the most probable latitude
show an interesting pattern. Around each equinox, the standard
deviation increases, but not in the same way for all three tracks.
The track near the equator (panels a and d) has the highest
latitude standard deviation exactly at the equinox, but for the
northern track (panels b and e) and the southern track (panels
c and f), the time of the highest latitude standard deviation
is shifted towards the winter side. Further, it is noted that the
standard deviation is higher for the track near equator, where
annual variation in day length is least.

The fast-moving tracks were also estimated accurately (Fig. 8).
The longitude coordinate is within a degree of the true track, and
the latitude coordinate is within 2° of the true track, but most
often closer. The estimated 95% confidence region appears to
have the correct coverage. The standard deviation of the most
probable latitude standard deviation shows the same pattern as
for the moderately moving tracks, except that the standard de-
viation is higher for the fast-moving tracks. This is expected, as
larger diffusion D leads to larger uncertainty in the prediction
from the underlying movement model.

To verify that all model parameters in this model are identi-
fiable, 100 tracks were simulated from known parameters, and
the light-based state—space model was applied to each track.
The parameters representing the relationship between solar al-
titude and light ¢y, .. ., @y, are chosen dynamically to cover the
range (of angles) of the selected light measurements, and hence
they may represent the light value at slightly different angles
for each simulated track. To be able to verify the estimated re-
lationship between between solar altitude and light three fixed
angles are selected: —5°, 0°, and 5°. For each simulated track,
the estimated light levels (¢_s, @9, and @s5) at these three angles
are evaluated.

The simulation study shows that all model parameters are
identifiable. Including the relationship between solar altitude
and light (Table 1), the movement parameters (u, v, and D)
show no significant bias. The relationship between solar altitude
and light is estimated unbiased at —5° and 0°, but these 100
simulations indicate a slightly biased estimate (of 0.084 light
units) at 5°, but this is likely a coincidence occurring because
of the relative low number of simulations.
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Fig. 7. Longitude (a, b, and ¢) and latitude (d, e, and f) of three moderately moving simulated tracks: released at equator (a¢ and d),
released at 35°N (b and e), and released at 35°S (c and f). Each frame shows the true simulated track (solid line), the most probable

track from the light-based state—space model (dots), and the 95% point-wise confidence region (shaded area). Finally, the estimated

standard deviation (SD) of the most probable latitude is shown (g).
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Of the estimated parameters in the variance structure (o1, 02,
03, and p), three are slightly biased. The parameter describing
the variation in visibility between different solar events (o7)
is negatively biased, but the parameters describing the correla-
tion between close observations within the same solar event (o>
and p) are positively biased. The estimates are trading a small
part of the overall correlation between light measurements from
the same solar event to higher correlation between neighboring
points. This is a consequence of the model assumption of no

movement within the observational window around each solar
event. The simulated tracks, and likely also real tracks, continue
to move around solar event times, which gives this higher cor-
relation between neighboring points. The actual value of these
parameters are rarely used, so this small bias is unproblematic.

In all previous simulations (Figs. 7 and 8; Table 1), the sam-
pling rate has been set to 300 measurements per day, which is
one every 4.8 min. The observation window refers to the inter-
val around each solar event where the light measurements are
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Fig. 8. Longitude (a, b, and ¢) and latitude (d, e, and f) of three fast-moving simulated tracks: released at the equator (a and d),
released at 35°N (b and e), and released at 35°S (c and f). Each frame show the true simulated track (solid line), the most probable
track from the light-based state—space model (dots), and the 95% point-wise confidence region (shaded area). Finally, the estimated

standard deviation (SD) of the most probable latitude is shown (g).
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actually used by the model. The observation window, consist-
ing of all observations from the solar event time and 72 min
towards the daytime, and all observations from the solar event
and 14.2 min towards the nighttime has previously been used.

The sampling rate was varied from every 2 min to every 14.2
min. In all cases, the model was able to follow the true track
(Fig. 9). The standard deviation of the most probable latitude
was higher at the sparse sampling rates, but the seasonal differ-
ences are much more dominant (Fig. 9).

The observation window was tested by using fewer of the
observations on the day side of the solar event, or fewer of
the observations on the night side of the solar event, or both.
In all cases, the model was still able to follow the true track
(Fig. 10). The standard deviation of the most probable latitude
was higher in the case where only 18 min towards the day and
3.6 min towards the night was used (one-quarter of the original
window), but all other tested window sizes gave surprisingly
similar latitude variances.
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Fig. 9. Longitude (a, b, and ¢) and latitude (d, e, and f) of three simulated tracks: light sampling every 2 min (a and d), every
4.8 min (b and e), and every 14.2 min (c and f). Each frame shows the true simulated track (solid line), the most probable track
from the light-based state—space model (dots), and the 95% point-wise confidence region (shaded area). Finally, the estimated standard

deviation (SD) of the most probable latitude is shown (g).
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Discussion matching method (as described in Ekstrom 2004) either, as it

The model presented in this paper is completely different
from previous algorithms used in this field. It is unique in com-
bining all steps from the raw light measurements to the esti-
mated most probable track in one coherent model. It cannot be
classified as a threshold model, as it does not reduce the light
measurements at each solar event to a time where a certain solar
altitude is assumed known. It cannot be classified as a template-

does not assume to know the relationship between solar alti-
tude and light. Instead it estimates this relationship within the
model.

The model presented here is also unique in offering a way to
deal with correlated light measurements. It is a fact that light
measurements are serially correlated. Assuming they are inde-
pendent will lead to false confidence statements. The value of
each light measurement is influenced by many factors, which
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Fig. 10. Longitude (a, b, ¢, d, and e) and latitude (f, g, h, i, and j) of five simulated tracks with varying observation window: 72 min
towards the day and 14.4 min towards the night (¢ and f), 36 min towards the day and 14.4 min towards the night (b and g), 72 min
towards the day and 7.2 min towards the night (¢ and /), 36 min towards the day and 7.2 min towards the night (d and i), and 18 min
towards the day and 3.6 min towards the night (e and j). Each frame shows the true simulated track (solid line), the most probable track
from the light-based state—space model (dots), and the 95% point-wise confidence region (shaded area). Finally, the estimated standard
deviation (SD) of the most probable latitude is shown (g).
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are not all included in the model, the most obvious one being
local weather conditions. If there is a heavy cloud cover one
morning, but clear blue sky the next, the measurements from
the latter will all be higher even though all other conditions
are equal. The local weather conditions, or other factors influ-
encing the light measurements, can change gradually, so the
correlation structure further allows the correlation between two

light measurements near the same solar event to depend on the
elapsed time between them.

Another unique feature of the model presented here is that
geolocations are estimated twice a day. Threshold algorithms
need to know the solar altitude angle at two times to produce
one geolocation, and obtain this from two solar events. Get-
ting twice as many geolocations is naturally preferable, but the
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underlying difference in model assumptions is even more im-
portant. Threshold algorithms assume that the movement of the
tagged animal between two solar events can be neglected. The
model presented here only assumes that movement in the ap-
proximately 90 min observational window around each solar
event can be neglected. Furthermore, if there are substantial
movements within the observational windows, the model will
interpret that as additional serial correlation, which will cor-
rectly propagate into wider confidence regions.

The ability to estimate the yearly variation in the latitudinal
standard deviation is an additional benefit of, and unique to,
the model presented here. In Sibert et al. (2003) and Nielsen et
al. (2006), an ad hoc parametric model had to be introduced to
compensate for this pattern in threshold-based geolocations. It
was difficult to verify that the assumed parametric structure was
a valid approximation. The model presented here includes no
assumptions about the yearly variation in latitudinal standard
deviation, but the pattern clearly emerges as a simple conse-
quence of propagating the data uncertainties through the geolo-
cation process.

The two real data cases presented here show that the model
presented is able to produce geolocations even in cases where
the threshold-based latitudinal estimates are extremely inaccu-
rate. The estimated most probable tracks are not perfect, but
they are far superior to the threshold-based geolocations.

All model parameters can be identified from data. The esti-
mated most probable track is able to follow the true track when
realistic assumptions about movement pattern and observation
uncertainty are made.

The model is surprisingly insensitive to varying the sampling
rate of the light measurements. This implies that it is actually
possible to get reliable geolocations from a small number (say
10) of correctly selected points around each solar event. This
result is potentially very useful, as tags that transmit their data
to satellites can only transfer a limited amount of data.

The fact that the model parameters can be identified cor-
rectly from data, and that the most probable tracks follow the
true tracks, implies that approximation used in the unscented
Kalman filter is sufficiently accurate for the nonlinearities in
this model. This is fortunate, as the more accurate alternatives
(simulation-based filters, e.g., Doucet et al. 2001) are far more
computationally demanding.

Ideally, the light that is reflected by the moon should be part
of the model, as it clearly influences the light measurements
in the periods surrounding each full moon. The astronomical
algorithms describing moon altitude and fraction of moon disc
illuminated are straightforward to implement (Meeus 1998).
Adding the two light sources (sun and moon) is the problem-
atic part. Light measurements from the tag are processed by
the inner workings of the tag. This processing can be viewed
as a nonlinear transformation of the raw light intensities, and
the details of this transformation are not easily obtainable, as
the inner workings of some tags are not well documented or
are simply considered proprietary. The asymmetric observation
window chosen here avoids most of the complications with the
moon, as it focus on the part of the light record where moonlight
is negligible, but including the moon could potentially further
improve this model.

The problems associated with standardizing light measure-
ments taken at different depths, also referred to as depth-
correcting, has been avoided in this paper, because the analyzed
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data were obtained at constant depths. The light measurements
can be depth-corrected by the tag manufacturers before they
are used in the model, or the model can be extended by a para-
metric model for the relationship between depth and light. It is
expected that depth-correcting will introduce more uncertainty
in the light measurements and consequently in the estimated
tracks.

The suggestions to use narrow-band blue light instead (Ek-
strom 2004) or to use cosine-collectors on the tags (Qayum et
al. 2006) are interesting. If these light measurements are less
sensitive to weather conditions or better capture light at depths,
it will reduce the uncertainties and further improve the most
probable track.

It has been shown that using sea surface temperature can
improve geolocations (Teo et al. 2004; Nielsen et al. 2006). The
model presented here can be extended in exactly the same way.
However, instead of using sea surface temperature as a second
patch (the first one being the Kalman filter) to a light-based
algorithm that is giving extremely inaccurate geolocations, here
it would only be used to further improve already reliable light-
based geolocations.
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