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Abstract: The efficiency of a pelagic longline fishing operation and the species composition of the resulting catch is
influenced primarily by the relationship between the distribution of hooks and species vulnerability, with vulnerability
described by either depth or some suite of environmental variables. We therefore fitted longline catch rate models to
determine whether catch is estimated better by vertically distributing a species by depth or by environmental conditions
(e.g., temperature, thermocline gradient, and oxygen concentration). Catch rates were estimated by two methods:
(i) monitoring longlines where the vertical distribution of hooks and catch in relation to depth and environmental con-
ditions is known, and (ii) applying a statistical habitat-based standardization (statHBS) model to fishery and environ-
mental data to develop relative abundance indices for bigeye tuna (Thunnus obesus) and blue shark (Prionace glauca).
Results indicated that an understanding of gear dynamics and environmental influences are important for analyzing
catch-per-unit-effort (CPUE) data correctly. Analyses based on depth-specific catch rates can lead to serious misinter-
pretation of abundance trends, despite the use of sophisticated statistical techniques (e.g., generalized linear mixed
models). This illustrates that inappropriate inclusion or exclusion of important covariates can bias estimates of relative
abundance, which may be a common occurrence in CPUE analysis.

Résumé : L’efficacité d’une pêche commerciale pélagique à la palangre et la composition spécifique de la capture sont
influencées principalement par la répartition des hameçons et la vulnérabilité des espèces; la vulnérabilité peut être dé-
crite par la profondeur ou par un autre ensemble de variables environnementales. Nous avons donc ajusté des modèles
de taux de capture à la palangre afin de déterminer si les captures sont mieux estimées lorsque les espèces sont répar-
ties verticalement en fonction de la profondeur ou en fonction des conditions du milieu (par ex., la température, le gra-
dient de la thermocline et la concentration d’oxygène). Nous avons estimé le taux de capture par deux méthodes :
(i) en suivant des palangres pour lesquelles la répartition verticale des hameçons et le taux de capture en fonction de la
profondeur et des conditions du milieu sont connus et (ii) en utilisant un modèle statistique de standardisation basé sur
l’habitat (« statHBS ») avec des données de pêche et de conditions environnementales afin de générer des indices
d’abondance relative pour le thon ventru (Thunnus obesus) et le requin bleu (Prionace glauca). Les résultats indiquent
qu’une bonne compréhension de la dynamique des engins de pêche et des influences de l’environnement sont nécessai-
res pour pouvoir analyser correctement les données de capture par unité d’effort (CPUE). Les analyses basées sur les
taux de capture spécifiques aux différentes profondeurs peuvent mener à une interprétation sérieusement faussée des
tendances dans l’abondance, malgré l’utilisation de méthodes statistiques sophistiquées (par ex., les modèles linéaires
généralisés de mélange). Cela illustre comment l’inclusion ou l’exclusion non appropriée de covariables importantes
peut fausser les estimations de l’abondance relative, ce qui peut se produire couramment dans les analyses de CPUE.

[Traduit par la Rédaction] Bigelow and Maunder 1594

Introduction

The vertical and horizontal distributions of pelagic species
are commonly believed to be influenced by temporal and
spatial trends in environmental conditions (Sharp 1978;
Lehodey et al. 1997), which has led to a substantial amount
of research on the habitat preferences and physiological lim-
itations of these species (Brill 1994; Brill and Lutcavage
2001). Habitat preferences and limits (i.e., habitat envelopes)
have been used to evaluate the influence of the environment
on catch rates of pelagic longlines (Hanamoto 1987; Hinton

and Nakano 1996; Bigelow et al. 2002). Accounting for such
influences is particularly important when using catch rates as
indicators of relative abundance trends because unadjusted
catch rates may be misleading (Hinton and Maunder 2004a).
Catch rates are used as a critical source of information for
the majority of fisheries stock assessments, and standardiz-
ing catch rates for factors other than abundance, including
environmental conditions, is one of the most commonly ap-
plied analyses in fisheries science (for a review, see Maun-
der and Punt 2004). Analyses that do not take these factors
into consideration (e.g., Myers and Worm 2003) are likely to
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produce biased estimates of the status of the stocks
(Hampton et al. 2005; Maunder et al. 2006b; Polacheck
2006).

For several years, assessments of pelagic species have
taken environmental information into consideration when
standardizing catch rates of pelagic longlines. In particular,
the habitat-based standardization (HBS) framework (Hinton
and Nakano 1996) represents a modeling approach whereby
catch rates are standardized by estimating effective longline
effort from information on the vertical distribution of hooks,
species-specific habitat envelopes, and the vertical, horizon-
tal, and temporal distribution of environmental conditions.
Initial implementations of this method used habitat prefer-
ence data collected from acoustic tracking and electronic
(archival and pop-up satellite archival) tags. However, for
some species, analyses have shown that the application of
habitat envelope data derived from tracking or tags may not
appropriately represent vulnerability to longline gear (Bige-
low et al. 2003). In these analyses, HBS effort may be worse
at estimating catch than the use of nominal effort. Reasons
may include inaccurate assumptions about habitat envelopes
and longline gear depth characteristics, or the fact that
changes in motivation to feed or the ability of fish to locate
baited longline hooks may well be affected by depth or spe-
cific environmental conditions.

Statistical approaches in estimating catch rates have pro-
vided superior fits to deterministic habitat modeling (Bige-
low et al. 2003), and consequently, these statistical
approaches have been advocated (e.g., statHBS, Maunder et
al. 2006a; neural networks, Maunder and Hinton 2006; gen-
eralized linear models, Ward and Myers 2005, 2006). These
statistical methods account for some of the previously men-
tioned problems with the deterministic habitat model
(detHBS). Methods for testing the appropriateness of HBS
effort (Maunder et al. 2002) naturally lead to a statistical ap-
proach for habitat-based standardization (statHBS, Maunder
et al. 2006a). Rather than deterministically using the habitat
envelope data, either these data can be used as a prior in a
Bayesian context and updated in the analysis, or habitat-at-
capture can be estimated within the analysis in a maximum
likelihood context. Commercial catch and effort data are
reported as the number of fish caught without information
on the position of individual hooks in the water column.
Modeling of these catch and effort data in a habitat context
precludes the use of linear models (as used by Ward and
Myers 2005, 2006) because observations sum information
over multiple habitats (Maunder et al. 2006a). Therefore, an
efficient nonlinear statistical modeling framework is re-
quired (e.g., AD Model Builder). The statHBS method has
become a standard approach to analyzing catch rate data for
the most commercially important billfish and tuna species in
the Pacific Ocean (e.g., Bigelow et al. 2003; Hinton and
Maunder 2004b).

Recent studies have advocated the use of depth distribu-
tion of pelagic fishes to standardize longline catch-per-unit-
effort (CPUE) and generate indices of relative abundance
(Ward and Myers 2005, 2006). The depth-based approach
differs from the detHBS and the subsequent statistical ap-
proaches that take environmental parameters into consider-
ation. In addition, other covariates that are typically used to
standardize catch rates (e.g., year, month, and area) should

also be considered (Maunder and Punt 2004). Therefore, it is
important to determine if a naive depth-based standardiza-
tion is adequate or if environmental and other covariates are
important to standardizing longline CPUE data and generat-
ing indices of relative abundance for use in stock assessment
models.

Our study compares depth- and habitat-derived catch rate
estimates to ascertain if catch is estimated better by model-
ing the vertical distribution with a variety of environmental
conditions or in a stereotyped depth preference. We apply
models to bigeye tuna (Thunnus obesus) and blue shark
(Prionace glauca), two ecologically diverse species in the
Pacific Ocean, using two approaches to compare catch rates:
(i) calculating CPUE from monitored longlines where the
vertical distribution of hooks and fish catch in relation to en-
vironmental conditions and depth is known, and (ii) apply-
ing a statHBS model to fishery and environmental data to
develop indices of relative abundance and comparing them
with depth-based analyses (Ward and Myers 2005).

Materials and methods

Catch rate estimation from known catch and hook depth
Depth- and habitat-derived catch rates were estimated

from monitored longline sets in the central North Pacific
Ocean. Fishery observers of the National Marine Fisheries
Service (NMFS) attached one time–depth recorder (TDR) to
the presumed deepest hook in each longline set to obtain
actual longline fishing depths for swordfish (n = 333 sets)
and tuna (n = 266 sets) gear in the Hawaii-based fishery
from February 1996 to April 1999 (Bigelow et al. 2006).
This study concentrated on monitored tuna sets, and opera-
tional details can be found in table 1 of Bigelow et al.
(2006). The large geographical area of the monitored tuna
sets (4°N–32°N, 170°W–154°W) represents fishing in sev-
eral current systems and water masses of the North Pacific
(Sverdrup et al. 1942). Two data sets were produced to
reflect oceanographic properties and allow catch rate com-
parisons with previous studies. One data set (n = 44 sets)
was stratified from 4°N to 14°N, an area dominated by the
north equatorial current and countercurrent and character-
ized by the North Pacific equatorial water mass. The second
data set (n = 244 sets) was stratified from 4°N to 25°N and
incorporates both the North Pacific equatorial water and cen-
tral water in the subtropics. No data were used from lati-
tudes to the north of 25°N as these 22 sets occurred within
the subtropical frontal zone, an area with differing thermo-
haline circulation (Roden 1991).

Hook depth in each tuna longline set was estimated by
two methods: (i) catenary depth formula and (ii) inter-
polation of shallower hooks from the observed depth of the
deepest settled hook from TDR monitoring. Hook depth
from the catenary formula followed Ward and Myers (2005,
2006) and Bigelow et al. (2006). Briefly, the requirements
for catenary depth estimation were longline dimensions re-
ported by the observer or vessel operator such as length of
branchline, length of floatline, length of mainline deployed
between two floats, hook number, hook midway between
floats, and the angle (φ) between the horizontal and tangen-
tial line of the mainline where the floatline was attached.
The angle (φ) is based on a sag ratio or the length of the
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mainline deployed between two successive floats and the
horizontal distance between the two floats. We followed the
criterion of Ward and Myers (2006) by assuming a value of
72° for φ when the sag ratio could not be estimated or did
not fall within reasonable bounds (sag ratio ranging from
0.20 to 0.73; φ = 62°–90°, respectively). An assumed angle
of 72° occurred for 147 of the 244 sets (60.2%).

TDR depths were estimated according to Boggs (1992).
Hook depth was interpolated between either (i) the average
depth of the deepest (TDR) hook and the calculated depth of
the middle hook or (ii) the depth of the middle hook and the
shallowest depth of the mainline depending on the hook po-
sition. The ratio between the middle hook and deepest hook
TDR positions was assumed at 0.737 (Boggs 1992), and the
shallowest depth of the mainline was assumed to be equal to
the length of the floatline.

All fish caught were identified by observers to either the
species level or lowest possible taxon, and the hook number
associated with the fish was recorded. Capture depths and
effort (hooks) were estimated for each longline deployed and
binned into 40-m depth categories ranging from 0 to 800 m.
We analyzed the vertical distribution in catch rates for big-
eye tuna and blue shark. These species were selected be-
cause they are primarily caught when the gear is settled, thus
the recorded hook number is unlikely to be substantially bi-
ased as a result of capture on longline deployment and re-
trieval (Boggs 1992).

Environmental covariates
Ambient temperature, thermocline gradient, and climato-

logical oxygen at depth were used to model catch rates.
TDR monitoring provided temperature and depth measure-
ments every 5 min; however, mixed layer depth and gradi-
ents describing the upper thermocline may be poorly
determined as the TDR only recorded upper ocean thermal
structure while sinking or rising rapidly on longline deploy-
ment and retrieval. As an alternative, temperature at discrete
depths was obtained from the Global Ocean Data Assimila-
tion System (GODAS) developed at the National Centers for
Environmental Prediction (NCEP). The model has 10 and 31
vertical layers in the upper 100 and 1000 m, respectively,
and a spatiotemporal resolution of 1/3° latitude and 1° longi-
tude by 1 month (1980–2005). The estimated temperature
profile from the TDR monitoring agreed well with the
GODAS model values (mean profile difference = 0.09 °C,
with a root mean squared or RMS difference = 1.19). We
implemented a cubic smoothing spline in R (smooth.spline;
version 2.2.0 for Linux; www.r-project.org) for each temper-
ature profile to estimate temperature and gradient (first de-
rivative) for each metre of the profile. Mean temperature and
gradient were then estimated for each 40 m depth category.
Climatological dissolved oxygen (DO) profile data were ob-
tained from Levitus and Boyer (1994), and mean estimates
were interpolated for each 40 m depth category.

Modeling longline catch rates from known catch and
hook depth

Generalized linear models (GLMs; S-PLUS version 6.2.1
for Linux; Insightful Corporation, Seattle, Washington)
were developed to explain the vertical distribution in catch
rates by depth and habitat. GLM structure and the assump-

tion of a Poisson error distribution followed Ward and
Myers (2005, 2006). In a model of catch rates by depth,
the mean catch (µ i D, ) in longline operation i at depth D is
estimated with a log link:

(1) log( ) log( ), , , , ,µ β β βi D i i D i D i D i DN D D D H= + + + +1 2 3
2 3

where Ni is the mean local abundance, and Hi,D and β are
estimated parameters. The regression coefficients in eq. 1
describe how catch rates change with depth as a third-order
(cubic) effect. Models were also calculated with no depth in-
formation (null model) and depth as a linear and quadratic
parameterization. For modeling catch rates by habitat, the
model estimates mean catch (µ i D, ) in longline operation i at
depth D using a log link:

(2) log( ), , , , ,µ β β β βi D i i D i D i D i DN T T T T= + + + +1 2 3 4
2 3 ∆

+ + + +β β β5 6 7Oxy∆ ∆T T Hi D i D i D i D, , , ,log( )2 3

where T is the ambient temperature, ∆T is the thermocline
gradient, and Oxy is the oxygen concentration. Mean catch
was modeled as a function of temperature and gradient ef-
fects with up to a third-order (cubic) effect. Oxygen was
modeled as a two-piece linear effect, as high values would
not be expected to result in lower catches. The two linear
stanzas were separated at a particular threshold (concentra-
tion), with a linear decay in catch below the threshold and
no effect (slope = 0) at oxygen values above the threshold.
Three oxygen thresholds were considered for each species:
bigeye tuna had linear stanzas separated at 1, 2, and 3 mL·L–1,
whereas sharks in general are less hypoxia tolerant (Carlson
and Parsons 2001), thus blue shark had stanzas separated at
2, 3, and 4 mL·L–1. GLMs were fit in forward and backward
selection and the order of entry into the GLM was deter-
mined by reductions in the Akaike information criterion
(AIC).

Catch rate estimation from a large-scale fishery in a
statistical framework

We compared catch rate estimates derived from depth and
habitat with corresponding indices of relative abundance for
the Japanese distant-water fishery, the largest longline fish-
ery in the Pacific Ocean. Modeling longline catch and effort
in a habitat context precluded use of the aforementioned
GLMs because observations were summed over multiple
habitats. Thus modeling of the catch and effort series
entailed use of a standard likelihood approach that fit esti-
mated catch to observed catch (Maunder et al. 2006a).

Two Japanese longline fishery data sets were analyzed.
Bigeye tuna from 1980 to 2004 were grouped by month, 5°
latitude × 5° longitude area, and gear configuration (hooks
between floats (HBF); range 5–23) from logbook informa-
tion. Blue shark captures from 1980 to 2002 were grouped
by month, 1° latitude × 1° longitude area, and 5–20 HBF.
Blue shark are a bycatch species and captures were not spe-
cifically reported in logbooks throughout the entire time
series; thus, a filtering method was applied to remove ques-
tionable data by calculating a reporting rate per vessel cruise
(Nakano and Clarke 2006). The vertical distribution of
hooks within each configuration was estimated from long-
line characteristics and catenary geometry (K. Yokawa, Na-
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tional Research Institute of Far Seas Fisheries, Shimizu,
Japan, personal communication; Bigelow et al. 2002).

Catch was fit to four effort series for comparison: (i) nomi-
nal, (ii) statHBS, (iii) depth in a deterministic context follow-
ing Ward and Myers (2005, 2006), and (iv) depth estimated
statistically. In the statHBS approach, the vertical distribution
of a species was based on both habitat-at-capture and environ-
mental data. Effective effort was calculated by summing the
habitat-at-capture of the species for each hook within each
stratum. This was achieved by matching the depth of the hook
with the environmental data to determine the habitat fished by
the hook. The estimated catch for a stratum i is

(3) C q I H Ei t h i j
i j hh

=










∈

∑∑base ,
,

where qbase is the overall catchability, It is the year effect for
year t, Hh represents the habitat effect of hook j in stratum i,
and Ei j, is the effort for observations i and j. The estimated
and observed catch was then compared with a lognormal
likelihood function:

(4) − = + + − +
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~
Ci is the observed catch and Ci is the estimated catch

for observation i, δ is a small constant (1.0, justification in
Maunder et al. 2006a) that is used to avoid computational
problems when the observed or estimated catch is zero, and
σ2 is the lognormal variance. The negative log likelihood
was minimized to estimate qbase, the year effects (year effect
for the initial year is fixed at 1.0 to avoid confounding with
qbase) and the standard deviation of the likelihood function.
The four effort series differ in the Hh parameterization. For
nominal effort, Hh = 1. For the deterministic depth-based
analysis, Hh is fixed based on parameter estimates for day
longlining operations (Ward and Myers 2005, their appendix
1), and Hh is represented by a vector of fifteen 40 m catego-
ries from 0 to 600 m. For the statistically estimated depth-
based analysis, Hh is estimated for each 40 m depth
category. The statHBS model estimates Hh and the catego-
ries represented by h are based on ambient temperature and
thermocline gradient at 40 m depth internals for each
monthly 1° or 5° stratum from the aforementioned GODAS
model. AD Model Builder (Otter Research Ltd., Sidney,
British Columbia) was used to develop the model, and no
priors were used in the estimated depth distribution or
statHBS analysis.

We fit models to bigeye tuna and blue shark distributions
from a spatial area analogous to that of the Ward and Myers
(2005) study (Fig. 1). The area contains 91 960 strata for
bigeye tuna (1.4% zero observations) in the tropical (15°S–
15°N, 140°E–110°W) and temperate (25°N–40°N, 110°W–
170°W) Pacific and 71 046 strata for blue sharks (5.2% zero
observations) in the North Pacific Ocean (0°N–15°N,
140°E–110°W and 25°N–40°N, 110°W–170°W). The nomi-
nal effort model had a total of 26 parameters (qbase, σ, and
24 year effects) for bigeye tuna and 24 parameters for blue
sharks. All other models had an additional 14 parameters
(preferences – 1) when estimating depth or habitat-at-
capture. Model results were compared by three methods:

(i) Akaike information criterion (AIC), (ii) Bayesian
information criterion (BIC), and (iii) an aggregated predic-
tion error ( (

~
) ln( )] )Σ[ln 2C Ci i+ − +δ δ . Bootstrapping was

employed to empirically estimate the distribution of the dif-
ferences between models (∆AIC, ∆BIC, ∆prediction error).
Bootstrapping was conducted by block resampling each
year, using a simple random sample with replacement to
model temporal correlation as monthly 1° or 5° strata may
not represent independent observations. The four longline
effort models were then applied to each of the 25- or 23-year
blocks, and a total of 500 bootstrap replications were com-
puted. For the aggregated prediction error, a ratio (model 1
to model 2) of prediction errors was calculated from each
bootstrap replication. Selecting model 1 compared with
model 2 corresponds to the proportion (p) of bootstrapped
ratios having a value <1.0.

Results

Precision of depth and catch rate estimates
The vertical distribution of hooks and fish capture were

known for 44 longline sets from 4°N to 14°N and 244 sets
from 4°N to 25°N (Table 1). The tropical area (4°N–14°N)
corresponds to data analyzed by Ward and Myers (2006, n =
864 sets). Hook depths based on the catenary formula were
substantially deeper (mean = 310 m) than observed hook
depths (mean = 183 m; Fig. 2c). Similar biases occur when
estimating the vertical distribution in catch and correspond-
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Fig. 1. Geographical areas of longline catch rate analyses for the
Hawaii-based tuna fishery (two areas) and Japanese distant-water
tuna fishery. Hawaii-based fishery was monitored with time–
depth recorders (TDRs) and has known vertical distribution of
hooks and fish catch in relation to environmental conditions and
depth. Japanese fishery was analyzed for bigeye tuna (Thunnus
obesus, shaded area) and North Pacific blue sharks (Prionace
glauca, hatched area north of the equator).

Number modeled

Stratum Sets (hooks) Bigeye tuna Blue sharks

4°N–14°N 44 (86 888) 639 148
4°N–25°N 244 (412 834) 2509 1308

Table 1. Number of fish and effort (sets, hooks) from monitored
(time–depth recorders) longline sets in the Hawaii-based fishery.



ing CPUE. Depth distribution in catch rates for bigeye tuna
based on observed hook depths indicated an increase in
CPUE from the surface, peaking at 180 m, and a slight
decline in catch rates to a depth of 420 m (Fig. 2d). Few
inferences can be made from TDR monitoring at depths
deeper than 420 m as confidence intervals widen because of
a lack of fishing effort. In contrast, bigeye tuna CPUE appears
to linearly increase from the surface to a depth of 600 m based
on catenary assumptions. There was a greater difference in pro-
files for blue sharks based on catenary and observed longline
depths as indicated by the mean trend and 95% confidence in-
tervals (Fig. 2e). Blue shark catch rates based on observed
hook depths were high in the upper water column (0–100 m)
and declined with depth, but the profile based on catenary as-
sumptions indicated significantly lower catch rates in the upper
water column, an increase to a depth of 260 m, and signifi-
cantly higher catch rates at deeper depths.

Modeling catch rates from known longline catch and
hook depth

Results from modeling catch rates by depth and habitat-
at-capture are presented for bigeye tuna and blue sharks in
two geographical areas (Tables 2–3). A latitudinal depiction
from the larger area (4°N to 25°N) of the Hawaii-based
longline fishery indicates that the vertical structure of tem-
perature and oxygen is dynamic (Fig. 3). From 4°N to 14°N,

the thermocline is shallow (80–280 m) with large gradients
(~0.25 °C·m–1) and a shallow oxycline. Proceeding north-
ward (14°N–20°N), the thermocline occurs at moderate
depths (100–320 m) with smaller gradients (~0.1 °C·m–1)
and a deepening oxycline. From 20°N to 25°N, the thermo-
cline is diffuse (<0.1 °C·m–1) and the oxycline is deep with a
concentration of 4 mL·L–1 at ~350 m.

A cubic depth model was preferred over null, linear, and
quadratic depth effects; however, AIC and residual deviance
indicated that all GLMs fit to catch with habitat as explana-
tory variables were preferred over models using depth (Ta-
bles 2–3). For each species, temperature variables (ambient
and thermocline gradient) were the initial entrants in the
GLM, but the entry of each variable was area dependent.
Thermocline gradient was large in the tropics (4°N–14°N)
and was the initial entry in the bigeye tuna model (not
shown); however, ambient temperature was the initial entry
for the larger area (4°N–25°N). The relationship between
ambient temperature and catch for the larger area suggested
a maximum catch at ~10 °C with a decline at increasing
temperature (Fig. 4a), whereas the relationship with thermo-
cline gradient indicated low catch at strong gradients
(Fig. 4b). For blue sharks, the temperature effect was rela-
tively flat (Fig. 4d), though the thermocline gradient effect
was dome-shaped with high catches at moderate gradients
(Fig. 4e). The effects of both temperature variables imply
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Fig. 2. Comparison of the bigeye tuna (Thunnus obesus) and blue shark (Prionace glauca) vertical distribution of (a, b) catch,
(c) longline effort, and (d, e) catch rates based on catenary depth estimates (shaded bars) and observed depth (solid bars) for the
Hawaii-based longline fishery (n = 44 sets, 4°N–14°N, 170°W–154°W). Estimated catch rate-at-depth with 95% confidence intervals
from generalized linear models (GLMs) based on catenary (solid line) and observed depth (broken line) for (d) bigeye tuna and
(e) blue sharks.



that bigeye tuna catches are highest at the bottom of the
thermocline, whereas high blue shark catches occur within
the thermocline.

Dissolved oxygen was always the third entry in GLM,
though it was not significant in one fit. AIC results indicate
a linear stanza separation at 1 mL·L–1 for bigeye tuna and
4 mL·L–1 for blue shark (Figs. 4c, 4f), but AIC values were

similar at other thresholds considered. Separations at these
thresholds may not have been driven by oxygen but may
result from a species position in the thermocline, which has
more explanatory power.

Estimated catch rates at depth were generated for the four
GLM models based on habitat (Fig. 5). The vertical distribu-
tion in catch rate changes markedly between the tropical
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Model name Residual df ∆ Residual deviance AIC

Bigeye tuna (4°N–14°N, North Pacific equatorial water mass), null deviance = 1193.5
No depth or habitat information 266 1462.5
Depth information

Depth (linear) 265 384.4 1080.0
Depth (quadratic) 264 386.8 1078.6
Depth (cubic) 263 390.7 1075.7

Habitat information
Thermocline gradient (cubic) 263 421.5 1044.9
Thermocline gradient and ambient temperature (cubic) 260 518.4 951.0
Thermocline gradient, ambient temperature, and oxygen 259 523.1 947.3

Bigeye tuna (4°N–25°N, North Pacific equatorial and central water mass), null deviance = 5100.3
No depth or habitat information 1415 6518.2
Depth information

Depth (linear) 1414 1800.9 4719.3
Depth (quadratic) 1413 1904.3 4616.9
Depth (cubic) 1412 1906.5 4615.7

Habitat information
Ambient temperature (quadratic) 1413 1919.2 4602.0
Ambient temperature and thermocline gradient (quadratic) 1411 1940.2 4583.0
Thermocline gradient, ambient temperature, and oxygen 1409 1947.5 4577.7

Note: Smaller values of Akaike information criterion (AIC) indicate better model performance.

Table 2. Summary statistics of a generalized linear model fit to bigeye tuna catch as a function of known gear
depth and habitat for the Hawaii-based longline fishery.

Model name Residual df ∆ Residual deviance AIC

Blue shark (4°N–14°N, North Pacific equatorial water mass), null deviance = 447.9
No depth or habitat information 266 716.9
Depth information

Depth (linear) 265 152.1 566.8
Depth (quadratic) 264 152.8 567.1
Depth (cubic) 263 156.4 564.5

Habitat information
Ambient temperature (cubic) 263 155.7 565.1
Ambient temperature and thermocline gradient (linear) 262 158.8 563.1

Blue shark (4°N–25°N, North Pacific equatorial and central water mass), null deviance = 2614.4
No depth or habitat information 1415 4032.4
Depth information

Depth (linear) 1414 533.4 3500.9
Depth (quadratic) 1413 542.8 3492.5
Depth (cubic) 1412 545.9 3490.5

Habitat information
Thermocline gradient (quadratic) 1413 599.0 3436.3
Thermocline gradient and ambient temperature (cubic) 1410 608.3 3430.0
Thermocline gradient, ambient temperature, and oxygen 1409 611.6 3427.8

Note: Smaller values of Akaike information criterion (AIC) indicate better model performance.

Table 3. Summary statistics of a generalized linear model fit to blue shark catch as a function of known gear
depth and habitat for the Hawaii-based longline fishery.



area (4°N–14°N) and the entire area (4°N–25°N). Bigeye
tuna and blue shark CPUEs peak at 180 m and 60 m; respec-
tively, in the tropics, but CPUE peaks occur 80 m deeper
when the model includes the subtropics.

Modeling catch rates from a large-scale fishery in a
statistical framework

Vertically distributing a species by habitat (statHBS ap-
proach) provided the best fit to the variation in both bigeye
tuna and blue shark catch in the Japanese longline fishery
(Table 4; Appendix A, Table A1). Each of the statistical cri-
teria (AIC, BIC) and the alternative prediction error statistic
consistently selected the same model. The statHBS effort
series based on temperature and thermocline gradient was
significantly better than all other effort series based on AIC
and BIC values (Table 4).

Fitted temperatures and thermocline gradient were realis-
tic for both species; however, results from the larger spatial

area (Japanese fishery) were dissimilar to GLM results on
the smaller spatial area (Hawaii-based fishery). Bigeye tuna
temperature at capture was highest from 9–25 °C and de-
clined linearly over warmer temperatures (Fig. 6a). Fitted
thermocline effects over the larger area indicated that bigeye
tuna were captured in strong gradients (~0.3 °C·m–1) within
the thermocline with a linear decline at weaker gradients
(Fig. 6b). Fitted temperatures and thermocline gradient indi-
cated that blue sharks are more epipelagic than bigeye tuna.
Fitted temperatures were from 10–28 °C, with high values
from 23 to 27 °C (Fig. 6c). Temperature gradient had a U-
shaped effect on blue shark captures (Fig. 6d). High captures
occurred at high (>0.25 °C·m–1) gradients within the thermo-
cline and low gradients such as the mixed layer. Captures were
lower at intermediate gradients (0.05–0.20 °C·m–1).

The use of depth distribution to infer catch rates provided
no enhanced performance, as deterministic depth models were
marginally better than using nominal effort for both species
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Fig. 3. Latitudinal comparison of the vertical distribution of (a) temperature, (b) temperature gradient, and (c) dissolved oxygen corre-
sponding to 244 sets in the Hawaii-based longline fishery (February 1996 – April 1999).



(Table 4). A model that estimated the vertical depth distribu-
tion provided intermediate explanatory ability. Two sensitiv-
ity analyses were considered: (i) distribution of the hooks
shallowed and deepened by 10% and 25%; and (ii) CPUE-
at-depth estimates (Ward and Myers 2005) for longlines de-

ployed during the day (75%) and night (25%). Model results
were robust to both the gear depth modifications and differ-
ential day–night catch rate assumptions (Appendix A, Table
A2). The sensitivity analysis for gear depth indicated that
deeper gear (25%) performed better for bigeye tuna in the
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Fig. 4. Generalized linear model (GLM) effects of (a, d) temperature, (b, e) temperature gradient, and (c, f) dissolved oxygen on catch
rate of bigeye tuna (Thunnus obesus) and blue sharks (Prionace glauca) in the Hawaii-based longline fishery (n = 244 sets, 4°N–25°N,
170°W–154°W). CPUE, catch-per-unit-effort. Broken lines indicate ±1 standard error.

Fig. 5. Estimated catch rate at depth from generalized linear models (GLMs) based on habitat for (a) bigeye tuna (Thunnus obesus)
and (b) blue sharks (Prionace glauca). Solid line with 95% confidence intervals is the tropical area (n = 44 sets, 4°N–14°N, 170°W–
154°W); broken line with 95% confidence intervals is the tropical and subtropical areas (n = 244 sets, 4°N–25°N, 170°W–154°W).
CPUE, catch-per-unit-effort.



statHBS analysis (AIC = 47 632) compared with the base
case (AIC = 48 610). Gear that was 10% shallower per-
formed better in the statHBS blue shark analysis (AIC =
39 974) compared with the base case (AIC = 40 542).
Depth-based results were relatively insensitive for both big-
eye tuna and blue shark, especially blue shark where little
catch rate variation with depth is assumed (Ward and Myers
2005). The sensitivity analysis of differential vulnerability
indicated a slight improvement for bigeye tuna (AIC =
49 842) compared with the base case, but including a night
vulnerability component performed much worse for blue
shark (AIC = 76 426).

Time-series trends in relative abundance (standardized
CPUE) differed markedly for each species, depending on the
assumption of vertical distribution by depth or habitat
(Fig. 7). Relative abundance indices based on depth or habi-
tat were ~20% different at the end of the time series for both
species. The statHBS trend was similar to nominal CPUE

for bigeye (Fig. 7a) but indicated a greater increase in rela-
tive blue shark abundance (Fig. 7b) because of reduced
catchability that resulted from a time-series shift to deeper
gear coincident with less longline effort in the upper water
column. The time-series trend based on deterministic depth
was the most pessimistic for bigeye tuna, but almost identi-
cal to nominal effort for blue sharks, owing to little catch
rate variation with depth. Analyses that estimated the verti-
cal depth distribution were more optimistic than determinis-
tic models for bigeye tuna and similar for blue shark, though
the improvement over nominal effort was much less than
that for statHBS.

Discussion

Precision of depth and catch rate estimates
Longline catchability models require an understanding of

gear behavior and hook depth distributions. The vertical dis-
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Base model — bigeye tuna Base model — blue sharks

Model Parameters –ln[likelihood] AIC Parameters –ln[likelihood] AIC

Nominal 26 25 058 50 168 24 21 818 43 684
Depth 26 24 924 49 900 24 21 809 43 666
Depth-fitted 40 24 739 49 558 38 21 322 42 720
statHBS (ambient) 40 24 682 49 444 38 20 538 41 152
statHBS (gradient) 40 24 611 49 302 38 20 469 41 014
statHBS (ambient and gradient) 54 24 251 48 610 52 20 219 40 542

Note: Smaller values of Akaike information criterion (AIC) indicate better model performance. Bayesian information criterion results are
not shown, but models had the same ranking as AIC results.

Table 4. Comparison of four longline effort models in explaining catch of bigeye tuna and blue sharks in the Japanese
longline fishery in the Pacific Ocean.

Fig. 6. Estimated catch rate at temperature and temperature gradient for (a, b, respectively) bigeye tuna (Thunnus obesus) and (c, d, re-
spectively) blue shark (Prionace glauca) based on a statistical habitat-based standardization (statHBS). The statHBS model was fit to the
area of Ward and Myers (2005). Mean effect is illustrated as points and lines illustrate 95% confidence intervals from bootstrapping.



tribution of longline hooks is central to estimating species-
specific habitat-at-capture and depth-specific catch rates.
Monitored longlines indicated that catenary estimates of
hook depth were not robust because they are highly sensitive
to the assumed sag angle (72°) used when the sag ratio
could not be estimated or did not fall within reasonable
bounds (0.20–0.73; φ = 62°–90°). Our reanalysis of the
Ward and Myers (2006) study indicates that their mean an-
gle was 71.8° (95% confidence interval (CI) 66.6°–77.2°)
for the Hawaii-based tuna fishery with 74% of the angles as-
sumed as 72°. In contrast, Bigelow et al. (2006) estimated
angles substantially less (mean 60.2°) for the same fishery.
These smaller angles result in shallower gear; however, ac-
tual gear depth was still 39% shallower than empirical cate-
nary estimates because of shoaling (Bigelow et al. 2006).
Ward and Myers (2005, 2006) reduced all depths by 25% to
account for shoaling. Hook depths, however, remain biased
because the commonly used catenary angle of 72° is not ap-
propriate for the Hawaii-based tuna fishery or for other fish-
eries as well.

The statHBS model contains two submodels: (i) hook
depth distribution of the longline gear and (ii) habitat-at-
capture. The current version of the statHBS model imple-
ments a deterministic gear distribution and statistically esti-
mates habitat or depth. Goodyear et al. (2002) noted that the
weakest component in HBS models might be a quantitative
understanding of hook depth distributions and gear behav-
iors. Our statistically estimated habitat or depth-at-capture
for the Japanese distant-water fishery is contingent on as-
sumed hook depths. Although gear depth is generally un-
known in longline fisheries, our sensitivity analyses of
shallower and deeper gear provide consistent results that
predicting vertical distributions based on habitat-at-capture
is preferable to using models on depth preferences. The
statHBS model can be extended to include a gear submodel
for which the parameters are estimated in the statHBS
framework (Maunder et al. 2006a).

Catch rate comparisons with previous longline monitoring
studies

Several longline monitoring studies have investigated depth
and habitat relationships for bigeye tuna and blue sharks in
the Pacific Ocean. Hanamoto (1987) hypothesized that the
optimum bigeye tuna habitat occurred between 10 and
15 °C, but that vertical distribution was limited by tempera-
tures below 10 °C and DO concentration below 1 mL·L–1.
Boggs (1992) conducted longline monitoring in a similar
area (14°N–20°N) to our study and demonstrated that bigeye
tuna CPUE was low (<2 fish per 1000 hooks) in shallow
depth strata (40–120 and 120–200 m) but much higher (8–10
fish per 1000 hooks) in deeper depth strata (200–280 m and
280–400 m). High bigeye tuna CPUE occurred at DO con-
centrations of 1.4–2.1 mL·L–1, but no fishing occurred at
concentrations of <1 mL·L–1 to test the hypothesized limita-
tions. There are few studies on depth and habitat relation-
ships for blue sharks in the tropical and subtropical Pacific
for comparison. There was no evidence of a depth effect on
CPUE between the equator and 30°N (Strasburg 1958) or in
equatorial waters and the central Pacific (Nakano et al.
1997), albeit each longline study developed relationships
based on catenary formula.

Habitat- and depth-derived catch rate estimates differ by
species and fish size because of physiological requirements
(Brill 1994). Habitat gradients have been hypothesized to be
more important in determining catch rates than ambient val-
ues (Cayré and Marsac 1993; Bach et al. 2003). Cayré and
Marsac (1993) postulated that gradients (e.g., temperature and
oxygen) had a greater effect on the vertical distribution of
yellowfin tuna than ambient values, though gradients had to
occur within the range of ambient values based on physiologi-
cal limitations. Bach et al. (2003) characterized bigeye tuna
catch rates in the Society Archipelago (French Polynesia) in
relation to ambient values and gradients of temperature, DO,
and micronekton biomass. Bigeye captures occurred near high
thermocline gradients and 50 to 100 m above the maximum
micronekton biomass. No inferences could be made with re-
spect to oxygen because fishing occurred in relatively well-
oxygenated (>3 mL·L–1) water. Our results indicate that the
catch rate for bigeye tuna in the Hawaii-based fishery is high-
est at the bottom of the thermocline, in contrast to results of
Bach et al. (2003). Differences between geographical areas
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Fig. 7. Trends in relative abundance of (a) bigeye tuna (Thunnus
obesus) and (b) blue sharks (Prionace glauca) based on four
longline effort models: nominal (solid line), deterministic depth-
based (solid circles), depth-fitted (broken line), and statistical
habitat-based standardization (statHBS; shaded circles). Relative
abundance estimates correspond to the area of Ward and Myers
(2005) but are not representative of indices used for stock assess-
ment because data are not included from all geographical areas
pertaining to the stock. Nominal, deterministic depth-based, and
depth-fitted trends for blue shark are almost identical.



may relate to the position and strength of the thermocline,
which is shallower (100–320 m) and stronger (1–4 °C per
20 m) in areas covered by our study (4°N–24°N) than in the
Society Archipelago at 14°S–20°S (100–400 m, 1 °C per
20 m). Alternatively, other factors such as the deep scattering
layer may be paramount in explaining bigeye tuna catch rates
as several studies have demonstrated an overlap between the
vertical distribution of bigeye tuna and micronekton biomass
during the day and night (Josse et al. 1998; Dagorn et al.
2000). The depth of the deep scattering layer could be in-
cluded in the statHBS model as a habitat variable.

Catch rate comparisons with electronic tracking
information

There are numerous studies providing data on time-at-
depth and time-at-habitat for pelagic species based on acous-
tic tracking or electronic tags. These have been invaluable
for determining the processes and habitat variables to use
when standardizing CPUE data. However, statistical tests
have indicated that the data obtained from these sources are
generally not appropriate for inclusion in the statHBS and
similar approaches to standardize CPUE (Maunder et al.
2006a). Essentially, tagging data provide information on
depth and habitat limits but may not accurately reflect the
vulnerability to longline capture, feeding motivation, or a
species’ ability to locate baited hooks. The main problems
with using these data in the statHBS approach include the
following. (i) The data are from a restricted geographical
scale compared with the requirements for analysis of CPUE
data. Bigeye tuna, for example, have been tagged in the east-
ern Pacific Ocean, Japan, Coral Sea, and Hawaii, yet the
interest is in basin-scale stock assessments. A greater spatio-
temporal coverage of tagging data and finer spatial scale
statHBS applications may address this problem. (ii) Differ-
ential vulnerability aspects due to day and night. The
statHBS integrates over the longline set, which occurs dur-
ing the day and night. (iii) Temporal and spatial mismatch
between habitat preference and environmental data. Habitat
data are taken from electronic tags that measure the near-
real-time habitat of the fish, whereas the environmental data
are usually model-based (e.g., ocean general circulation
model) and averaged over time (month) and space (1°)
strata. A mismatch may occur because an individual fish
may follow particular environmental conditions within the
strata that differ from the average. (iv) In general, the histor-
ical tag data do not record when an individual is feeding.
The consequence is that habitat envelopes may not ade-
quately represent vulnerability to capture. Use of internal
temperatures to identify feeding events may address this
problem. Alternatively, problems with the assumptions of
the statHBS model (e.g., an incorrect gear depth assumption)
may result in the poor performance of the detHBS model.

Depth- and habitat-derived catch rate estimates were simi-
lar for electronic tracking and monitored longlines for big-
eye tuna in French Polynesia at a time when the entire depth
and habitat range was targeted by longline gear (Bach et al.
2003). Similarity in catch rate results in this study may re-
late to daytime vulnerability of bigeye tuna as the longline
was deployed in the early morning and retrieved in the early
afternoon. Direct comparison of catch rates in the Hawaii-
based fishery with electronic tag information is problematic

for at least two reasons: (i) the longline fishes during the en-
tire daytime and a portion of the night and (ii) our monitored
longline results are only valid to a depth of ~420 m. A large
bigeye tuna (131 cm fork length, 44 kg) tagged in Hawaii
showed a characteristic W-shaped pattern in vertical move-
ments during the day with a peak of time-at-temperature
from 6–8 °C with a skew towards warmer values resulting
from vertical migrations into the upper thermocline (Musyl
et al. 2003). During the night, the bigeye was distributed in
near-surface waters from 22–26 °C. Our results indicate a
maximum catch at ~10 °C with a decline at increasing tem-
peratures, but this relationship is based on a composite of
day and night vulnerability. Our monitored longline results
are only valid to a depth of ~420 m and no inferences can be
made regarding catch rates at deeper depths or cooler tem-
peratures, although bigeye tuna occupy these strata at least
occasionally given that the 44 kg individual near the Hawai-
ian Islands had a descent to 817 m at 4.7 °C (Musyl et al.
2003).

Adjusting longline catch rates
We argue that depth-specific catch rate estimates should

not be used for the following reasons. First, we have demon-
strated that hook depths calculated according to the assump-
tions of Ward and Myers (2005, 2006) differed significantly
from depth-specific catch rate estimates based on observed
hook depths. Hence, Ward and Myers (2005) assertion that
the depth distribution of catch rates will not be affected by
uncertainty in longline hook depth is untenable.

Second, we argue that their depth-derived catch rate esti-
mates should not be used to adjust abundance indices given
the poor performance in estimating catch from depth in their
study area. The poor model performance is probably related
to the size of the study area, which corresponded to ~61 mil-
lion km2 (approximately one-third of the entire Pacific
Ocean). This area spans the tropical Pacific, an area charac-
terized by high oceanographic variability. The assumption
that a species would have the same vertical depth distribu-
tion throughout this oceanographically diverse area is unrea-
sonable. We fit the statHBS model to Japanese longline data
in the Ward and Myers (2005) study area for comparison
only, but advocate that future statHBS applications consider
finer spatial scales that reflect ocean structure. Ward and
Myers (2005) advised caution in applying their estimates of
catchability to regions outside their study area. Despite such
cautions, however, their catchability estimates have been ap-
plied to bigeye tuna in the South Atlantic (Ward and Myers
2005) and oceanic sharks in the Gulf of Mexico (Baum and
Myers 2004). Given the current depth-based modeling re-
sults, the application of the Ward and Myers (2005) Pacific
catchability estimates to other areas appears unjustified. Ad-
ditionally, adjustments based on catchability in each of the
South Atlantic and Gulf of Mexico applications were applied
externally to the CPUE standardization. We encourage that
catchability aspects be estimated within the modeling frame-
work.

Our analyses indicate that gear dynamics and environmen-
tal conditions are important in understanding catch rates for
pelagic species; analyses solely dependent on vertically dis-
tributing a species by depth will be misleading. This can be
generalized to all aspects of CPUE standardization. It is im-
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portant to understand the system being modeled and to avoid
extrapolating outside the range of the data. Omitting impor-
tant covariates, or inclusion of inappropriate covariates, can
bias estimates of relative abundance, which may be a com-
mon occurrence in CPUE analysis.

The version of statHBS presented here is a simple appli-
cation. Other applications include the use of additional co-
variates and habitat types such as ambient light and
movements of the deep scattering layer. Additional research
is currently underway or proposed to improve the perfor-
mance of the statHBS methodology, including the following:
fish size, which for most pelagic species reflects an onto-
genetic change in habitat and depth; consideration of total
habitat as it expands and contracts; statistical estimation of
hook depths; inclusion of shoaling and retrieval of the long-
line; and additional validation tests with longline monitoring
experiments.
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