
Possible Models for Combining Tracking

Data with Conventional Tagging Data

John Sibert1 and David Fournier2

1University of Hawaii, Honolulu, e-mail jsibert@soest.hawaii.edu
2Otter Research, Sydney, British Columbia, e-mail otter@otter-rsch.com

Keywords: Kalman Filter, random walk, fish track, archival tag

Abstract Advection-diffusion models have been used successfully to describe the
time and place of recapture of tuna tagged with conventional dart tags.
Such models are the continuous analogs of a biased random walk. This
paper demonstrates how biased random walks can be used to simulate
large scale movements of tunas as recorded by archival tags in a way that
captures all of the major characteristics of the tracks. The parameters
of the biased random walk model are identical to the parameters of the
advection diffusion model, suggesting that a joint parameter estimation
procedure might be feasible. Finally, the potential application of the
Kalman filter to the analysis of tracking data is discussed. This sta-
tistical model has the potential to increase the accuracy of geoposition
estimates from tracking devices as well as to estimate biased random
walk parameters from tracking data.

1. INTRODUCTION

Acoustic transponders and archival tags provide large amounts of
data pertaining to the vertical and horizontal position of individual fish.
Ancillary sensors provide additional information such as internal body
temperature and ambient water temperature. In contrast, conventional
“dart” or “spaghetti” tags provide a small amounts of data pertaining
to the horizontal position of a large number of fish and no data at all
pertaining to their vertical position. Whether the data derived from
the use of these devices are informative depends on the scientific ques-
tions being addressed and the means used to analyze the data. Tracking
data on vertical distribution and apparent temperature preferenda have
been particularly informative when analyzed in the context of attempt-
ing to quantitatively define the habitat of fish species in terms of depth,
temperature and oxygen preferences. The results have found ready ap-
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plication in the analysis of catch and effort data from longline fisheries.
Indices of abundance have been refined by estimating the number of
longline hooks deployed in the depth strata most likely to be frequented
by the species of interest (Hinton and Nakano, 1996; Hampton et al.,
1998). It remains to be seen whether the accuracy of these indices of
abundance is improved.
Data pertaining to horizontal movements have proven similarly use-

ful when analyzed in the context of determining the prefered habitat of
tunas, but have been slower to penetrate the quantitative fisheries stock
assessment and management mainstream. While there are undoubtedly
many reasons for this lack of application, one major barrier is the lack
of a generally accepted context in which to apply data on the move-
ment of individual fish. Stock assessment is concerned with estimation
of population-level processes, such as mortality, that cannot easily be
estimated from a track of an individual fish. Furthermore, unknown po-
sition errors in data from archival tags makes the application of these
data problematical.
In this paper, we introduce the related concepts of a biased random

walk and the diffusion-advection equations as a consistent theoretical
framework for combining tracking data with conventional with tag re-
lease and recapture data. A simple biased random walk simulation of a
tuna track is presented to demonstrate that this framework may be suit-
able for analysis of tracking data. The results of a preliminary statistical
model for estimating diffusion-advection parameters from long-distance
tracks is then presented.

2. BIASED RANDOM WALKS

For simplicity, the following discussion is restricted to one dimensions;
the ideas are easily extended to two dimension. In a simple random walk,
an animal is assumed to move a constant small distance, λ, in a constant
small interval of time, τ , as shown schematically below.

←−−−−−−−−− λ −−−−−−−−−→←−−−−−−−−− λ −−−−−−−−−→
x0 − λ x0 x0 + λ

t+ τ t t+ τ

At time 0, the animal is at position x0 and can move either to the
right with probability P1 or to the left with probability P2. At time
t+ τ , the animal is at position x0+ λ with probability P1 or at position
x0−λ with probability P2; P1+P2 = 1. The difference in probability of
moving to the left or to the right, the “bias”, is ε = P1 − P2. Although
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a random walk is a stochastic process and the position of an individual
fish cannot be predicted exactly, the fish’s movement is not haphazard.
The fish moves at constant speed λ/τ , but the direction of movement is
not constant. Therefore it can never move farther than λ in any time
step. Furthermore, it is possible to imagine that the bias or the distance
moved in a time step might be variable in time and space and may be
dependent on characteristics of the environment or may reflect some
inherent tendency to prefer one direction over another.
The advection-diffusion equation is closely related to a biased random

walk. Okubo (1980) derives the advection-diffusion equation from a
random walk by showing that

lim
λ,τ,ε→0

ε · λ
τ
= u lim

λ,τ→0

λ

2
· λ
τ
= D (1.1)

and that the rate of change in density of animals at a point can be
expressed as

∂N

∂t
= − u

∂N

∂x
+D

∂2N

∂x2
(1.2)

In other words, the advection-diffusion equation is the limiting case of a
biased random walk and there is a straightforward interpretation of the
parameters of one model in the context of the other.
Advection-diffusion models are finding increasing application to the

analysis of large-scale movement and distribution of tunas (Lehodey et
al., 1998; Bertignac et al., 1998; Maury and Gascuel, 1999). Advection-
diffusion models, in which the parameters vary regionally and seasonally,
can predict the time and place of recapture of tagged skipjack tuna
(Katsuwonus pelamis) with reasonable accuracy (Sibert et al., 1999).
Therefore it should be possible to model the track of a singe tuna using
a biased random walk parameterized to be consistent with an advection-
diffusion model of a population of conventionally tagged tunas.

3. RANDOMLY WALKING ACROSS THE

PACIFIC

Tsuji et al. (1999) presented preliminary data from an archival tag
recovered from a Pacific northern bluefin tuna, Thunnus thynnus. The
animal was tagged in November, 1996 near Tsushima Island and recap-
tured in August 1998 off California. The track presented by Tsuji et al.
(1999) is reproduced in Figure 1. As the authors note in their paper, the
animal appeared to change its behavior several times during the period
it was at liberty. Whether these changes are due to season, geography
or local environmental conditions must await a more complete analysis.
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Figure 1 Track of juvenile bluefin tuna from Tsuji et al. 1999.
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Figure 2 Regions used for bluefin tuna random walk simulations.

Sibert et al. (1999) superimposed an array of regions over the model
domain, in which the parameters of the advection-diffusion model were
assumed constant. The same principle can be applied to the tuna track
in Figure 1. Eight model regions were designated (Figure 2), corre-
sponding to regions where the tagged bluefin appeared to have uniform
behavior. Two additional model regions were added to the north of the
track and the south of the track. Values of the advection-diffusion pa-
rameters, u, v, and D, were assigned to each region. A characteristic
speed, µ = λ/τ , was assigned to be similar to daily movement speed
estimated from the bigeye track, approximately 100 Nmi da−1. The
time step was fixed at 1 hour. Biases in the north-south (εy) and east-
west (εx) dimensions were calculated from the parameters u and v using
the relationships in equation (1.1). The distance moved at each time
step was calculated from the parameter D and the characteristic speed,
λ = D

2µ
. Two uniform random numbers between 0 and 1 were gener-

ated at each time step and compared with εy and εx to determine the
direction of the jump in the north-south and east-west dimensions. The
simulation was run for twenty months and the positions of simulated fish
were recorded once per day. The numerical values of the parameters in
each region are shown in Table 1.
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Table 1 Advection-diffusion parameters used for biased random walk simulation of
trans-Pacific bluefin tuna track. u and v in Nmi da−1; D in Nmi2da−1.

Region u v D

1 2.0 10.0 100
2 4.0 3.0 100
3 10.0 6.0 33
4 2.0 2.0 33
5 15.0 0.0 23
6 15.0 0.0 23
7 0.0 0.0 100
8 0.0 0.0 167
9 0.0 0.0 100
10 0.0 0.0 100
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Figure 3 Two simulated bluefin tuna tracks.

Figure 3 shows two representative tracks generated by two different
series of random numbers. These two simulated tracks display all of the
important features of the observed bluefin track. There are places where
the simulated fish appeared to have no prefered direction of movement
and places where it moved consistently towards the East. The two fish
did not arrive at the West coast of North America simultaneously, and
both show a “bimodal” distribution after arriving off the West Coast.
These results suggest that a statistical model of a tuna track based on
a biased random walk is feasible.

4. PRELIMINARY STATISTICAL MODEL

A useful statistical model for application to tracking data would es-
timate the parameters of a biased random walk parameterized consis-
tently with statistical models of the advection-diffusion equation applied
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to conventional tags. In addition, the model would estimate the errors
in the position estimates from the tracking device so that a “corrected”
track could be estimated.
The advection-diffusion equation is closely related to the normal prob-

ability distribution. Feller (1968) shows that if the probability of observ-
ing an animal at point x at time t is given as a normal probability density
function,

p(t, x) =
1√
4πDt

e−
1
2
(x−ut)2

2Dt (1.3)

the function p uniquely satisfies equation (1.2). In other words, if ani-
mals are dispersing according to equation (1.2), after a period of time
t their mean position will be given by ut and the variance of their po-
sition will be 2Dt. Thus, u can be considered to be the mean rate of
displacement (which may be zero) and D a measure of the rate at which
the uncertainty of the position increases with time (Feller, 1966).
The notions of a state space model and the Kalman filter (Harvey,

1990) form the basis for a statistical model of a track. Let

yt = αt + dt + εt, t = 1, . . . , T (1.4)

where yt is a two dimensional vector representing the observed position
of the tagged fish at time t, αt its true position, dt a two dimensional
vector the bias in observing the position, and εt a serially uncorrelated
2 dimensional random vector with mean 0 and 2× 2 covariance matrix,
Ht,

dt =

(
0
0

)
and Ht =

(
σ2x 0
0 σsy

)
. (1.5)

In other words, we assume that there is no systematic bias in the tag’s
position estimate and that there are independent random errors in the
estimate of longitude and latitude, where σ2x and σ

2
y are the mean square

errors of the longitude and latitude estimates.
The true position of the tagged fish is not observed, but is assumed

to be generated by a biased random walk

αt = αt−1 + ct + ηt, t = 1, . . . , T (1.6)

where ct is a 2 dimensional vector representing the bias of the random
walk, and ηt is a 2 dimensional vector of serially uncorrelated random
variables with mean 0 and covariance matrix, Qt. For the biased random
walk in equation (1.6)

ct =

(
u
v

)
and Qt =

(
2D 0
0 2D

)
. (1.7)



Track Model 449

The Kalman filter consists of a set of recursive relations that update
the estimated position of the tagged fish and the components of the
variance of the estimated position.

at|t−1 = at−1 + ct

Pt|t−1 = Pt−1 +Qt

wt = yt − at|t−1 − dt

Ft = Pt|t−1 +Ht (1.8)

at = at|t−1 + Pt|t−1F
−1
t wt

Pt = Pt|t−1 − Pt|t−1F
−1
t Pt|t−1

where Pt is a 2× 2 covariance matrix of the estimation error and at|t−1
can be interpreted as an estimate of the “true” position of the tagged
fish, αt.
The parameters to be estimated are u, v,D, σ2x, and σ2y . The estimates

of these parameters are the values that maximize the log likelihood func-
tion

lnL = −T ln 2π − 0.5
T∑
t=1

ln |Ft| − 0.5
T∑
t=1

w′
tF

−1
t wt (1.9)

The performance of this model was examined using a series of sim-
ulations. For each series, one thousand replicate simulated archival
tag tracks were generated for assumed values of the model parameters
u, v,D, σ2x, and σ2y . The RMS error of the geolocation estimates pro-

duced by currently available archival tags is approximately 1

2
degree of

longitude and 1 1
2
degrees of latitude (R. Hill, personal communication).

These errors were fixed for all simulations at 30 and 90 nautical miles
(Nmi) respectively assuming the tracks to be near the equator. Three
behavior scenarios were simulated: (1) net eastward movement with
movement variability about the same order of magnitude as geolocation
error; (2) net eastward movement with movement variability about half
of the geolocation error; and (3) no net movement and movement vari-
ability about half of the geolocation error. The numerical values of the
input parameters are given in Table 2.
Simulation results were evaluating by computing the bias as the dif-

ference between the input value of a parameter and the value estimated
by the Kalman filter. The bias was “standardized ” by dividing by the
standard deviation of the estimates computed over all 1000 simulations
so that parameters with different ranges could be easily compared. This
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Table 2 Input parameter values for simulations of Kalman filter estimation proce-
dure. u and v in Nmi da−1; D in Nmi2da−1; σx and σy in Nmi. The column headed
‘sd’ is the standard deviation of the movement uncertainty in Nmi.

Simulation σx σy u v D sd

1 30 90 50 0 1800.0 60
2 30 90 50 0 112.5 15
3 30 90 0 0 112.5 15

comparison evaluates the ability of the Kalman filter estimator to cor-
rectly recover the input parameters given a large number of replicate
tracks.
The worst (lowest value of the likelihood function, equation (1.9))

and best (highest value of the likelihood function) fitting simulations
were examined by Markov-chain Monte Carlo exploration of the likeli-
hood surface. This analysis treats the parameter estimates as random
variables and computes the posterior probability distribution of the es-
timates given the observations (i.e., the simulated track) and the con-
straints on the parameters. It evaluates the ability of the Kalman filter
estimator to recover the parameters from a single track.

5. RESULTS

Figure 4 shows “box and whisker” diagrams of the standardized bias
for all three simulations. The mean bias, given by the horizontal line
within the boxes, is close to zero for all variables and the estimates
appear to be approximately normally distributed. The model appears
to slightly overestimate diffusivity, D.
Figure 5 compares the likelihood profiles of all the parameter estimates

for a “good” fit, L1754 (ln L = −1753.94) and a “bad” fit, L2053 (ln
L = −2053.14). For both cases, the estimates of the random walk bias
parameters u and v are well behaved, their estimates are very close to
the true values, and the posterior probability of the estimates given the
data appears normal. The posterior distribution of the estimates of
diffusivity, D, are asymmetric with the point estimates higher than the
“true” value. Nevertheless, the true value of D lies within two standard
deviations of the estimated value. In the case of the “good” fit, which
happens to be a model with diffusivity less than geolocation error, the
true value of the longitude error is more than two standard deviations
higher than the estimate.
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Figure 4 Standardized bias plots. The boxes indicate the interquartile range, i. e.,
the area encompassing the central 50% of the estimates. The range bars extend
outside of the boxes to the most extreme data point which is no more than 1.5 times
the interquartile range. The model parameters, u, v,D, σx, and σy are indicated on
the abscissa as u, v, D, RMSx and RMSy repectively. The scale on the ordinate in
standard deviations.
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Figure 5 Likelihood profiles for two realizations of simulation. The horizontal bar in
each plot represents the point estimate of the parameter ± two standard deviations.
The triangle represents the “true” value of the parameter used in the simulations.
L2053 pertains to simulation 1 (high diffusivity). L1754 pertains to simulations 2 and
3 (low diffusivity).
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Table 3 Correlation coefficients between parameter estimates. L2053 pertains to
simulation 1 (high diffusivity). L1754 pertains to simulations 2 and 3 (low diffusivity).

Parameter u v D σx

L1754

v 0
D 0.0034 0.0032
σx -0.0031 0.0013 -0.4201
σy -0.0002 0.0018 -0.0674 0.0283

L2053

v -0.0001
D 0.0089 -0.0126
σx -0.0108 0.0069 -0.5499
σy -0.0028 0.0124 -0.3136 0.1724

The magnitude of the diffusivity in relation to the latitude error ap-
pears to influence the bias in the estimates of diffusivity and both compo-
nents of the geolocation error. The high diffusivity case, L2053, appears
to cause overestimation of both diffusivity and the geolocation errors.
On the other hand, the low diffusivity case, L1754, produces an accu-
rate estimate of diffusivity, but underestimates the geolocation error.
These relationships are reflected in the correlations coefficient between

the parameter estimates, Table 3. The estimates of diffusivity and ge-
olocation error are negatively correlated and the magnitude of the cor-
relation is larger in the high diffusivity case.

6. DISCUSSION

The state space Kalman filter model appears to perform reasonably
well as a means to estimate population movement parameters from a
track. The model has some difficulty in estimating both diffusivity and
geolocation error, however. This difficulty, while potentially trouble-
some, is not unexpected. In its simplest form, the Kalman filter simply
estimates the true position as the weighted mean of the position pre-
dicted by the model and the position estimated by the tag with weights
inversely proportional to the errors in the two position estimates (May-
beck, 1979). In other words, the Kalman filter is interpreting diffusivity
as process error and giving the model prediction less weight in a high-



454 Sibert and Fournier

+

+

+

+

+

+
+

++

++

+ ++
+

+
+

+++

+

+

+
+

+

+
+

+

+

+

++

++
+

+
+++

+
+

+
++

+
++

+

+

+
+

+
+
+

+
+++

+

+

+

+

+

+

+

+

+

+

+

++

0 1000 2000 3000 4000 5000

−
20

0
−

10
0

0
10

0
20

0

X

Y

Simulation 1 u = 50,D = 1800

+++
++++

++
++

+

++
++
+++++

+
+++

+
+
++

+++++

+
+
+++++++++

++++++++
+++++

+++
+++
+++++++

++++
++++

+
++
+

+
+
++
++++

+
+++++

+++

0 1000 2000 3000 4000 5000

−
20

0
−

10
0

0
10

0
20

0

X

Y

Simulation 2 u = 50,D = 112.5

++ +
++++

+ ++ +
+

+ +
++

++++ +
+

+ ++
+

+
++

+++ + +

+
+

++
+ ++++++ +++ + + +++
+++

++
+++

+++
+++++ ++

+++++ + + +
+

+++

+
+
++

++ + +
+

+ ++++
+++

−100 −50 0 50 100

−
20

0
−

10
0

0
10

0
20

0

X

Y

Simulation 3 u = 0,D = 112.5
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tags in simulations.
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diffusivity track. In spite of this problem, the predicted track is closer
to the actual track in all simulations (Figure 6).
The ability of the estimation procedure to correctly evaluate the ge-

olocation error and estimate the true positions of the tagged fish depends
on the magnitude of the diffusivity relative to the geolocation error. The
geolocation errors used in these simulations are similar to the geolocation
errors of the current generation of archival tags operating under opti-
mal conditions and are equivalent to diffusivities of approximately 2000
Nmi2da−1. During sub-optimal conditions, e.g., around the time of the
equinoxes, the geolocation errors would be expected to be much higher
(Hill, 2000). Estimates of diffusivity from tagged skipjack in the tropical
western Pacific (Sibert et al., 1999) range from 250 to 800 Nmi2da−1.
Similar values were used by Bertignac et al. (1998) for ocean-basin scale
of skipjack population dynamics. At the higher range of published tuna
diffusivity, Maury et al. (1999) appear to have used values near 9000
Nmi2da−1in simulations yellowfin tuna populations. These rough com-
parisons indicate that the diffusivity expected for tunas is probably less
than the geolocation errors of archival tags suggesting that the Kalman
filter would be applicable to real data from archival tags.
In situations where fish with archival tags and fish with conventional

tags are simultaneously at liberty, it is possible to envisage a model which
estimates movement and mortality parameters as well as geolocation er-
ror in a completely integrated fashion. Such an estimation procedure
would link estimation of advection-diffusion and mortality parameters
from conventional tags to the estimation of random walk parameters
and geolocation errors via a composite likelihood function. Thus, in-
formation on the horizontal movements from tracking data would be
integrated into large scale population models.
The work described in this paper was sponsored by the University of

Hawaii Pelagic Fisheries Research Program under Cooperative Agree-
ment number NA67RJ0154 from the National Oceanic and Atmospheric
Administration. We would like to thank Pierre Kleiber for the sugges-
tion to apply the Kalman filter to archival tag position estimates. We
are grateful to Dr. Tomoyuki Itoh of the National Research Institute of
Far Seas Fisheries, Japan, for permission to reproduce Figure 1.
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