Adjoint-based parameter estimation for the spatially explicit model of large pelagics (with application to skipjack tuna).

1 Pelagic Fisheries Research Program, JIMAR, UH, Honolulu, USA

2 Marine Ecosystems Modeling and Monitoring by Satellites, CLS, Toulouse, France.
General scheme of the SEAPODYM model with optimization approach

Physical environment
- NPZD Chlorophyll
- 3-layer data: Temperature (GCM), currents (GCM), Oxygen (Levitus)

Biological input
- Six forage components:
 - epi-pelagic
 - Migrant and non-migrant meso-pelagic
 - Migrant, non-migrant and highly migratory bathypelagic

Fishing data
- Pole-and-line: tropical and sub-tropical gears
- Purse seine: WCPO associated and unassociated fleets

TADR tuna model
- Eqns for 0-3 month old juveniles: spawning, foraging, passive transport, survival, mortality, cannibalism
- Eqns for 1-16 quarter old adults: recruitment, foraging, migrations, ageing, natural and fishing mortality

Predictions
- Tuna spatial distributions, catches and length frequencies time series

Optimization:
- Preliminary sensitivity analysis
- Constructing cost function according to data distribution
- Minimization, parameter estimation and errors.

Estimates of model parameters
- Management applications

I. Senina, J. Sibert, P. Lehodey
Tuna habitat description

- **3 types of habitats:**

 - **Spawning habitat:** SST, product of primary production (*food*), forage biomasses (*predators*)

 - **Juvenile habitat:** SST, biomass of adults tuna (*cannibals*)

 - **Movement (feeding) habitat:** forage biomass (*epipelagic, mesopelagic, bathypelagic, migrant mesopelagic, migrant bathypelagic and highly migratory bathypelagic species*), temperature and oxygen concentration at 3 layers (0-100m, 100-400m and >400m).

- **Seasonality effect**

 - at high latitudes feeding habitat is computed as spawning habitat (obeying continuity of habitat distribution)

- **Food requirement index**

 - index influencing the mortality rate of young tuna mostly imposing starvation penalty on their natural mortality rate.
Adult’s habitat definition and migrations as a response to environmental heterogeneity

Habitat parameters:

1. optimal temperature for spawning;
2. tolerance interval for spawning temperature;
3. optimal temperature for foraging/migrations;
4. tolerance interval for foraging temperature;
5. slope coefficient (response on food abundance);
6. critical concentration of oxygen;
7. slope coefficients in sigmoid function.

Movement parameters:

8. maximal diffusion coefficient;
9. slope coefficient in dependence on habitat index γ;
10. taxis coefficient χ;

Temperature functions for different ages

Oxygen functions
Movement habitat II

I. Senina, J. Sibert, P. Lehodey

Parameter estimation in Seapodym
Natural and fishing mortality

- (11) maximal predation mortality;
- (12) slope coefficient in predation mortality function;
- (13) maximal senescence mortality;
- (14) slope coefficient in senescence mortality;
- (15) threshold age for senescence;
- (16) variability with habitat index;
- (17-22) target size for fleet, \(\hat{l} \);
- (23-28) fish size range, \(\sigma \);
- (29-34) right asymptote, \(\rho \);
- (35-40) catchability coefficients;
Model domain
Catch data (1980-2005)

SEAPODYM

Materials and methods
Parameter estimation in Seapodym
Summary

Data and simulation set-up
Maximal likelihood approach
Adjoint method keynotes

I. Senina, J. Sibert, P. Lehodey

Parameter estimation in Seapodym
Length frequencies data (1980-2005)

LF data available for 7 regions
Objective function

- Model predictions

\[
C_{t,f,i,j}^{\text{pred}} = q_f E_{t,f,i,j} \sum_{a=1}^{K} s_{f,a} w_a N_{a,i,j} \Delta x \Delta y,
\]

\[
Q_{t,f,a,r}^{\text{pred}} = \frac{s_{f,a} \sum_{i,j,r} E_{f,i,j} N_{a,i,j} \Delta x \Delta y}{\sum_{a=1}^{K} \sum_{i,j,r} E_{f,i,j} N_{a,i,j} \Delta x \Delta y}
\]

- The task of finding the optimal parameterization of the numerical model by fitting its prediction to observations consists in maximizing the likelihood function (or commonly, minimizing negative log-likelihood).

 - Catch likelihood:

\[
- \ln L(\theta | C^{\text{obs}}) = \sum_t \sum_f C_{t,f}^{\text{pred}} - \sum_t \sum_f C_{t,f}^{\text{obs}} \ln C_{t,f}^{\text{pred}} + \sum_t \sum_f \ln(\Gamma(C_{t,f}^{\text{obs}} + 1))
\]

 - LF likelihood:

\[
-L_{LF} = \sum_{t,f,a,r} \frac{1}{2\sigma_f^2} (Q_{t,f,a,r}^{\text{obs}} - Q_{t,f,a,r}^{\text{pr}})^2
\]

 - Boundary penalties.

- Quasi-Newton minimization method being used requires evaluation of the gradient of cost function with respect to control parameters.
Adjoint method keynotes

- Adjoint method consists in constructing the reverse model in order to compute derivatives of objective function derivatives with respect to model parameters:

\[\nabla \alpha \mathbf{L} = \begin{pmatrix} \frac{\partial L^-}{\partial \theta_1} \\ \vdots \\ \frac{\partial L^-}{\partial \theta_n} \end{pmatrix} \]

- Efficacy of the adjoint method is determined by:
 - exact evaluation of derivatives
 - low computational cost, which does not depend on the dimension of the parametric space

- One of the methods of verification of adjoint model is comparison of exact derivatives with first order finite difference approximation:

\[\frac{\partial L^-}{\partial \theta_k} \approx \frac{L^- (\theta_k + \varepsilon \delta \theta_k) - L^- (\theta_k)}{\varepsilon \delta \theta_k}, \quad k = 1..n \]
Pre-optimization

- Preliminary sensitivity analysis
 - Based on gradient of model predictions function
 - Based on the change of likelihood relative to the parameter bounds

 ✓ *exclusion of non-observable parameters from optimization*

- Create appropriate initial conditions (climatology spin-up) using optimization approach

- Validation of the model approach on another data set and with simplified model
 - Application to tagging data for skipjack
Application to tag recaptures data

Tag recaptures summarized over period 1977–1982

Observed (black) vs. predicted (red) tag returns

I. Senina, J. Sibert, P. Lehodey

Parameter estimation in Seapodym
A list of calibrated model parameters with their estimated optimal values and uncertainties *(experiment 1980-1990)*

<table>
<thead>
<tr>
<th>N</th>
<th>θ</th>
<th>Description</th>
<th>$\bar{\theta}$</th>
<th>θ^0</th>
<th>θ^*</th>
<th>St.dev. uncertainty</th>
<th>Relative uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>β_p</td>
<td>slope coefficient in predation mortality</td>
<td>0</td>
<td>2</td>
<td>0.35</td>
<td>1.66</td>
<td>0.0134</td>
</tr>
<tr>
<td>2</td>
<td>β_s</td>
<td>slope coefficient in senescence mortality</td>
<td>-0.5</td>
<td>0</td>
<td>-0.05</td>
<td>-0.028</td>
<td>0.0004</td>
</tr>
<tr>
<td>3</td>
<td>σ</td>
<td>standard deviation in temperature function</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1.929</td>
<td>0.0025</td>
</tr>
<tr>
<td>4</td>
<td>γ</td>
<td>slope coefficient in oxygen function</td>
<td>0</td>
<td>1</td>
<td>0.1</td>
<td>0.0003</td>
<td>0.0018</td>
</tr>
<tr>
<td>5</td>
<td>V_{max}</td>
<td>maximal sustainable speed</td>
<td>0</td>
<td>2</td>
<td>1.5</td>
<td>1.78</td>
<td>0.0085</td>
</tr>
<tr>
<td>6</td>
<td>c</td>
<td>coefficient of diffusion variability</td>
<td>0</td>
<td>0.5</td>
<td>0.25</td>
<td>0.275</td>
<td>0.0054</td>
</tr>
<tr>
<td>7</td>
<td>q_1</td>
<td>catchability for PLTRO fishery</td>
<td>0</td>
<td>0.1</td>
<td>0.005</td>
<td>0.0047</td>
<td>0.0068</td>
</tr>
<tr>
<td>8</td>
<td>q_2</td>
<td>catchability for WPSASS fishery</td>
<td>0</td>
<td>0.1</td>
<td>0.007</td>
<td>0.0064</td>
<td>0.0018</td>
</tr>
<tr>
<td>9</td>
<td>q_3</td>
<td>catchability for WPSUNA fishery</td>
<td>0</td>
<td>0.1</td>
<td>0.0035</td>
<td>0.0026</td>
<td>0.0034</td>
</tr>
<tr>
<td>10</td>
<td>s_0</td>
<td>target fish length, PLSUB fleet</td>
<td>25</td>
<td>75</td>
<td>44.5</td>
<td>43.13</td>
<td>0.0006</td>
</tr>
<tr>
<td>11</td>
<td>d_1</td>
<td>selectivity slope coefficient, PLTRO fleet</td>
<td>0</td>
<td>1</td>
<td>0.25</td>
<td>0.271</td>
<td>0.0028</td>
</tr>
<tr>
<td>12</td>
<td>d_2</td>
<td>select. width of Gaussian, WPSASS fleet</td>
<td>1</td>
<td>15</td>
<td>5.9</td>
<td>5.08</td>
<td>0.0074</td>
</tr>
<tr>
<td>13</td>
<td>s_2</td>
<td>target fish length, WPSASS fleet</td>
<td>25</td>
<td>75</td>
<td>50.6</td>
<td>42.3</td>
<td>0.0013</td>
</tr>
<tr>
<td>14</td>
<td>d_3</td>
<td>selectivity slope coefficient, PLSUB fleet</td>
<td>1</td>
<td>15</td>
<td>12.25</td>
<td>11.88</td>
<td>0.0145</td>
</tr>
<tr>
<td>15</td>
<td>s_3</td>
<td>target fish length, WPSUNA fleet</td>
<td>25</td>
<td>75</td>
<td>53.8</td>
<td>51.9</td>
<td>0.006</td>
</tr>
</tbody>
</table>
The correlation coefficients between optimal parameters

(experiment 1980-1990)

| | β_F | β_S | σ | γ | V_{max} | c | q_1 | q_2 | q_3 | s_0 | d_1 | d_2 | s_2 | d_3 | s_3 |
|----|-----------|-----------|----------|----------|-----------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| β_F | 1 | 0.88 | -0.03 | 0 | 0.06 | 0.11 | 0.62 | 0.14 | 0.17 | -0.48 | 0.08 | -0.05 | 0.03 | -0.01 | -0.02 |
| β_S | 0.88 | 1 | -0.15 | 0.01 | 0.1 | 0.21 | 0.75 | 0.16 | 0.19 | -0.58 | 0.09 | -0.06 | 0.02 | -0.02 | -0.03 |
| σ | -0.03 | -0.15 | 1 | -0.04 | -0.34 | -0.11 | -0.06 | 0.03 | 0.02 | -0.08 | -0.02 | 0.01 | -0.02 | 0.02 | 0.01 |
| γ | 0 | 0.01 | -0.04 | 1 | 0.03 | -0.03 | 0.03 | 0 | 0.01 | 0 | 0 | 0 | -0.01 | 0 | 0.01 |
| V_{max} | 0.06 | 0.1 | -0.34 | 0.03 | 1 | 0.69 | -0.04 | -0.06 | -0.04 | -0.16 | -0.01 | -0.09 | 0.07 | -0.11 | -0.06 |
| c | 0.11 | 0.21 | -0.12 | -0.03 | 0.69 | 1 | 0.12 | -0.04 | -0.04 | -0.15 | 0.03 | -0.08 | 0.08 | -0.15 | -0.13 |
| q_1 | 0.62 | 0.75 | -0.05 | 0.03 | -0.04 | 0.12 | 1 | 0.13 | 0.17 | -0.44 | 0.53 | -0.04 | 0.03 | 0 | -0.01 |
| q_2 | 0.14 | 0.16 | 0.03 | 0 | -0.06 | -0.04 | 0.13 | 1 | 0.07 | -0.1 | 0 | -0.88 | -0.61 | -0.01 | 0.01 |
| q_3 | 0.17 | 0.19 | 0.02 | 0.01 | -0.04 | -0.04 | 0.17 | 0.07 | 1 | -0.13 | 0.01 | -0.05 | 0 | 0.17 | 0.62 |
| s_0 | -0.48 | -0.58 | -0.08 | 0 | -0.16 | -0.15 | -0.44 | -0.1 | -0.13 | 1 | -0.05 | 0.05 | -0.03 | 0.02 | 0.01 |
| d_1 | 0.08 | 0.09 | -0.02 | 0 | -0.01 | 0.03 | 0.53 | 0 | 0.01 | -0.05 | 1 | 0.01 | 0.02 | -0.01 | -0.02 |
| d_2 | -0.05 | -0.06 | 0.01 | 0 | -0.09 | -0.08 | -0.04 | -0.88 | -0.05 | 0.05 | 0.01 | 1 | 0.25 | -0.01 | -0.03 |
| s_2 | 0.03 | 0.02 | -0.02 | -0.01 | 0.07 | 0.08 | 0.03 | -0.61 | 0 | -0.03 | 0.02 | 0.25 | 1 | 0.06 | 0.03 |
| d_3 | -0.01 | -0.02 | 0.02 | 0 | -0.11 | -0.15 | 0 | -0.01 | 0.17 | 0.02 | -0.01 | -0.01 | 0.06 | 1 | 0.86 |
| s_3 | -0.02 | -0.03 | 0.01 | 0.01 | -0.06 | -0.13 | -0.01 | 0.01 | 0.62 | 0.01 | -0.02 | -0.03 | 0.03 | 0.86 | 1 |
Predicted with estimated parameters and observed catch data

- Observed vs. Predicted for C_{skj} PLSUB, $R^2 = 0.801$
- Observed vs. Predicted for C_{skj} PLTRO, $R^2 = 0.633$
- Observed vs. Predicted for C_{skj} WPSASS, $R^2 = 0.846$
- Observed vs. Predicted for C_{skj} WPSUNA, $R^2 = 0.932$
- Observed vs. Predicted for C_{skj} EPSASS, $R^2 = 0.604$
- Observed vs. Predicted for C_{skj} EPSUNA, $R^2 = 0.536$
Twin experiments
(simulation 1980-1990)
Projections? Need environmental data forecast
(based on parameter estimated for 1980-1990)

Possible management applications:
— Reduction of fishing effort (for chosen fisheries)
— Area closures
— Estimate of the impact of fishing
Results and further plans

- The efficient computational tool developed for estimating model parameters, that allows to improve fit of the model predictions to observations;

- Optimization experiments showed that such an explicit spatial model is able to adequately predict spatial distribution of catch with small number of control parameters;

- Improvements in the model made as a result of optimization experiments:
 - Topographic indices, preventing tuna dispersal to shallow regions (with usually high habitat index);
 - Removing variability of mortality of adults, adding starvation penalty on mortality of young tuna
 - Adding Beverton-Holt stock-recruitment relationship.

- Still need improvement:
 - Model predictions for EPO fisheries data

- Upcoming work:
 - Publishing current results;
 - Parameter estimation in the tuna-forage coupled model;
 - Application of parameter estimation to other tuna species (bigeye and yellowfin)
 - Projections based on different management scenarios.

Thank you...
Spatial correlations between predicted and observed catch and number of data points

- n and $r_{PLSUBSkj}$, $R_1 = 0.768$
- n and $r_{WPSUNASkj}$, $R_1 = 0.782$
- n and $r_{PLTROSkj}$, $R_1 = 0.903$
- n and $r_{EPSASSkj}$, $R_1 = 0.691$
- n and $r_{WPSASSkj}$, $R_1 = 0.844$
- n and $r_{EPSUNASkj}$, $R_1 = 0.718$
SEAPODYM and MULTIFUN-CL predicted population biomasses

Adults biomass predicted with Seapodym (black) and Multifun-CL (red)

Total biomass predicted with Seapodym (black) and Multifun-CL (red)