The Jumbo Squid, *Dosidicus gigas*, a new groundfish predator in the California Current?

John Field and Ken Baltz
Fisheries Ecology Division, NOAA-NMFS-SWFSC
Santa Cruz, California

"Although squid fishing is hilarious sport for a few minutes, it becomes too much of a good thing day after day." (Croker 1937)

(Photo courtesy of Scot Anderson)
Although jumbo squid were “not uncommon” in the early part of the century, and abundant in mid-1930s (Croker 1937), they have been very uncommon or absent off of Central CA from 1940s until late 1990s. Since the late 1990s, especially 2004-2006, they have been frequently encountered in large numbers in fisheries and surveys coastwide.

~70 ton haul of Dosidicus

~500 Stomach Samples Collected During 2005-2006

Squid sample locations ranged from San Diego to just south of Cape Mendocino, but most samples were collected off of Cordell Bank and Half Moon Bay on recreational charter vessels targeting squid during the winter months.

Most animals caught in winter (Jan-Mar) recreational fishery (~300), with ~140 in the Spring NMFS SWFSC midwater trawl survey (May-June, ~ both trawl and line) and ~50 in NMFS NWFSC summer bottom trawl survey. ~60 samples have not been worked up yet (table below shows what has been worked up).
* Size structure based on mantle lengths suggests smaller animals in spring-summer, largest in winter (pre-spawning). Samples from summer months are rare with no samples from Oct-Dec. Quick disappearance from the central CA rec fishery starting in mid-March indicates post spawning die-off.

* Digestion state and stomach weight suggests that net feeding occurs in many trawl-caught animals (as do bite marks on other squid and fish in trawl!). However, it is also possible that jig-caught squid are hungrier.

* Sex information was very spotty and some may be unreliable. Maturity information was not recorded (we could use some help on a key!), but anecdotal observations suggest that the large, mature females were the only squid seen in the winter months.
Animals were observed feeding on Pacific hake and sablefish from a submersible (Delta sub) near Cordell Bank in Sept. 2005 (video courtesy of Dan Howard, CBNMS, and Rick Starr, CA Sea Grant)
Prey items identified with hard parts (otoliths, scales, beaks, vertebrae, shell) using guides, reference collections, etc.

Mesopelagics

Pacific mackerel

Bathylagidae

Pacific sardine

sea urchin

Pacific sanddab

clubhook squid

Pteropods

Pacific hake & shortbelly rockfish

Aves
About 50 otoliths & beaks could not be identified

(Recognize any of these? Let us know!)

may be pink seaperch

probably Myctophidae
Over 1100 prey items have been identified, representing ~45 taxonomic identities (most indentified to species or genus level)

Pacific hake, northern lampfish, northern anchovy, other Dosidicus, Pacific sardine, blue lanternfish and shortbelly rockfish were among the most frequently occurring prey items.

Only Euphausiidae presence/absence was noted, as most were too well digested to enumerate. Many soft-bodied organisms (other gelatinous zooplankton?) could be underrepresented in diet studies due to the squids’ high digestion rates.
Size Structure of Consumed Groundfish

Most hake (74%) and flatfish (100%) could be associated with a otolith-based length, while barely half (54%) of rockfish could be. Most of those that could not, had no otoliths, as their rock-like heads were likely not consumed, but the vertebrae suggested sizes >30 cm).

We are exploring the potential for genetic methods (Pearse et al., in press) to identify many of the rockfish to species, but no size information would be possible.

X-axis is the length of consumed species (cm)
Y-axis is the relative frequency of occurrence in stomachs
We used length data and weight/length relationships to infer more about the relative importance of different prey items.

<table>
<thead>
<tr>
<th></th>
<th>% FO</th>
<th>% N</th>
<th>av wt</th>
<th>% Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacific hake</td>
<td>21</td>
<td>17</td>
<td>57</td>
<td>24</td>
</tr>
<tr>
<td>Non D. gigas squid</td>
<td>19</td>
<td>11</td>
<td>45</td>
<td>12</td>
</tr>
<tr>
<td>Northern anchovy</td>
<td>17</td>
<td>16</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>Mesopelagics</td>
<td>43</td>
<td>25</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Pacific sardine</td>
<td>14</td>
<td>6</td>
<td>44</td>
<td>6</td>
</tr>
<tr>
<td>Shortbelly rockfish</td>
<td>9</td>
<td>4</td>
<td>109</td>
<td>11</td>
</tr>
<tr>
<td>Other rockfish</td>
<td>8</td>
<td>3</td>
<td>506</td>
<td>35</td>
</tr>
<tr>
<td>Small flatfish</td>
<td>4</td>
<td>2</td>
<td>69</td>
<td>3</td>
</tr>
</tbody>
</table>

The inferred sizes of prey suggest that Pacific hake and rockfish (*Sebastes*) were relatively more important than suggested by %FO and %N, with mesopelagics being relatively less important, pelagics and squid other than *Dosidicus* were about the same in importance.
Considering the Role of Jumbo Squid in the Ecosystem

Based on adding *Dosidicus* to a "simplified" food web Ecopath model of the Northern California Current (Field et al. 2006), we see that they fall out as a very high trophic level predator (predation on sablefish inferred from submersible, not from stomach contents).
Comparing the “Dosidified” California Current model to the ETP model, we see that squid are primarily forage for commercially important species in the ETP, but are predators of many commercially important species in the CCS.
Considering the Role of Jumbo Squid in the Ecosystem

The high production to biomass ratio of *Dosidicus* is consistent with the distribution of PB values for higher trophic levels in the ETP, but considerably less so in the California Current – What might be the consequence of range expansions or incursions of fast-metabolism tropical species into temperate ecosystems dominated by “slower” life histories?
Why now?

California Current has a well established history of variable climate on a decadal scale, and previous incursions of squid in the mid-1930s were during the middle of a warm period. There is also increasing evidence of monotonic increases in sea temperature associated with Global Climate Change.

In the continental shelf and slope ecosystem, there is also some evidence of shifts in community structure, from long-lived slow growing species to high turnover species (Levin et al. 2006). However, this would be a pretty extreme example of a fishing-induced change in community structure……

Secular warming in the California Current and North Pacific. D. Field et al., in press, CalCOFI Reports
10 Rockfish Species Sampled by SWFSC Trawl

<table>
<thead>
<tr>
<th>Species</th>
<th>Scientific Name</th>
<th>Age, Max Length</th>
<th>Habits</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>widow rockfish</td>
<td>Sebastes entomelas</td>
<td>60 yr, 59 cm max</td>
<td>schooling, commercial</td>
<td></td>
</tr>
<tr>
<td>yellowtail rockfish</td>
<td>Sebastes flavidus</td>
<td>64 yr, 66 cm max</td>
<td>schooling, commercial</td>
<td></td>
</tr>
<tr>
<td>chili pepper</td>
<td>Sebastes goodei</td>
<td>35 yr, 59 cm max</td>
<td>schooling, commercial</td>
<td></td>
</tr>
<tr>
<td>squarespot rockfish</td>
<td>Sebastes hopkinsi</td>
<td>29 yr, 29 cm max</td>
<td>aggregate around outcrops, commercial, bycatch</td>
<td></td>
</tr>
<tr>
<td>shortbelly rockfish</td>
<td>Sebastes jordani</td>
<td>32 yr, 35 cm max</td>
<td>schooling, unexploited</td>
<td></td>
</tr>
<tr>
<td>black rockfish</td>
<td>Sebastes melanops</td>
<td>50 yr, 69 cm max</td>
<td>schooling, outcrops, primarily sport</td>
<td></td>
</tr>
<tr>
<td>blue rockfish</td>
<td>Sebastes mystinus</td>
<td>44 yr, 53 cm max</td>
<td>Schooling, nearshore sport</td>
<td></td>
</tr>
<tr>
<td>bocaccio</td>
<td>Sebastes paucispinis</td>
<td>45 yr, 91 cm max</td>
<td>schooling (various), commercial, depleted</td>
<td></td>
</tr>
<tr>
<td>canary rockfish</td>
<td>Sebastes pinniger</td>
<td>84 yr, 76 cm max</td>
<td>aggregate around outcrops, commercial, depleted</td>
<td></td>
</tr>
<tr>
<td>stripetail rockfish</td>
<td>Sebastes saxicola</td>
<td>38 yr, 41 cm max</td>
<td>solitary around mud, commercial, bycatch</td>
<td></td>
</tr>
</tbody>
</table>

Illustrations from Eschmeyer *et al.* 1983, other information from Love *et al.* 2002
Trends in Abundance of YOY Rockfish in the Core Area of the NOAA NMFS SWFSC Midwater Trawl Surveys (2005 & 2006 are Lowest Years on Record)
Complete Reproductive Failure of Cassin’s Auklets on SE Farallon Island in 2005 & 2006 (slide provided by Bill Sydemen of PRBO)
General Conclusions

- *Dosidicus* were rare in the CA Current System prior to the late 1990s, but have been encountered with increasing frequency since then.

- *Dosidicus* will eat just about anything they can capture. When encountered in temperate coastal waters, groundfish (especially semi-pelagic), coastal pelagics, and mesopelagics are important prey.

- The impact on the ecosystem is hard to infer given the lack of abundance data, but the potential impact could be substantial, particularly due to the mis-match of tropical vs. temperate life histories.

- Stomach analysis and preliminary food web modeling indicate that *Dosidicus* are significant *higher trophic level predators in the northern CA Current ecosystem*, vs. being a significant forage species in semi-tropical and tropical waters of the Pacific.

- In Chile, the hake stock assessment suggested that *Dosidicus* had a major impact when the frequency of occurrence in trawl surveys increased from 1-2% to 40-50%. Based on California Current resource surveys we’re probably not there yet, but we could be someday…

- More research, monitoring, modeling will be key!
Acknowledgements

This could not have been done without the tremendous help and assistance in collecting samples by a large number of people, particularly recreational and commercial fishing vessel operators! Special thanks to Tom Mattusch and the crew of the Huli Cat, Frank Bertroni, Rick Powers and the crew of the New Sea Angler, John Ymate and crew of the New Seaforth, the Captain and crew of the Sir Randy, the NWFSC FRAM division and the FVs that participated in the 2005 and 2006 bottom trawl surveys, and the Officers and crew of the NOAA Ship David Starr Jordan in 2005 and 2006. We also thank Steve Berkeley, David Field, John Hyde, David Stafford, for their help in collecting samples; Scot Anderson Wendy Dunlap, Mark Lowry, Dan Howard and Rick Starr for sharing their data, photos and videos; and William Gilly, Eric Hochberg, Mark Lowry Don Pearson, Keith Sakuma, Eric Bjorkstedt, Mike Weiss, and Lou Zeidberg for their help with specimens.