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Why seek trophic clarity?

• Widespread concern that fisheries are altering 
the structure and function of marine ecosystems.

• Ecosystem considerations in fisheries 
management: “ensure conservation of not only 
target species, but also the other species 
belonging to the ecosystem.”

• Multispecies trophic models of ecosystems 
depend on accurate depiction of trophic links. 

• Basic biological knowledge needed to underpin 
this approach lacking



Robust methods are needed

• Traditional methods: stomach contents analysis

•Snapshot in time – missing diet components?

• Stable isotopes integrate biochemical 
“signatures” of all assimilated prey components 
into the animal’s tissues.  

• Direct comparisons of diet and isotope data 
required for interpretation of patterns.

• Estimates of the isotopic baseline required to 
infer trophic structure from stable isotopes



1.1% of C atoms are 13C

Stable Carbon Isotopes

98.9% of C atoms are 12C



0.4% of N atoms are 15N

Stable Nitrogen Isotopes

99.6% of N atoms are 14N



Assimilation -14N reduced

N Isotope Fractionation

The excretion rate of the 
lighter isotope (14N) is 
greater than that of the 
heavier isotope (15N) during 
metabolism
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δ15N Values: Trophic Position

“You are what you eat + 3.0‰”

Isotopic fractionation: lighter isotope is 
excreted in greater proportion than heavier 
isotope, leaving the animal enriched in 15N 
and 13C relative to its food source.

+ 0.5‰ in δ13C



Pelagic Eastern Tropical Pacific

Olson, R.J., and G.M. Watters. 2003. A model of the 
pelagic ecosystem in the eastern tropical Pacific Ocean.

Watters et al. 2003. Physical forcing and the dynamics of 
the pelagic ecosystem in the eastern tropical Pacific: 
simulations with ENSO-scale and global-warming 
climate drivers. 



Yellowfin Tuna



Yellowfin Stable Isotopes
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Yellowfin Tuna δ15N
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Mesozooplankton
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Chai, F., R.C. Dugdale, T.-H. Peng, F.P. 
Wilkerson, and R.T. Barber. 2002. One-
dimensional ecosystem model of the equatorial 
Pacific upwelling system. Part I: model 
development and silicon and nitrogen cycle. 
Deep-Sea Res. II 49 (13-14): 2713-2745.

Trophic level 2.7



Mesozooplankton

Thanks to Gladis Lopez (CICIMAR),
Brittany Graham (UH),
Jamie Tanimoto (UH)



Mesozooplankton and Yellowfin Tuna
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Mesozooplankton and Yellowfin Tuna
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Large yellowfin tuna
(Thunnus albacares)

(>=90 cm)

Taxon Diet % Weight
Auxis spp. 54
Misc. epipel. fishes 29
Mesopelagic fishes 5
Flyingfishes 5
Cephalopods 4
Misc. piscivores 2

99%

Prey Bottom-up estimate

Bottom-up estimate: Mean diet (calculated from 
prey isotopes and stomach contents.

Do diet estimates differ? 

Bottom-up versus Top-down estimates

Top-down estimate

Top-down estimate: Predicted mean diet 
(inferred from predator isotopes).



Large yellowfin tuna
(Thunnus albacares)

Taxon Diet % Weight
Auxis spp. 54
Misc. epipel. fishes 29
Mesopelagic fishes 5
Flyingfishes 5
Cephalopods 4
Misc. piscivores 2

99%

Prey
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Do diet estimates differ? 

Bottom-up versus Top-down estimates

AGREE!

Bottom-up estimate

Top-down estimate

Bottom-up estimate: Mean diet (calculated from 
prey isotopes and stomach contents.

Top-down estimate: Predicted mean diet 
(inferred from predator isotopes).



Conclusions

• We now have the tools to fairly 
accurately measure trophic position of 
tunas and other key pelagic predators in 
nature. 

• Build better trophic-based models
• With the ability to assign trophic status, 

it becomes feasible to consider how 
trophic structure may have changed 
over time using archived samples of 
predator tissues.


