

Robert Olson, IATTC, La Jolla, CA Brittany Graham, Univ. Hawaii, Manoa Felipe Galván-Magaña, CICIMAR, La Paz, México Brian Popp, Univ. Hawaii, Manoa Valerie Allain, SPC, New Caledonia

Why seek trophic clarity?

- Widespread concern that fisheries are altering the structure and function of marine ecosystems.
- Ecosystem considerations in fisheries management: "ensure conservation of not only target species, but also the other species belonging to the ecosystem."
- Multispecies trophic models of ecosystems depend on accurate depiction of trophic links.
- Basic biological knowledge needed to underpin this approach lacking

Robust methods are needed

- Traditional methods: stomach contents analysis
 - •Snapshot in time missing diet components?
- Stable isotopes integrate biochemical "signatures" of all assimilated prey components into the animal's tissues.
- Direct comparisons of diet and isotope data required for interpretation of patterns.
- Estimates of the isotopic baseline required to infer trophic structure from stable isotopes

Stable Carbon Isotopes

Stable Nitrogen Isotopes

N Isotope Fractionation

$$\delta^{15}N_{predator} = 3.0 + \delta^{15}N_{prey}$$
 (%o)

metabolism

δ¹⁵N Values: Trophic Position

Isotopic fractionation: lighter isotope is excreted in greater proportion than heavier isotope, leaving the animal enriched in ¹⁵N and ¹³C relative to its food source.

Pelagic Eastern Tropical Pacific

Yellowfin Tuna

Yellowfin Stable Isotopes

Yellowfin Tuna δ¹⁵N

Mesozooplankton

Mesozooplankton

Chai, F., R.C. Dugdale, T.-H. Peng, F.P. Wilkerson, and R.T. Barber. 2002. One-dimensional ecosystem model of the equatorial Pacific upwelling system. Part I: model development and silicon and nitrogen cycle. Deep-Sea Res. II 49 (13-14): 2713-2745.

Trophic level 2.7

Mesozooplankton

Mesozooplankton and Yellowfin Tuna

Mesozooplankton and Yellowfin Tuna

5-deg Areas: Isotope Samples of YFT and Mesozoo.

YFT Trophic Position Derived from δ¹⁵N of Mesozooplankton

Assumptions: $TL_{MesoZoo} = 2.7$ Trophic enrichment = 3.0 % per TL

$$TL_{YFT} = \frac{\delta^{15} N_{YFT} - \delta^{15} N_{MesoZoo}}{3.0} + 2.7$$

YFT Trophic Position Derived from $\delta^{15}N$ of Mesozooplankton

Large yellowfin tuna (Thunnus albacares) (>=90 cm)

Prey	
Taxon	Diet % Weight
Auxis spp.	54
Misc. epipel. fishes	29
Mesopelagic fishes	5
Flyingfishes	5
Cephalopods	4
Misc. piscivores	2
	99%

Do diet estimates differ?

Bottom-up versus Top-down estimates

- ★ Bottom-up estimate: Mean diet (calculated from prey isotopes and stomach contents.
- ★ Top-down estimate: Predicted mean diet (inferred from predator isotopes).

Large yellowfin tuna (*Thunnus albacares*)

Prey		
Taxon	Diet % Weight	
Auxis spp.	54	
Misc. epipel. fishes	29	
Mesopelagic fishes	5	
Flyingfishes	5	
Cephalopods	4	
Misc. piscivores	2	
	99%	

Do diet estimates differ?

Bottom-up *versus* Top-down estimates <u>AGREE!</u>

- ★ Bottom-up estimate: Mean diet (calculated from prey isotopes and stomach contents.
- ★ Top-down estimate: Predicted mean diet (inferred from predator isotopes).

Conclusions

- We now have the tools to fairly accurately measure trophic position of tunas and other key pelagic predators in nature.
- Build better trophic-based models
- With the ability to assign trophic status, it becomes feasible to consider how trophic structure may have changed over time using archived samples of predator tissues.