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Despite being one of the most common pieces of information used in assessing the status of
fish stocks, relative abundance indices based on catch per unit effort (cpue) data are noto-
riously problematic. Raw cpue is seldom proportional to abundance over a whole exploita-
tion history and an entire geographic range, because numerous factors affect catch rates.
One of the most commonly applied fisheries analyses is standardization of cpue data to re-
move the effect of factors that bias cpue as an index of abundance. Even if cpue is standard-
ized appropriately, the resulting index of relative abundance, in isolation, provides limited
information for management advice or about the effect of fishing. In addition, cpue data
generally cannot provide information needed to assess and manage communities or ecosys-
tems. We discuss some of the problems associated with the use of cpue data and some
methods to assess and provide management advice about fish populations that can help
overcome these problems, including integrated stock assessment models, management strat-
egy evaluation, and adaptive management. We also discuss the inappropriateness of using
cpue data to evaluate the status of communities. We use tuna stocks in the Pacific Ocean as
examples.
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Introduction

Assessment and management of fish stocks1 has had a long

history, with many successes and failures. Failure to manage

a fishery appropriately can have disastrous effects on social

1 Stock is here defined as the proportion of a population consid-

ered to be a unit for fisheries management. This may be all or part

of the population, and may be defined on the basis of spatial distri-

bution or other characteristics. The definition of a stock may

change over time as a fishery expands into new areas. However,

for our purposes, we assume that the definition of a stock does

not change over time.
1054-3139/$32.00 � 2006 International Cou
and economic conditions (e.g. northeastern Atlantic cod,

Gadus morhua). The reasons for failure can be attributed

to many factors, including inadequate or erroneous scientific

information, poor management decisions, and inability of

policy-makers to act (Sinclair and Murawski, 1997). Suc-

cessful management is more likely when decision-makers

are well informed. Therefore, it is important for scientists

to communicate the best available information to managers,

policy-makers, users, and the community at large. It is also

important to include information on uncertainty in scientific

advice, so that this can be taken into consideration when de-

cisions are made. Unfortunately, information that filters

through to the different sectors of the community is incom-

plete, and is often controlled or promoted by special
ncil for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.
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interests. In such an environment it is difficult to reconcile

fisheries with conservation, and the challenge of managing

human activities in aquatic ecosystems is to provide the

whole picture to all sectors of the community.

One example of incomplete information filtering through

to all sectors of the community, particularly to the fishery

management and scientific communities, is the promotion

by interested groups of a recent article (Myers and

Worm, 2003) published in a high-profile scientific journal

(see Polacheck, 2006, for a discussion). The specific article

stated that ‘‘large predatory fish biomass today is only

about 10% of pre-industrial levels’’. The analysis was based

on raw catch per unit effort (cpue) data of, mostly, species

of large tuna caught in Japanese industrial longline fisheries

around the world. The catch of all species was combined to

produce a single cpue measure for ‘‘communities’’ of large

predatory fish. The article, and much of the media promo-

tion centred around it, ignored decades of fisheries research.

The result was that fundamentally flawed information

(Hampton et al., 2005) reached all sectors of the commu-

nity. We demonstrate here that the analysis inappropriately

combined data from multiple species to develop cpue trends

for fish communities, depended on critical assumptions

(e.g. that cpue is proportional to abundance) that are

violated, provided no useful guidance for management,

and ignored the wealth of other information available

(e.g. biology, population dynamics, and total catches).

The development of the analysis of Myers and Worm

(2003) was based on the observation that, for many species,

cpue declines rapidly in the first few years of exploitation.

However, the specific cpue decline was during a period of

low catches, subsequent to which substantially greater

levels of catch have been maintained at lower, but stable,

levels of cpue. The phenomenon of large declines in tuna

cpue at low catches is not consistent with population dy-

namics if cpue is assumed to be proportional to abundance.

This has been a long-standing (Gulland, 1974), but largely

unresolved, problem in fisheries. In some cases, the decline

can be explained, but in others the cause has yet to be iden-

tified, although several hypotheses exist.

Despite being one of the most common pieces of infor-

mation used in assessing the status of fish stocks, relative

abundance indices based on cpue data, as used by Myers

and Worm (2003), are notoriously problematic (Beverton

and Holt, 1957; Paloheimo and Dickie, 1964; Gulland,

1974; Hilborn and Walters, 1992; Harley et al., 2001;

Walters, 2003). Raw cpue2 is seldom proportional to abun-

dance over the whole exploitation history and the entire

geographic range, because many factors affect catch rates.

2 Raw cpue, also called nominal cpue, is simply the total catch

divided by the sum of an observable measure of effort associated

with the catch, e.g. total number of hooks for longline fisheries.

Cpue is usually calculated for a defined time period (e.g. year),

but can also be restricted by spatial or other strata.
One of the most commonly applied fisheries analyses is

standardization of cpue data to remove the effect of these

factors in an attempt to make cpue proportional to abun-

dance (Maunder and Punt, 2004). Even if cpue is stan-

dardized appropriately, the resulting index of relative

abundance, in isolation, provides limited information about

the effect of fishing. In addition, cpue data alone generally

cannot provide information needed to assess and manage

communities or ecosystems, because the relative catchabil-

ity of the various species is generally unknown (Hampton

et al., 2005). Unfortunately, for many fish stocks, such as

tuna species, it is not practical to collect fishery-independent

data (e.g. trawl surveys), so cpue data are the main source of

abundance information available.

Here we call attention, as does Polacheck (2006), to

misinformation that has been widely spread in the fishery

management and conservation community by addressing

problems with the use of cpue data to assess single stocks

and fish communities, and management of these popula-

tions. We also suggest how to improve the assessment ad-

vice provided to managers. First, we discuss the inherent

problems with raw cpue data. Then, we discuss management

of single stocks. Next, we discuss three methods that can

help overcome problems with cpue data: integrated stock

assessment models, management strategy evaluation, and

adaptive management. We also point out the inappropriate-

ness of the use of cpue data to assess the status of commu-

nities. We use tuna stocks in the Pacific Ocean as examples.

Similar phenomena have been observed also in the Atlantic

and Indian Oceans, but the Pacific Ocean is more familiar to

the authors and has, in general, been where the widest range

of models has been used to assess stock status of tuna.

Problems with cpue data

The use of cpue as an index of abundance is based on a fun-

damental relationship widely used in quantitative fisheries

analysis. The relationship relates catch to abundance and

effort:

Ct ¼ qEtNt; ð1Þ

where Ct is catch at time t, Et is the effort expended at time

t, Nt is abundance at time t, and q is the portion of the stock

captured by one unit of effort (often called the catchability

coefficient). This equation can be rearranged to form the

relationship between cpue and abundance:

Ct=Et ¼ qNt; ð2Þ

making cpue proportional to abundance,

cpuetfNt; ð3Þ

provided q is constant over time. Unfortunately, q is seldom

constant over the entire exploitation history; it can vary for

many reasons. As mentioned above, one of the most
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frequently performed analyses in fisheries, cpue standardi-

zation (Maunder and Punt, 2004), attempts to standardize

effort data to ensure that q can be assumed to be constant

(i.e. to control the effects other than those caused by

changes in stock size). Some of the factors that commonly

cause q to change over time are the change in the efficiency

of the fleet, species targeting, the environment, and dynam-

ics of the population or fishing fleet. Each of these factors is

briefly discussed below.

Efficiency of a fleet

Catchability often increases over time as the efficiency of

the fleet increases. The efficiency of a fleet can increase

through fishers learning more about the location and behav-

iour of fish, or how to operate gear. Efficiency also increases

when new technologies are obtained. For example, use of

bird radar in purse-seine fisheries increased the ability to

find tuna schools. Efficiency can greatly increase when

a new fishing technique is introduced. For example, the

cpue of bigeye tuna (Thunnus obesus) by purse-seiners

greatly increased with the introduction of fish-aggregating

devices (FADs) in the early 1990s (Watters and Maunder,

2001). The same phenomenon applies to tuna in the Atlantic

and the Indian Oceans (Fonteneau et al., 2004).

Targeting by a fleet

The catchability of a species can be greatly affected when

a fleet changes its targeting practice from one species to an-

other. In general, catchability increases for the new target

species, and decreases for the previous target species. For

example, the increase in depth of longline gear to target

bigeye tuna increased the catchability for that species, but

decreased the catchability of yellowfin tuna (T. albacares;

Suzuki et al., 1977; Bigelow et al., 2003). The change in

targeting for bigeye tuna can also be seen in the catchability

of albacore (T. alalunga), which decreased for Japanese

vessels when they changed the spatial distribution of their

operations during the late 1960s to target the more valuable

bigeye tuna. However, catchability did not decrease for

Taiwanese vessels, which continued to target albacore in

areas where that species was most abundant (Hampton

et al., 2005; Figure 1).

Environmental factors

The environment can have a large influence on catchability.

For example, the 1981e1983 El Niño reduced catchability

of yellowfin tuna to the purse-seine fisheries of the eastern

Pacific Ocean (EPO) to such an extent that many vessels

transferred their operations to the western Pacific (Joseph,

1998). Similar reductions occurred in availability of yel-

lowfin in the Alantic Ocean purse-seine fishery. The cpues

for the longline fisheries were not reduced in a similar way

in either ocean, however. Current methods used for stan-

dardizing the longline cpue data for tuna in the Pacific
Ocean use environmental data, because the distribution of

tuna relative to the depth of longline gear is mediated by

the environment (Hinton and Nakano, 1996; Bigelow

et al., 2002, 2003; Hinton and Maunder, 2003).

Dynamics of a population or fleet

The dynamics of a fish stock or a fleet can also influence

how catchability changes over time (Paloheimo and Dickie,

1964; MacCall, 1990; Rose and Leggett, 1991; Rose and

Kulka, 1999). Catchability is often related to abundance,

and as the abundance level changes over time, so does

catchability. If fish aggregate (e.g. are attracted to preferred

habitat, or school), it may be just as easy to find them when

abundance is low as when it is high. Therefore, as abun-

dance decreases, the portion of the stock that one unit of ef-

fort removes may increase, even if the amount being caught

decreases. This may also depend on how effort is defined.

For example, each set of a purse-seine in the tuna fishery

catches a school, and if the school size does not change

with abundance, catch per set will remain the same. How-

ever, the time needed to find a school might change, so the

measure of effort should be searching time, rather than the

number of sets (Punsly, 1987). This may include removal of

the time taken to conduct a set, which is not part of the

searching time (Punsly, 1987).

The spatial expansion of the fleet can also cause the re-

lationship between cpue and abundance to be non-linear.

The Japanese longline fleet expanded from west to east

across the Pacific. Walters (2003) showed how simple

non-spatial ratio estimates, as used by Myers and Worm

(2003), should not be used in such analyses. Walters

(2003) argues that averaging for any time period must nec-

essarily make some assumptions about what catch rates

would have been in spatial strata that had not yet, or

were no longer, being fished. He also stressed that ignoring

the unfished strata (averaging only over the areas that were

fished) amounts to assuming that they behaved the same as
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Figure 1. Comparison of albacore cpue from Japanese and Taiwa-

nese longline vessels in Myers and Worm’s (2003) area designated

as the tropical Pacific Ocean (10e15(S).
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the fished strata, leading potentially to severe hyperdeple-

tion in abundance indices for fisheries that developed pro-

gressively over large regions, as did the Japanese longline

fishery in the Pacific Ocean.

Other factors

The factors listed above are some of the most common ones

that affect the relationship between cpue and abundance.

However, there are numerous other factors that may influ-

ence catchability or the assumption that cpue is propor-

tional to abundance. Examples include shark damage to

target species caught on hooks (Myers and Worm, 2003),

gear saturation, gear interference, misreporting (Baum

et al., 2003), stock structure (e.g. harvesting multiple stocks

together, or fishing only a small portion of a stock), capture

of more vulnerable individuals in initial stages of the fish-

ery (Gulland, 1974; Hilborn and Walters, 1992; Nakano

and Bayliff, 1992), age- or size-specific selectivity, and

individual variability in natural mortality.

Management influence on cpue

Some management measures may also interfere with the as-

sumption that cpue is proportional to effort. For example,

closed seasons to restrict total catch can influence overall

annual catch rates. Since 1966, the Inter-American Tropical

Tuna Commission (IATTC) has used closed seasons for the

surface fishery to manage the total catch of the yellowfin

tuna fishery in the EPO (Joseph, 1970). The fishery was re-

stricted when the quota was reached, resulting in a much

shortened fishing season, with most effort in the first half

of the year when cpue is generally higher. The result was

an increase in cpue and apparent abundance when com-

puted on an annual basis, because of concentration of effort

in the high-cpue period of the year (Joseph, 1970). Effects

could be similar for closed areas. In both cases, these prob-

lems can be dealt with by appropriate temporal and spatial

stratification in stock assessment models.

To what portion of the stock does the
cpue relate?

Cpue measures only the component of the population that is

vulnerable to the gear; it may be proportional to this com-

ponent of the population, but not to the total population.

The proportion of the population that is vulnerable to the

fishery depends on gear selectivity, size and age of fish,

horizontal and vertical distribution of fish, and fishing prac-

tice of the fleet. For example, the longline cpue of bigeye

represents only the abundance of large deep-dwelling fish,

whereas the purse-seine cpue of bigeye covers only small

surface-dwelling fish.

The amount of overlap of spatial distribution of the fish

population and the fishing fleet can have a considerable in-

fluence on how cpue relates to abundance. If the fishery op-

erates on only a fraction of the population and the mixing
rates of fish among areas is low, there will be little relation-

ship between cpue and total population abundance. Despite

tuna being regarded as highly migratory, movement of most

fish is limited for species like yellowfin, skipjack (Katsuwo-

nus pelamis), and bigeye tuna (Sibert and Hampton, 2003),

and there is a distinct possibility of local depletion and dif-

ferent cpue trends in different parts of a very large ocean.

Management of fish stocks

One goal of analysing data about a fish stock, including rel-

ative abundance trends from cpue data, is to provide man-

agement advice. Fisheries management can have many

objectives, including conservation, political, social, and

economic objectives. However, the most common advice

is based on maximizing yield from a fishery. For example,

maximum sustainable yield (MSY) has been included in

conventions of the IATTC and the International Commis-

sion for the Conservation of Atlantic Tunas (ICCAT), and

it is part of the Convention on the Conservation and Man-

agement of Highly Migratory Fish Stocks in the Western

and Central Pacific Ocean and the MagnusoneStevens Fish-

ery Conservation and Management Act of the United States.

In general, as fish are removed from a population, that

population will decrease in abundance, and the average

size of fish in the population will also decrease. Existence

of sustainable fisheries is based on an increase in surplus

production3 as abundance decreases towards a level corre-

sponding to MSY. In fact, standard fisheries science theory

predicts that, to maximize yield, the abundance level must

be reduced to below, often substantially below, half the un-

exploited population size (Clark, 1991; Maunder, 2003a).

The required level of depletion and associated yield can

change for numerous reasons, including the fishing method

(and hence age- or size-selectivity) used (Maunder, 2002).

Relative abundance trends in isolation tell us nothing

about levels of abundance corresponding to MSY, or abun-

dance levels that cause risk of fishery or population col-

lapse. Rules of thumb such as abundance level should be

>20% of the unexploited level (Beddington and Cooke,

1983; Francis, 1993), or reference points (e.g. the biomass

that corresponds to MSY as a fraction of unexploited bio-

mass, BMSY/B0) calculated for similar species can be

used. However, information on the biology and the dynam-

ics of the stock is needed to produce and evaluate specific

reference points and management strategies for that stock.

Several reference points (e.g. BMSY/B0) refer to unex-

ploited abundance. This requires estimates of unexploited

biomass by either (1) using cpue from the start of substan-

tial fishing (e.g. Myers and Worm, 2003), which increases

3 Production through recruitment and growth is greater than the

loss through natural mortality (i.e. production is greater than that

required to maintain the population at its current level), so the

additional, or surplus, production can be harvested.
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the potential problems with interpretation of cpue data, or

(2) using population dynamics to extrapolate back to the

unexploited condition (e.g. Maunder and Watters, 2003),

which involves several assumptions (e.g. a form of the

stock-recruitment relationship or the production function)

that may not be satisfied. There is also uncertainty attribut-

able to natural fluctuations in unexploited conditions

(Hampton et al., 2005), or bias caused by changing baselines

(Pauly, 1995). Starting stock assessment models from unex-

ploited states (i.e. before industrial fisheries commenced)

can remove some of the influence of changing baselines,

but the environment can still influence that baseline.

There are several factors other than fishing that influence

the abundance of fish stocks. For example, Mediterranean

populations of Atlantic bluefin tuna (T. thynnus) have expe-

rienced substantial fluctuations in abundance for centuries

while removals have been small (Ravier and Fromentin,

2001, 2004). Therefore, it is important to estimate the effect

of fishing compared with other influences on the population.

This requires knowledge of the total removals from the stock,

rather than just those used in the cpue analysis, which may

constitute only a small component of total removals (Hamp-

ton et al., 2005). In addition to total removals, productivity of

the stock should be incorporated into the analysis of the effect

of fishing on abundance. Therefore, population dynamics

models are needed to estimate the effect of fishing.

Integrated stock assessment models

Integrated stock assessment (Fournier and Archibald, 1982;

Deriso et al., 1985; Bergh and Butterworth, 1987) is a statis-

tical analysis that uses all available information about

a stock. It is one of the main approaches used in modern fish-

eries stock assessment (Quinn, 2003; Maunder, 2003b). Inte-

grated analysis has become the dominant method for

assessing tuna stocks for which there is sufficient informa-

tion (e.g. Fournier et al., 1998; Hampton and Fournier,

2001; Butterworth et al., 2003; Maunder and Watters,

2003). The method represents scientific understanding of

the dynamics of the system in equations that define how

the population and its structure (e.g. the age structure)

changes over time. Biological information (e.g. growth and

mortality) is included in the analysis by providing or estimat-

ing values for parameters of the model. Many types of data

(e.g. length frequency of the catch, tag recaptures), including

relative abundance indices developed from cpue data, are

used in the analysis to provide estimates of the unknown pa-

rameters. Further, some implementations (e.g. Hampton and

Fournier, 2001; Maunder, 2001) of this type of model can

also take into account the spatial heterogeneities of stocks

and fisheries, and also age-dependent movements of fish

among areas (this characteristic being of major interest for

all tuna stocks). The methods used to estimate the model pa-

rameters are statistical, so they provide measures of uncer-

tainty about estimates and predictions of the model.

Unfortunately, true uncertainty in the assessment remains
difficult to estimate, so this is an area of continuing research

(Parma, 2001). For example, a fitted assessment model may

attribute recent increases in catch to either increases in

catchability, increases in recruitment, or both (Watters and

Maunder, 2001). The parametric structure of these models

allows explicit statement of alternative hypotheses about

population dynamics and fishery impacts, and the statistical

structure of these models allows evaluation of these hypoth-

eses with respect to available data.

Advantages of integrated stock assessment models in-

clude their ability to use cpue to represent the component

of the population with which it is associated (i.e. spatial

or age strata), and that they can combine cpue for multiple

components of the population. For example, cpue data from

longline vessels provide information on large bigeye tuna,

while cpue data from purse-seiners provides information

on small bigeye tuna (Maunder and Watters, 2003).

Integrated models represent knowledge of the system, so

they can be used in a variety of ways to provide manage-

ment advice. They can be used to estimate management

reference points (e.g. MSY) and to evaluate current stock

status with respect to these reference points, to determine

the effect of the fishery on the stock, and to predict what

will happen in future and under different management strat-

egies. Their statistical nature allows estimation of uncer-

tainty, which is an important consideration when making

decisions. For example, integrated stock assessment models

are used to estimate the rate of fishing mortality in relation

to fishing mortality that produces MSY and associated un-

certainty for yellowfin and bigeye tuna in the western and

central Pacific Ocean (Hampton et al., 2004a, b).

Integrated stock assessment models can be used to esti-

mate the relative effects of fishing and other factors on

the population. They can also be used to estimate the effect

of each component of the fishery. For example, abundance

of yellowfin tuna in the EPO has fluctuated over time, with

the fishery and the environment having about the same am-

plitude of effect on abundance (Figure 2). The effect of

longline fishing has been negligible (Figure 2), simply be-

cause total yellowfin catches by longlines have always

been far less than those of surface gear in the area.

Integrated models use all available information, so they

can be used to find inconsistencies in the data. For exam-

ple, the rapid decline in cpue of yellowfin tuna in the long-

line fishery during the first few years of the fishery is not

consistent with current understanding of population

dynamics. Catches were low during the period of rapid

decline of the cpue, then large catches were achieved dur-

ing the period when cpue was stable at relatively low

levels (Figure 3). The integrated model estimates large

deviations in the relationship between effort and fishing

mortality for the early years, indicating that cpue is not

consistent with population dynamics and the data as

a whole. In general, integrated stock assessment models

show that raw cpue data from longline vessels for tuna

can be misleading if not interpreted in the context of other
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data, biological information, and population dynamics

theory (Hampton et al., 2005).

Integrated assessment models are only as reliable as the

data and assumptions on which they are based. If the data

or assumptions are biased, then the integrated assessment

results may also be biased. However, as mentioned above,

by including all information into the analysis, integrated

analyses can help identify conflicts among data sets and

with model assumptions, which help identify problems

with data and assumptions. Often, the additional data used
in integrated analysis, such as length-composition data, do

not provide additional information on exploitation rate or

changes in stock size. In the case of length frequency data,

this is because the information is used to determine selectiv-

ity to the gear, particularly if selectivity is allowed to change

over time. Additionally, many of the data are not available at

the start of the exploitation period, so do not help determine

the unexploited baseline required for many management

reference points. However, in some cases the additional in-

formation is vital. For example, surplus production models,
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which do not model gear-specific selectivity and cannot

include length or age frequency data, were unable to repre-

sent the change in effort distribution between fishing on

dolphin-associated schools and fishing on free-swimming

schools, or the regime change in productivity for the EPO

yellowfin tuna stock (Tomlinson, 2001). In another example,

longline cpue for the bigeye tuna stock in the EPO, which

represents older fish, had a delay of several years in reflect-

ing the recent declines in biomass, owing to the introduction

of the purse-seine floating-object fishery and poor recruit-

ment, that the integrated assessment model estimated from

information in catch-at-length data from the purse-seine

floating-object fishery (Maunder and Harley, in press).

Management strategy evaluation

Because of problems with cpue data, it may be beneficial to

develop assessment methods and management strategies

that are robust to the multiple problems and bias inherent

in the use of cpue data. Current research in fisheries has

focused on the use of management strategy evaluation as

a tool to manage fish stocks (De Oliveira et al., 1998).

This involves using simulation analysis to evaluate several

comprehensive management strategies under different

possible states of nature, in order to define a strategy that

is robust and provides a desirable outcome. A comprehen-

sive management strategy includes a selection of which

data are collected (Walters and Parma, 1996), and how

they are analysed (including use of integrated stock assess-

ment models), and then proposes management action based

on the results of the analysis.

Management strategy evaluation could be used to deter-

mine management strategies that are robust to problems in

cpue data for tuna fisheries. However, management strategy

evaluation has only recently been applied to tuna and bill-

fish. Punt et al. (2001), Kell et al. (2003), and Haist et al.

(2002) used management strategy evaluations for broadbill

swordfish (Xiphias gladius) off eastern Australia, Atlantic

tuna stocks, and southern bluefin tuna (T. maccoyii), respec-

tively. Below, we provide a hypothetical example for the

yellowfin tuna stock in the EPO that includes the evaluation

of three management strategies.

(i) Maintain fishing mortality at a level corresponding to

MSY (FMSY), based on the estimate from the current

integrated stock assessment that begins in 1975, to

eliminate uncertainties in the early cpue data. This

strategy may still contain biases in the cpue since 1975.

(ii) Fish at FMSY, based on estimates from the current in-

tegrated stock assessment, but extend the assessment

back to 1950 so that it includes the uncertainties and

biases in the early cpue data.

(iii) Define a simple decision rule that increases effort by

10% if the 3-year moving average of cpue increases

by 10% or more, and decreases effort by 10% if the 3-

year moving average of cpue decreases by 10% or more.
These management strategies provide a range of uses of

cpue data, with Strategy 1, the current assessment method,

being a compromise between Strategies 2 and 3. Manage-

ment Strategy 3 does not allow one to optimize the perfor-

mance of the fishery, but if the current fishery is appropriate

and management objectives favour stability over optimiza-

tion, it may be a good one (Hilborn et al., 2002). Manage-

ment Strategy 2 uses all the information (with respect to

time), and allows the population model to start from an un-

exploited population level, an assumption that can provide

substantial information to the analysis, but has a greater

chance of biases in the cpue. These strategies would be

tested under different states of nature, including those that

assume that cpue is not proportional to abundance. The

strategy that performs well with respect to management ob-

jectives, for all or most states of nature, would be chosen to

manage the fishery.

Adaptive management

It is important to provide as much information as possible to

allow optimal management of a stock. Unfortunately, some

management strategies actually decrease the amount of in-

formation that is available to manage a stock. Many man-

agement regulations will break a continuous series of cpue

data. For example, changes in the minimum legal size will

change the portion of the population represented by the

cpue and, as mentioned above, area or time closures can

bias cpue data. Therefore, the effect of management strate-

gies on the information available to assess the stock should

be taken into consideration. The effect of information gained

or lost from a management strategy could be included in the

management strategy evaluation described above.

It is possible to develop management strategies that actu-

ally increase the amount of information available. This ap-

proach, often called active adaptive management, has

attracted significant attention over the past 20 years (Walters,

1986). The basic concept is to design management strategies

that shock the system so that a signal (contrast) can be seen in

the data. For example, if the relative abundance index based

on cpue data is flat, this could be because the population is

only lightly exploited and fishing is not influencing cpue or

because cpue is not proportional to abundance (hyperstabil-

ity). By greatly increasing catch in one year, it should be pos-

sible to see whether this effects cpue data. However, one

should be careful when applying this approach, because

such an experiment may cause damage to the stock. Appro-

priate monitoring should be implemented, and contingency

plans should be in place.

The IATTC implemented experimental management of

the EPO yellowfin fishery by issuing an increased quota

of 240 million pounds (131 000 t) for three years, beginning

in 1969 (Joseph, 1970). As a safeguard, strict catch limita-

tion would come into force if the cpue fell below a mini-

mum safe level. At that time the fishery had expanded
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spatially, and it was thought that the potential yields might

be much greater than previously, when the fishery was

conducted relatively close to the coast and at a few offshore

islands and banks (Joseph, 1973). The assessment model

(Schaefer, 1957) was used to predict the outcome of this

new quota, and differences from these expectations would

provide additional information for stock assessment.

Results of experimental management proved that the

sustainable yields were much greater than they would

have been if the fishery had not expanded farther offshore

(Joseph, 1973; Die et al., 1990).

Changes in management that provide information about

the status of a stock can be planned, unplanned, or natural.

One of the greatest fisheries experiments was unplanned;

World War II showed that stocks can rebuild if catches

are reduced. Tuna stocks in the Pacific Ocean experienced

only limited effect attributable to WWII simply because

catches of tuna were relatively low prior to the war, and

tuna stocks were still at or near virgin condition during

this period. However, other unplanned experiments took

place, including introduction of the 200-mile Exclusive

Economic Zones and movement of purse-seiners from

the EPO to the west and central Pacific Ocean (WCPO),

owing to reduced catchability in the EPO caused by the

1981e1983 El Niño. In addition to the increased quota

described above, the IATTC developed a closed area for

management of yellowfin tuna (the Commission Yellowfin

Regulatory Area, CYRA), which forced the fleet to develop

fisheries in other areas, and in some years provided exper-

imental fishing areas within the CYRA. Data associated

with these planned and unplanned experiments were used,

and could be further investigated, to determine the potential

gain in information from adaptive management and aid in

the design of future adaptive management programmes.

Problems with the use of cpue data
to assess communities

Myers and Worm’s (2003) analysis of large pelagic fish im-

plicitly assumed that the catchability coefficient (q in Equa-

tion (1)) is the same for each species. This is a fundamental

flaw in their analysis, because species coexist by occupying

different niches. Therefore, different species have different

characteristics and therefore different catchabilities to the

gear. For example, skipjack tuna constitute the most abun-

dant commercially important tuna in the world’s oceans,

and yet they comprise only a very small portion of the long-

line catch. It can be shown mathematically, using simplify-

ing assumptions, that more often than not, the cpues of

combined species will decrease more rapidly than the total

abundance of the individual populations, given that no

other factor influences the relationship between cpue and

abundance. This is because the population with the highest

catchability often contributes a greater portion to the cpue,

and is the population that is most depleted. In general, if q
is not similar for all the species being combined, cpue will

not be proportional to community abundance. For example,

the composition of species in the Pacific Ocean predicted

from longline cpue data is very different from that esti-

mated by methods that include estimates of catchability

(Figure 4). Often a single species can dominate the decline

in cpue. To exacerbate this problem, catchability is seldom

constant over time.

Faced with differences in catchability, the only way to

combine cpue for multiple species would be to develop

a measure of community abundance, which would require

estimates of age-specific catchability for each species. In

general, direct measurement or estimation of catchability

is not possible, so stock assessment models must be used

to estimate catchability and total abundance. Estimates of

total species abundance can then be summed and trends

in total abundance examined over time. Unfortunately, in-

tegrated models are relatively data-intensive, so may not

be applicable for all situations. However, the problem of

lack of data cannot be solved by simply using methods

that hide the need for information on implicit assumptions.

In these situations, Bayesian methods (Punt and Hilborn,

1997), used in conjunction with integrated analyses (Maun-

der, 2003b), which explicitly describe the assumptions in

the prior distributions, may be appropriate.

Management of communities
and ecosystems

Management of communities and ecosystems is quite dif-

ferent from single-species management (Mace, 2001;

Link et al., 2002; Maunder, 2002; Sainsbury and Sumaila,

2003). For example, it would be impossible to maximize

the yield of two species caught simultaneously by the

same gear unless their productivities and catchabilities are

the same, which is highly unlikely. In the EPO purse-seine

fishery on FADs, bigeye tuna are exploited at a rate that ex-

ceeds MSY, while skipjack tuna are exploited at a rate well

below MSY. Only a change in fishing technology might

rectify this problem. Another example is the trade-off be-

tween bycatch of dolphins in the dolphin-associated fishery

for yellowfin tuna and the bycatch of many other species in

the FAD fishery (Hall, 1998).

Several specific questions arise when considering man-

agement of ecosystems. For example, what would be the

impact on the ecosystem if all commercially valuable

stocks were fished at their single-species MSY levels? Do

apex predators in the pelagic system play a role that is

greater than their absolute abundance? Is it possible that de-

clines in abundance of large predators have increased the

survival of juveniles, which sustain the large catches at (ap-

parently) low levels of abundance? Such questions cannot

be answered by single-species approaches. Analyses using

multispecies (e.g. Stefansson and Palsson, 1998; Hollowed

et al., 2000; Stefansson, 2003) and ecosystem (e.g.
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Integrated models
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Figure 4. The composition of species in the Pacific Ocean predicted from longline cpue data (lower panel) and integrated stock assess-

ments that estimate the catchability (upper panel) (Labelle and Hampton, 2003; Hampton et al., 2004a, b).
Polovina, 1984; Walters et al., 1997, 1999; Christensen and

Walters, 2000; Olson and Watters, 2003) models have been

used to address some of these questions (May et al., 1979;

Pauly et al., 2000; Watters et al., 2003). For example, using

Ecosim models, Walters et al. (2005) showed that wide-

spread application of single-species MSY-based policies

would, in general, cause severe deterioration in ecosystem

structure, in particular, the loss of top predator species.

Their result supports the practice of protecting some forage

species specifically for their value in supporting larger pis-

civores (Walters et al., 2005).

Discussion

Our review of the available literature, including our own

published analyses, has shown that simple cpue-based

analyses used to determine the status of fish communities,

particularly for tuna and other large pelagic predators, are

inappropriate and almost certain to lead to erroneous

conclusions. Raw cpue data can be misleading, because

there are many factors that can cause catchability to change

and so prevent cpue from providing accurate indices of

abundance. To use cpue data in isolation of the wealth of

data that are available on the biology and fisheries for these
species is not common sense. Even if cpue could potentially

monitor the relative abundance of some part of a stock or

community, models based solely on cpue data cannot be

used to provide predictions for the future, or to evaluate dif-

ferent management strategies. Even the simplest stock as-

sessment models (biomass dynamic or surplus production

models), which have been applied to tuna stocks (Schaefer,

1954, 1957; Pella and Tomlinson, 1969), despite their lim-

itations (Maunder, 2003a), include catch data and informa-

tion about population dynamics that can help interpret cpue

data and identify contradictions. Moreover, it is generally

inappropriate to combine the cpue across species to monitor

community abundance, because overall trends in cpue can

be misleading, reflecting changes in abundance of one or

a few dominant species in the catch.

The concerns we raise about the use of raw Japanese

longline cpue to infer abundance trends of tuna, as done

by Myers and Worm (2003), are not new. Several scientific

papers by researchers who studied tuna in the different

oceans have previously identified these issues. For exam-

ple, the IATTC Bulletin series contains several contribu-

tions produced jointly by Japanese and IATTC scientists,

starting with Suda and Schaefer (1965), which describe

the Japanese longline fishery in the eastern Pacific Ocean.
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In particular, the contribution of Nakano and Bayliff (1992)

identifies some of these concerns and issues.

It is possible to use all available information with inte-

grated assessments. Integrated stock assessment has been

applied for more than two decades, and several general

computer programs have been developed to implement in-

tegrated analysis. For example, Stock Synthesis (Methot,

1990) and its successor Stock Synthesis II have been used

to assess numerous fish stocks in the United States,

Coleraine (Hilborn et al., 2000; http://www.fish.washington.

edu/research/coleraine/) has been used to assess fish stocks

in several countries, CASAL (Bull et al., 2004) has become

the main stock assessment tool used in New Zealand,

and MULTIFAN-CL (Fournier et al., 1998; Hampton and

Fournier, 2001; http://www.multifan-cl.org/) is becoming

the standard for tuna stock assessment. By integrating all

available information, integrated analysis shows where

information is in conflict, which helps identify areas that

require more research.

Integrated stock assessment is not the solution to all fish-

eries management problems. It cannot create information

that is not already available; it can only synthesize informa-

tion into a form that is usable. In many cases, additional in-

formation is required to provide the management advice

required, requiring collection of more data. It is preferable

to obtain data that are independent of the fishery and col-

lected using a standard protocol each year. However, such

surveys may not be appropriate for every fish stock. For ex-

ample, appropriate survey techniques are yet to be devel-

oped for most tuna stocks and that situation is not likely

to change in the foreseeable future, because oceans are

too wide and too deep, and tuna are, on an ocean-basin

scale, too dilute. In these cases, other methods, such as

comprehensive tagging programmes, may be appropriate.

In other cases, adaptive management may provide the addi-

tional information needed to interpret cpue data.

In many cases, available data may result in integrated

stock assessment producing results that are too uncertain

to provide the management advice asked for (e.g. is the

current level of fishing mortality greater than that which

would support MSY?). In such cases, use of prior infor-

mation using Bayesian analysis (Punt and Hilborn, 1997)

provides a means of including information borrowed

from other species or the inclusion of common-sense

(hopefully) ‘‘information’’ into assessments where spe-

cific data might not be available. Many assessments of

tuna stocks now use integrated stock assessment in

a Bayesian framework (Fournier et al., 1998; Maunder,

2003b; Maunder and Watters, 2003). Bayesian analysis

also provides a framework for estimation of uncertainty.

Unfortunately, full Bayesian integration for the types of

integrated stock assessment models used for tuna is

not currently feasible owing to computational demands

(Maunder, 2003b), so approximations are required

(Fournier et al., 1998; Hampton and Fournier, 2001;

Maunder et al., 2006).
In cases for which information is inadequate to provide

the required management advice, management strategy

evaluation may be a good option. This will, hopefully, pro-

vide a management strategy that will perform reasonably

well with respect to management objectives while provid-

ing protection against stock collapse. Even when informa-

tion is abundant, management strategy evaluation may be

a useful tool.

Ecosystem management is becoming popular as a concept

and has been applied to varying degrees (e.g. restrictions on

forage fish). However, science has not yet reached the stage

where reasonable whole ecosystem management can be ap-

plied. There are still many questions to be answered, espe-

cially in management of pelagic ecosystems. Currently,

only management of trade-offs among a few important spe-

cies can be made. Multispecies models show promise, but

whole ecosystem models have far too many unknowns to

provide appropriate management advice. We consider the

current ecosystem models to be hypothesis-generators, pro-

viding important hypotheses to test by collection and anal-

ysis of new data. Unfortunately, many scientists naively use

them as hypothesis tests. However, in some cases, the re-

sults of ecosystem models are robust to uncertainties and

can be used to provide management advice. Ecosystem-

based management policies are necessarily based on quan-

tification of the expected impact of alternative policy

choices; the issue is not whether or not to use models but

only which models to use.

Despite the pessimism of Quinn (2003), who considers

the golden age of stock assessment to have ended, we be-

lieve that there is still huge potential to improve stock as-

sessment and fishery management based on integrated

stock assessment, management strategy evaluation, adap-

tive management, and multispecies models. As computers

become more powerful, improved statistical methods are

developed, and routine collection of previously inaccessible

data (e.g. archival tagging) becomes possible, much better

understanding of fish stocks and their exploitation and man-

agement will be possible. However, unless there is a change

in the willingness of policy-makers to act with appropriate

management measures, all these efforts will be wasted

(Maunder and Harley, in press).

We have portrayed a bleak picture of cpue data and anal-

yses dependent solely on them. However, this does not

mean that cpue-based analyses are useless. They are not

an alternative to integrated stock assessments, but they do

provide useful information about fisheries changes, discus-

sion points, and indicate areas of future research, e.g. more

careful examination of the utility of historical fisheries data.

They also provide a component of information analysed by

integrated models, and interpretation of such information is

important. In instances in which full stock assessments are

not possible, e.g. when catch time-series are not available,

cpue-based analyses will play an important role in manage-

ment, but we have shown here that there are many factors

that must be considered, and that great caution is necessary

http://www.fish.washington.edu/research/coleraine/
http://www.fish.washington.edu/research/coleraine/
http://www.multifan-cl.org/
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in interpreting results. In these cases, decision rules or man-

agement strategy evaluation are important.

In conclusion, while one recent analysis based solely on

cpue data (Myers and Worm, 2003), suggesting that the

worldwide community of large pelagic fish has become

highly depleted since the late 1960s, has received much me-

dia attention, we believe that we have demonstrated that the

analysis was based on flawed methodology and misinter-

pretation of the data, as already demonstrated by other au-

thors (Walters, 2003; Hampton et al., 2005; Polacheck,

2006). We propose that assessment of fish stocks and com-

munities be based on considering all available data, and that

historical data be carefully examined before being included

so as to preclude invalid assumptions and erroneous conclu-

sions. Methods should be developed to better analyse cur-

rent information and to use it in management, additional

data should be collected, and methods to improve informa-

tion extracted from data should be investigated.
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