Projected expansion of the subtropical biome and contraction of the temperate and equatorial upwelling biomes in the North Pacific under global warming

Jeffrey Polovina¹, John Dunne², Phoebe Woodworth¹, and Evan Howell¹

1. NOAA, Pacific Islands Fisheries Science Center, Honolulu, HI
2. NOAA, Geophysical Fluid Dynamics Laboratory, Princeton, NJ
NOAA GFDL Earth System Model 2.1 (ESM2.1)

• Coupled climate and biogeochemical model
 – Global coupled climate model CM2.1
 • Atmosphere, ocean, land, sea ice
 – Tracers of Phytoplankton with Allometric Zooplankton (TOPAZ)
 • Major nutrients and four phytoplankton classes

• Horizontal resolution in ocean:
 – 1° x 1° north of 30°N, with latitudinal resolution increasing to 0.33° at equator

• Vertical resolution:
 – Ocean: 50 levels, with 22 10m levels in the upper 220m
 – Atmosphere: 24 levels

• We Used Monthly N Pacific output from 1998 - 2100
Tracers Of Phytoplankton with Allometric Zooplankton (TOPAZ) simulates the mechanisms that control the ocean carbon cycle.
Validation of ESM2.1 with TOPAZ

In historical simulation TOPAZ reproduces SeaWiFS chlorophyll spatial and temporal variability and captures much of the temporal variation in the 50-yr Continuous Plankton Recorder (Henson et al. 2009a, Henson et al. 2009b). However in the North Pacific while the Transition Zone is reproduced, its shape is not as zonal as it should be.
CO$_2$ Forcing Trajectory (Scenario A2)
Biomes

• Longhurst (1995) based on physical forcing defined 4 Biomes: (Polar, Westerlies, Trade-wind, Coastal boundary) further refined to 10 per ocean basin.

• Hardman-Mountford et al. (2008) defined 6 based on SeaWiFS surface Chl levels - very high to very low.

• Dynamic biomes and climate model - Sarmiento et al. (2004) biomes based on physical forcing (marginal sea ice, subpolar, subtropical seasonal, subtropical permanent, low-latitude upwelling).

- Small Phytoplankton
- Large Phytoplankton
- Total Phytoplankton
Biome definitions

1. Subtropical: area with phytoplankton not exceeding 1.35 gC/m²
2. Temperate: Area north of 20° N lat with phytoplankton exceeding 1.35 gC/m²
3. Equatorial Upwelling: Area south of 20° N lat with phytoplankton exceeding 1.35 gC/m²
Annual Mean Biome Area over the 21st Century

- **Temperate:**
 - Area decreases 34%/100 yr

- **Subtropical:**
 - Area increases 29.5%/100yr

- **Equatorial Upwelling:**
 - Area decreases 27.7%/100yr
Biome Boundaries at beginning and end of the 21st Century

Boundary box: 27° - 29°N, 175°E - 170°W
Time series of Nitrate, Primary Production, Phytoplankton biomass, and proportion of large Phytoplankton in the boundary box: 27°- 29°N, 175°E - 170°W, 1998-2100
20-Year Median Monthly Primary Productivity in the Boundary box at beginning and end of the 21st Century
Summary table of percent change over 100 years of physical and biological variables for each biome and total North Pacific, 1998-2100

<table>
<thead>
<tr>
<th></th>
<th>Temp</th>
<th>ST</th>
<th>EU</th>
<th>North Pacific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>-34</td>
<td>30</td>
<td>-28</td>
<td>-</td>
</tr>
<tr>
<td>Mean PP</td>
<td>-6</td>
<td>-2</td>
<td>17</td>
<td>-4</td>
</tr>
<tr>
<td>Total PP</td>
<td>-38</td>
<td>26</td>
<td>-15</td>
<td>-4</td>
</tr>
<tr>
<td>Phytoplankton Biomass Density</td>
<td>-8</td>
<td>-8</td>
<td>-5</td>
<td>-13</td>
</tr>
<tr>
<td>% Large</td>
<td>-12</td>
<td>-7</td>
<td>-10</td>
<td>-27</td>
</tr>
<tr>
<td>SST</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>14</td>
</tr>
</tbody>
</table>
Size-based model

Assumes size-based predation, and size-specific growth and mortality are functions of food availability and SST

Input: monthly plankton size spectrum and SST

Output: monthly population size spectrum

Results from other model studies

• large scale weakening (Vecchi et al., 2006) and poleward shift (Yin, 2005) in northern hemisphere westerlies

• NP basin-scale decreases in the magnitude of vertical velocities in both temperate and subtropical biomes (Rykaczewski and Dunne, accepted).

• Reduced nutrient input to euphotic zone in low and mid-latitudes in response to increased stratification seen in multi-model study (Steinacher et al. 2010)
20-Year Mean SST (°C) Isotherms

SST Histograms by Biome

Temperate

Subtropical

EU
Challenges in understanding and forecasting change

- Basin-wide ecosystem monitoring to evaluate the climate change forecast/models

- Improving our ability to forecast impacts to top trophic levels. Any hope to forecast species-specific changes? Incorporate error and multi-model ensembles

- Managing fisheries with slow average 0.4% decline/yr