Chemical Clues: stable isotopes and tuna.

B. Graham
Department of Oceanography, Univ. of Hawaii, Honolulu, HI
V. Allain
Secretariat of the Pacific Community, Noumea Cedex, New Caledonia
K. Holland, D. Grubbs
Hawaii Institute of Marine Biology, Univ. of Hawaii, Honolulu, HI
B. Fry
Coastal Ecology Institute, Louisiana State Univ., Baton Rouge, LA
R. Olson
Inter-American Tropical Tuna Commission, La Jolla, CA
F. Galvan
CICIMAR-IPN, Baja California, Mexico
B. Popp
Department of Geology and Geophysics, Univ. of Hawaii, Honolulu, HI
Structure-associated Hawaiian Food Webs

Drs. Kim Holland & Dean Grubbs (HIMB)

Valerie Allain (SPC), Robert Olson (ITTC), Felipe Galvan (CICIMAR), Brian Popp (UH), and Brian Fry (LSU)
Focus

Trophic Shift – CTP and WTP

Isotopic differences in tuna tissues – CTP, WTP, ETP

Starvation Issues – CTP, WTP
δ^{13}C Values:
Source Information

“you are what you swim in”

δ^{15}N Values: Trophic Information

“you are what you eat + 3 ‰”

Fry et al. 1978

Fig. 1. δ^{13}C values of plants and grasshoppers at a West Texas study site. Values are expressed as ‰ (see text for explanation).

Courtesy of Dr. R. Doucett (NAU)
Central Tropical Pacific
BET vs. YFT

\[\delta^{15}N \text{ (‰)} \]

\[\delta^{13}C \text{ (‰)} \]

> 46cm BET
> 46cm YFT
< 42 cm YFT
Central Tropical Pacific

Fork Length (cm) vs. δ¹⁵N (‰)

- Liver
- WMT

Data points scatter across the graph, showing the relationship between fork length and δ¹⁵N values for liver and WMT samples.
Central Tropical Pacific
Tissue Types from Juvenile Tuna

\[\delta^{15}N \text{ (‰)} \]

\[\delta^{13}C \text{ (‰)} \]
STARVATION “SIGNAL”?
(Hobson et al. 1993)
STARVATION “SIGNAL”?
(Hobson et al. 1993)

WTP Epipelagic Predators

Silky Shark

δ¹⁵N (‰)
δ¹³C (%)

Dolphinfish ▲ Skipjack tuna ▶ Yellowfin tuna

Starvation?
Conclusions

- Trophic shift due to change in diet.
- Initial results indicate a starvation signal
- Differences between liver and white muscle might be a proxy for migration and diet changes.

Future Directions

- Tuna Tank: Feeding trials to examine tissue turnover rates and starvation signals in tuna.
- Characterize regional isotope values at base of the foodweb by sampling barnacles on FADs.
- Utilize mercury as an additional trophic indicator in tuna
Acknowledgements

Funding and Support from:

Pelagic Fisheries Research Program
(Project # 657282 and 659559)

Special thanks for logistical support:

Mercury and Tuna