Examining Tuna Trophic Dynamics Using Stable Isotope Analysis: “The Hawaiian Template”

B. S. Graham
Department of Oceanography, Univ. of Hawaii, Honolulu, HI

B. N. Popp and T. Rust
Department of Geology and Geophysics, Univ. of Hawaii, Honolulu, HI

K. Holland, D. Grubbs, D. Itano
Hawaii Institute of Marine Biology, Univ. of Hawaii, Honolulu, HI

V. Allain
Secretariat of the Pacific Community, Noumea Cedex, New Caledonia

R. Olson
Inter-American Tropical Tuna Commission, La Jolla, CA

F. Galvan
CICIMAR-IPN, Baja California, Mexico

B. Fry
Coastal Ecology Institute, Louisiana State Univ., Baton Rouge, LA
Trophic Dynamics and Migration Behavior of Tuna in the Equatorial and Sub-Tropical Pacific.
\(\delta^{13}C \) Values: Source Information

FIG. 1. \(\delta^{13}C \) values of plants and grasshoppers at a West Texas study site. Values are expressed as \(\%/o \) (see text for explanation).

Fry et al. 1978
δ¹⁵N Values: Trophic Information

“you are what you eat + 3 ‰”

Courtesy of Dr. R. Doucett
An example: Southeast Alaska

\[\delta^{15}N \%o \]

\[\delta^{13}C \%o \]

~ 1\%o

~ 3 to 4\%o
Two PFRP Projects: The objectives

ECOSYSTEM MODELS

- Pacific Tuna Biogeography
- Migration Patterns
- Equatorial-Pacific Tuna Trophic Dynamics
- Hawaii-Associated Tuna Trophic Dynamics
Measure *in situ* δ^{13}C and δ^{15}N to address:
- Individual Isotopic Variability
- Size or Ontogenic Variability
- Species differences
- FAD vs. Seamount Differences

Mesocosm Experiments/Feeding Trials:
- Isotopic Pulse-Chase Experiments
 - Elucidate information on tissue turnover rates, metabolism, and tuna energetics.
Diet experiments: Revealing important isotopic information for trophic ecology studies.

Tominaga et al. *In Press.*
$\delta^{15}N$ vs. $\delta^{13}C$ of different tissue types in Hawaiian Yellowfin Tuna

Liver

White Muscle Tissue

Red Muscle Tissue

- $FL = 39.0cm$
- $FL = 33.5cm$
- $FL = 28.5cm$
δ¹⁵N of Yellowfin Tuna from Hawaiian FADs

δ¹⁵N %e

10/1/02 10/11/02 10/21/02 10/31/02 11/10/02

Red Muscle Tissue
White Muscle Tissue
Mantis Shrimp
δ¹⁵N Variability Among Yellowfin Tuna

- Hawaiian Waters
- New Caledonia

Juvenile Yellowfin (FL ~ 30cm)
Equatorial Yellowfin (FL ~ 125)
Future Research

Hawaiian Tuna PFRP Project

- Laboratory studies/Feeding experiments
- Systematic sampling of FADs and Cross-seamount
 - Sample one cohort over time?
- Analyze stomach contents of individuals
Future Research

Equatorial Pacific Tuna PFRP Project

Contrast tuna between non-upwelling and upwelling areas by:

– Characterizing the base of the food web (i.e. primary producers) and prey base in the two areas.
 • $\delta^{13}C$ and $\delta^{15}N$ of tissues
 • $\delta^{13}C$ of lipid classes (i.e. compound specific isotope analysis).

– Determine trophic relationships

– Characterize tuna movements based on isotopic signatures.