Syllabus for Introduction to Atmospheric Dynamics (ATMO 303)

Time: Fall 2020 (August 24, 2020 - December 17, 2020), TR, 10:30-11:45 am **Location:** HIG 309

Instructor: Dr. Jingxia (Grace) Zhao, HIG 365, 956-3736, Cell 225-2726, jingxiaz@hawaii.edu

Office Hours: WF 10:30-11:45 am or by appointment

Prerequisites: MET302, MATH242 and PHYS272

Text: *An Introduction to Dynamics Meteorology*, by James R. Holton and Gregory J. Hakim, Academic Press, 5nd Edition, 2012, 553pp, ISBN 978-0-12-384866-6 (hardback)

Course description: This course is a quantitative introduction to the fundamentals for modern dynamic meteorology. The emphasis is focus on the physical principle rather than mathematical elegance. It provides an elementary description and interpretation of the large-scale atmospheric motions that are associated with weather and climate. Topics to be studied include: the basic conservation laws and its applications of the basic equations, spherical and Cartesian coordinates, pressure (p) and potential temperature (θ) vertical coordinates, thermal and gradient winds, circulation and vorticity in the atmosphere.

Grading:

Problems	30%
Midterm Test	30%
Final Exam	40%
Total	100%

Grading Scale		
100-90	А	
89-80	В	
79-70	С	
69-60	D	
Below 60	F	

A focused effort is essential to understanding the material and completing the problems successfully. You are encouraged to work together, but you are not allowed to copy each other. Claiming someone else's work or ideas as your own will be considered as dishonesty. It will not be tolerated with consequence of a bad outcome. Format of the exams will be short essay, draw and label a sketch, and problems like ones in the homework. Homework and exams will contribute to grades as indicated in the table above on the left.

Weather information web sites: University of Hawaii Meteorology weather Server <u>http://weather.hawaii.edu</u> The Marshall Spaceflight Center's GOES Satellite viewer: <u>http://weather.msfc.nasa.gov/GOES/</u> And the NCEP web-based surface weather analysis: <u>http://www.wpc.ncep.noaa.gov/html/sfc2.shtml</u> The Student Learning Outcomes listed in this syllabus are those required actions that a student who successfully completes the course must be able to perform. The educational experience, however, is a two-way, interactive process involving both the student and the instructor. The student must play an active role in the learning process in order to be successful. Instructors will provide an Instructor's Course Requirements document at the first class meeting explaining how they measure each of the Student Learning Outcomes. A student who is unable to accomplish the outcomes will not receive a passing grade in the course.

The information in this Syllabus may not be accurate beyond the current semester. Textbooks and other course materials are subject to change. Students should verify the textbooks at the first class meeting with their instructor prior to purchasing.

• Student Learning Outcomes:

By the end of the course, students will be able to

- *Apply* physical laws and forces in initial and non-initial frame coordinates to explain the circular motions in the atmosphere of the rotating earth.
- *Describe* the balanced winds (such as geostrophic wind, thermal wind, and gradient wind), circulation and vorticity in the earth's atmosphere

Schedule for ATMO 303 Fall 2020

	Tuesday	Thursday	Homework Assignments
	August 25	August 27	
Week 1	Introduction	Basic Notions & Physical Laws	1.047.074
	September 1	September 3	HW #1
Week 2	Atmos. Forces	Atmos. Forces	
	September 8	September 10	
Week 3	Non-inertial Frame and Apparent	Non-inertial Frame and	
	Forces	Apparent Forces	
	September 15	September 17	HW #2
Week 4	Hydrostatic Equation	Different vertical coordinates	
	September 22	September 24	
Week 5	Equations in Rotating Coordinate	Equations in Spherical	
		Coordinate	
	September 29	October 1	HW #3
Week 6	Scale Analysis of Equations	Continuity Equation	
	October 6	October 8	
Week 7	Dry Thermodynamics	Moist Thermodynamics	
	October 13	October 15	
Week 8	Review	Test	
	October 20	October 22	HW #4
Week 9	Basic Equation in P Coordinates	Balanced Flows	
	October 27	October 29	
Week 10	Balanced Flows	Trajectories & Streamline	
	November 3	November 5	HW #5
Week 11	Election Day	Thermal Wind	
	November 10	November 12	
Week 12	Vertical Motion	Circulation Theorem	
	November 17	November 19	HW #6
Week 13	Vorticity in Natural Coordinates	Vorticity Equation	
	November 24	November 26	
Week 14	Vorticity Equation	Holiday: Thanksgiving	
	December 1	December 3	HW #7
Week 15	Potential Vorticity	Shallow Water Equation	
	December 8	December 10	
Week 16	Potential Vorticity in 0-Coordinate	Review	
	December 15	December 17	
Week 17	Final		
	9:45-11:45am, HIG 309		