
Projecting changes in future heavy rainfall events for Oahu,
Hawaii: A statistical downscaling approach

Chase W. Norton,1 Pao‐Shin Chu,1 and Thomas A. Schroeder1

Received 14 January 2011; revised 3 June 2011; accepted 10 June 2011; published 14 September 2011.

[1] A statistical model based on nonlinear artificial neural networks is used to downscale
daily extreme precipitation events in Oahu, Hawaii, from general circulation model
(GCM) outputs and projected into the future. From a suite of GCMs and their emission
scenarios, two tests recommended by the International Panel on Climate Change are
conducted and the ECHAM5 A2 is selected as the most appropriate one for downscaling
precipitation extremes for Oahu. The skill of the neural network model is highest in
drier, leeward regions where orographic uplifting has less influence on daily extreme
precipitation. The trained model is used with the ECHAM5 forced by emissions
from the A2 scenario to simulate future daily precipitation on Oahu. A BCa bootstrap
resampling method is used to provide 95% confidence intervals of the storm frequency
and intensity for all three data sets (actual observations, downscaled GCM output from
the present‐day climate, and downscaled GCM output for future climate). Results suggest
a tendency for increased frequency of heavy rainfall events but a decrease in rainfall
intensity during the next 30 years (2011–2040) for the southern shoreline of Oahu.
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1. Introduction

[2] General circulation models (GCMs) play a pivotal role
in the understanding of climate change. However, the lim-
itations of GCMs restrict studies that result from their direct
outputs due to coarse spatial resolution (∼250 km). The need
for site‐specific climate change information requires a reso-
lution finer than the capabilities of current GCMs. Statistical
downscaling provides methods to obtain a finer resolution
from the coarse GCM output.
[3] Statistical downscaling consists of finding an empirical

relationship between large‐scale atmospheric variables (pre-
dictors) and a small‐scale variable (predictand or response
variable). Finding the optimal relationship requires training
of the model. Once the optimal relationship has been found
the model must be validated to determine its ability to handle
new and independent data. Careful consideration must be
given when deciding how to choose the appropriate pre-
dictors, because statistical downscaling is extremely sensitive
to the choice of predictors. Various downscaling methods
have been used in literature, but the most commonly applied
has been transfer functions. This method has four necessary
conditions: (1a) there must be a strong relationship between
large‐scale predictors and the local‐scale predictand; (2) the
predictor must be well modeled; (3) the predictor parameters
respond to a given perturbation in a similar manner as the

predictand; and (4) the current relationship between the
predictor and predictand must hold valid in the future under
climate change [Benestad et al., 2008].
[4] Principal component analysis, canonical correlation

analysis, and linear regression techniques have been suc-
cessfully employed to determine the statistical relationship
between the predictors and the predictand [e.g., Conway et al.,
1996; Crane and Hewitson, 1998; Schubert and Henderson‐
Sellers, 1997]. These are linear methods and often the
skill of these techniques is determined by the linearity of
the variables studied. Recently, a study used linear techniques
to analyze the relationship between ENSO, PNA and rain-
fall extremes over the Hawaiian Islands [Elison Timm et al.,
2011]. The results indicated small changes in rainfall
extremes, but large uncertainties due to differences among
climate models.
[5] Traditionally, linear statistical methods are used to

explore the coupled variability between large‐scale circu-
lation features and local rainfall on monthly or seasonal time
scales. This study focuses on extreme precipitation events
based on daily records, which may not respond linearly to
atmospheric forcings. For this reason, we applied a non-
linear method known as the neural network. This method
offers many advantages, including the ability to find all
possible connections between predictors, the ability to find
the nonlinear relationship between predictors and response
variable, ability to map input signal to desired response
through supervised learning, multiple topologies to choose
from based on application, and has been used extensively in
academic research. However, there are disadvantages that
must be understood and considered when analyzing the
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results of neural networks. By design they are “black boxes”
and their output is difficult to interpret. This limits the research
when trying to explain the cause of the results. Neural net-
works are prone to overfitting the data, which must be prop-
erly handled to provide reliable results. Neural networks
are also computationally expensive and time consuming
[Tu, 1996].
[6] Hsieh and Tang [1998] showed that artificial neural

networks (ANNs) could provide an adequate method for
handling nonlinear relationships commonly found in meteo-
rology. Cannon and Whitfield [2002] had success using neural
networks to find the complex nonlinear relationship between
atmospheric variables and stream flows in British Columbia.
The current study focuses on a nonlinear approach based
on ANNs for statistically downscaling daily precipitation
extremes on Oahu, Hawaii, for the time periods 1979–2008
(current climate) and 2011–2040 (future climate). Because the
ordinary bootstrap procedure does not handle samples from
heavy‐tailed distributions very well, a BCa percentile boot-
strap resampling method [Efron and Tibshirani, 1993] is used
to assess the confidence interval of the test statistics (e.g.,
the frequency of heavy rainfall events).
[7] The objective of this study is to examine changes in

the frequency and intensity of heavy precipitation events for
Oahu, Hawaii. Section 2 describes Hawaii’s climate and
some recent heavy rainfall events as well as their damage.
In section 3, observational, reanalysis and GCM data are
discussed. Section 4 discusses the methodology for predictor
selection. Section 5 addresses the results from the predictor
selection, statistical model performance, and evaluates the
change in precipitation extremes between 1979 and 2008
(i.e., current climate) and 2011–2040 (future climate).

2. Recent Heavy Rainfall Events
and Hawaii’s Climate

[8] The Hawaiian Islands are vulnerable to heavy rainfall
and associated flooding from time to time [Kodama and
Barnes, 1997; Lyman et al., 2005]. For example, in late
October 2004, Mānoa Valley in Oahu received 254 mm of
rainfall within a 12 h period. Because Mānoa Stream
swelled and topped its banks, the floodwater spilled with
mud and debris onto the University of Hawai’i at Mānoa
campus and its adjacent areas. This rain storm resulted in
over 80 million USD worth of damage for the University of
Hawai’i alone [Chu et al., 2009]. From February to early
April 2006, Hawaii was battered by rain. March 2006 was
an exceptionally wet and record‐breaking month in Hawaii.
On 14 March 2006, the Ka Loko Dam on Kauai broke,
releasing millions of gallons of water downstream in a gush.
Seven people were killed and dozens of homes and prop-
erties were severely damaged. Multiple parties, including
the owner of the dam, the State of Hawaii, and the County
of Kauai faced liabilities for the disaster. In December 2008,
an unusually intense storm developed in the vicinity of the
Hawaiian Islands and produced several days of severe
weather and the island of Oahu bore the brunt of the storm
[Smith, 2009]. This rainstorm caused an estimated $50 mil-
lion in damage and garnered a federal disaster declaration.
In this study, Oahu is selected because it is the most pop-
ulous island in the State of Hawaii and future water resource

planning and management would have the largest impact in
this region (Figure 1).
[9] The Hawaiian Islands have two distinct seasons, a dry

(warm) season and a wet (cool) season. The dry season
is from May to October and is dominated by trade winds.
In the eastern North Pacific a quasi‐stationary subtropical
high advects northeasterly trade wind flows over the islands.
This flow results in orographic lifting being the dominant
mode of rainfall. During this time period, the location of
maximum precipitation is on the windward slopes of the
mountain ranges. Due to the rain shadow effect, the leeward
side of the mountain ranges tends toward drier conditions.
This region is characterized not only by low mean annual
rainfall, ranging from 500 to 1000 mm, but also lower rainfall
intensity associated with a specific return period [Chu et al.,
2009]. Besides trade winds, thermally driven diurnal circu-
lations such as land‐sea breezes also contribute to rainfall
development by interacting with orographic uplifting and
prevailing airflow [Leopold, 1949]. However, given the rel-
atively small size of Oahu and its lower terrain height com-
pared to the lifting condensation level, orographic lifting
alone is inadequate to produce rainfall [Hartley and Chen,
2010]. Factors important for abundant orographic rainfall
are the existence of cumulus clouds over the adjacent ocean,
a deep moist layer, and sufficient moisture content upstream
of the island under strong trade wind conditions. Extreme
precipitation events are commonly a result of tropical cyclone
activity during the warm season.
[10] The wet season extends from November to March or

April. At this time, normal trade wind patterns are occa-
sionally interrupted by midlatitude fronts, Kona storms, and
upper level disturbances [Schroeder, 1993; Chu et al., 1993].
Kona storms are unique to the Hawaiian Islands. They result
from cutoff lows in the upper level westerlies and commonly
cause widespread extreme precipitation events that last days
or even weeks. Due to the synoptic nature of these events and
their preferred geographical locations, extreme precipitation
is not limited to the ordinary east facing windward slopes.

3. Data and Model Description

[11] The observational, reanalysis, and GCM data are
obtained for the specified time period. The observational
and National Centers for Environmental Prediction (NCEP)
data are used to train the statistical models. It is assumed that
NCEP data represent observational data well enough to be
considered a gridded observational data set. This assumption
allows for a statistical relationship to be formed between
observed local‐scale precipitation and large‐scale atmo-
spheric reanalysis variables for the same given time period.
Single‐site downscaling with ANNs, as opposed to multisite
methods, is found to be more applicable for daily precipi-
tation due to the complex terrain on Oahu (Figure 1). The
commonly applied multilayer perceptron (MLP) topology is
employed based on its wide usage in current literature
[Hsieh, 2009; Mendes and Marengo, 2010].
[12] Oahu is of volcanic origin and comprised of two

parallel mountain ranges, Koolau and Waianae, separated by
a broad interior valley known as Central Oahu (Figure 1).
The mountain ranges are the eroded remains of ancient
shield volcanoes formed millions of years ago. The Koolau
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Mountain range spans the length of the eastern coast,
roughly 45 km long with peaks varying from 500 to 960 m
high. It is aligned almost 90 degrees in the direction of
northeast trade winds, which results in wetter conditions and
faster erosion. The Waianae Mountain range spans from
470 to 1,200 m and is on the western side of the island. This
range separates central Oahu from the Leeward coast. Its
location relative to the Koolau range and normal trade wind
flow means it is less eroded and often drier.

3.1. Data

3.1.1. Observational Data
[13] Observational daily precipitation data are obtained

through the National Climatic Data Center (NCDC), in
Asheville, North Carolina. When obtaining the data, only
stations with at least 30 years of daily precipitation data
are used. Further, a three and five rule is applied. This rule
states that if three consecutive days are missing then the
month must be removed or five nonconsecutive days are
missing in a month then the month must be removed. Oahu
has a total of 103 precipitation gauges, and only 16 are
usable after the filter process. All data are then standardized
according to the mean and standard deviation [Hewitson and
Crane, 2006]. This transformation ensures that the resulting
precipitation series will be dimensionless and exhibits a
mean of zero and a standard deviation of one so the varia-
tion on wet windward stations is comparable to the dry
leeward stations. It also allows for a direct comparison of
atmospheric variables with different units to the observed
standardized precipitation. It should be noted that the
transformed data will not follow a Gaussian distribution
since the untransformed variable does not either. Hewitson

and Crane [2006] used the standardized anomalies for sta-
tistical downscaling over South Africa.
3.1.2. NCEP Reanalysis II Data
[14] NCEP reanalysis II daily data are obtained for the

gridded predictor data set and used to train the model. The
data set consists of nine candidates of atmospheric vari-
ables at 17 different pressure levels. The model resolution is
2.5 degree latitude × 2.5 degree longitude on a global grid.
Reanalysis II data have shown better representation of
winter time precipitation and tropical precipitation when
compared with reanalysis I data [Kanamitsu et al., 2002].
Due to the location of the Hawaiian Islands in the tropics
and because most of the extreme precipitation events occur
in the cooler season, reanalysis II data are used. Both NCEP
and GCM data are standardized according to the same
methods for observed data.
3.1.3. GCM Data
[15] We analyzed 24 GCMs and their emission scenarios

to determine which would be appropriate in downscaling
daily precipitation over Oahu. The two approaches sug-
gested by the International Panel on Climate Change (IPCC)
are applied to each model [Pachauri and Reisinger, 2007].
The first approach is a baseline test that compares the
average observational precipitation during 1979–2008 with
GCM back projections of the same time period. An island
average for daily precipitation is calculated to compare
with a grid located closest to Oahu from each model. The
24 models and their emission scenarios are ranked based on
the absolute difference between island observed average
precipitation and the precipitation from each GCM. This
approach can be regarded as weighting the model’s bias
under current climate conditions. It is tacitly assumed that

Figure 1. Map of stations on Oahu used for this study.
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the GCM that most accurately represents local precipitation
is also the most adequate model that can simulate precipi-
tation related large‐scale circulation features (i.e., pre-
dictors) well. The second approach is a future projection
(2011–2040) test that compares the grid box located closest
to Oahu from each GCM model in order to filter outliers.
GCMs that lay outside of ±1 standard deviation of the
24 model mean are discarded. Those that lay inside ±1 stan-
dard deviation are regarded as close to the consensus (i.e.,
convergence) and are thus ranked according to absolute dif-
ference from the mean.
[16] The aforementioned two tests are then compared to

find an overall high ranked model among all 24 GCMs and
their scenarios, and are similar to the reliability ensemble
average method [Giorgi and Mearns, 2002]. For our study,
the combined bias and convergence approach for multi-
model evaluation suggests that GCM model ECHAM5 and
scenario A2 have one of the smallest differences for the
current climate (1979–2008) and also for the future climate
(2011–2040). Multiple grid boxes located around Oahu are
also tested and have similar results as the grid box closest to
Oahu. In the following, we will introduce the basics of the
neural networks used in this study.

3.2. MLP Topology

[17] Unlike other topologies, MLP networks have no
restriction on hidden layers. They are considered to be a
universal function approximator. Hornik et al. [1989]
showed that one hidden layer could approximate any con-
tinuous function to a degree of accuracy, so for this reason
only one hidden layer is used (Figure 2). Within the hidden
layer the optimal number of processing elements (PEs) is
found to be 25. If there are too many PEs the network begins
to ‘memorize’ the training data and is unable to model new
data outside of the training phase. On the other hand, if there
are too few PEs the network is not able to recognize the
patterns necessary for an accurate model [Principe et al.,
1999]. Therefore, a compromise of 25 PEs is chosen.
[18] MLP networks are trained through error‐correction

learning with the most common being the generalized delta
rule or backpropagation, which uses the methodology of
gradient‐descent learning [McClelland and Rumelhart,
1986]. The goal when using backpropagation is to mini-
mize the distance between the desired response and model
output. This requires the desired response be known prior to
model training in order to allow for comparison and model
improvement. The model initiates by assigning weights to
the input vectors (predictors) and applying nonlinear step-
wise transformations. The output is compared to the desired
response (predictand) and an error between them is calcu-
lated. The errors are back signaled through the topology and
the weights are adjusted according to the error. This process
is repeated until a termination criterion is met. The meth-
odology for how to adjust the weights on the input vectors is
known as a learning rule and is a key component to ANNs.
Six different learning rules are tested in this study: step;
momentum; delta‐bar‐delta; quickprop; conjugate gradient;
and Levenberg‐Marquardt.
[19] For each model run the data are divided into three

separate groups. The training data (80% of the data) are used
to build the model and discover the relationship between
predictand and predictors. It is required that the training data

set be sufficiently large enough to discover the signal. The
cross‐validation set (10% of the data) is used to eliminate
overfitting, which is a primary concern in neural networks.
If the network overfits the data, then it runs the risk of
not being able to handle independent data well outside of
the training phase. In our study, we attempt to prevent this
through the use of the cross‐validation data set.
[20] Cross validation is a generalization of the common

procedure of omitting a few observations from the data,
reconstructing the model using the remaining data, and then
making predictions for the omitted cases. At the end of each
training run, the cross‐validation data are inputted into the
model. The root mean squared error (RMSE) is then calculated
for both training and cross‐validation sets. If the RMSE of
the training set decreases, but the cross‐validation RMSE
begins to increase then the model is considered overfitting the
training data. Essentially, when this happens the model is
‘memorizing’ the training data, which degrades the ability to
model new data.When this occurs the model run is terminated.
[21] The testing set (10%) is used to determine how well

the model responds to new data that are separate from the
training and cross‐validation phase. To ensure proper veri-
fication of the models, cross testing was performed to allow
extending the testing of the entire data set [Hsieh, 2009]. For
cross testing, the trained model is tested using the 10%
testing data set. The model is then retrained and tested using
a separate 10% of the data. This process is repeated suc-
cessively by changing the portion of the data that has been
included from the model testing. By doing so, one can test
the entire data set. [e.g., Chu et al., 2010a; Hsieh, 2009].
After deliberately dividing the entire data set into training,
cross‐validation, and testing sets the next task is to perform
predictor selection, because there are always more potential
predictors available than can be used and some predictors
inherently carry redundant information.

4. Methodology of Predictor Selection

[22] Two methods are employed to determine the best
predictor combination for downscaling daily precipitation:
Pearson correlation analysis and Spearman rank correlation.
A Pearson correlation is the ratio of the covariance between
the input and desired data to the product of their standard
deviations and is most commonly used to reveal the linear
association between two variables. Spearman rank correla-
tion is a robust and resistant alternative to the Pearson
correlation. It is simply the Pearson correlation coefficient
but computed using the rank of the raw data instead of the
actual data. The sign of the ranked data is an indicator of
the direction of the relationship between the predictand and
the predictor and the magnitude of the rank coefficient
indicates the importance of the relationship.

5. Results

[23] Results have been separated into four subsections.
Section 5.1 addresses the predictor selection. The choice
of learning rule is described in section 5.2. Section 5.3
describes the model performance during training and test-
ing phases. Section 5.4 addresses the results from inputting
GCM data during the time period 2011–2040 into the
trained neural network model.
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5.1. Predictor Selection

[24] Both the Pearson correlation and Spearman rank cor-
relation analysis between observations and NCEP data dur-
ing 1979–2008 suggest four predictors out of all the possible
candidate predictors. The predictors are: relative humidity at
850 hPa, zonal wind component at 850 hPa, meridional wind
component at 1000 hPa, and sea level pressure.
[25] For Oahu, the two mountain ranges have a significant

influence on daily precipitation. In the dry leeward regions
where trade wind orographic lifting is not the dominant mode
of extreme precipitation, correlation values from Pearson and
Spearman rank are generally higher than those from wind-
ward mountain ranges. In these dry regions large synoptic
events such as Kona storms have a stronger influence on
precipitation extremes. The Kona storm is typically a non-
frontal low pressure system that comes in close proximity to
the Hawaiian Islands. It brings moist southerly or south-
westerly flows with occasional heavy precipitation to the
normally dry regions. This change in the circulation from
the common northeast trade wind days is reflected by the
changes in low level winds and moisture possibly captured
by the aforementioned four predictors. On the seasonal time
scale, Timm and Diaz [2009] showed that the near surface
meridional winds have the largest effect on island precipi-
tation. For the leeward stations the same four predictors
will be used for subsequent downscaling.
[26] The purpose of statistical downscaling is to find the

empirical relationship between large‐scale atmospheric vari-
ables and local precipitation. This relationship, however, is a
poor fit for Oahu’s windward stations where local‐scale pro-
cesses (i.e., orographic uplifting) strongly affect precipita-

tion. Consequently, the 16 available stations described in
section 3.1.1 are reduced to only seven for downscaling
(Figure 1). Table 1 lists the basic statistics of daily precipita-
tion from these seven stations during 1979–2008. The first
five are on the leeward side of the Oahu and the next two are
on the windward side. As expected, the mean and standard
deviation of daily precipitation are lower at leeward gauges
relative to windward stations. The frequency of wet days,
defined as the number of days with more than 1 mm precip-
itation, is also generally lower on the leeward stations. How-
ever, when it comes to wet days’ mean precipitation, there is
no substantial difference among all seven stations. For
example, the mean precipitation of wet days at Campbell is
comparable to those at the two windward sites. This suggests
that for the leeward side, although the frequency of wet days
is a lot lower, the amount of mean precipitation received
during wet days is roughly the same as the windward area. The
standard deviation of precipitation during wet days is gener-
ally lower at leeward regions.

5.2. Choice of Learning Rule and Performance
Measures

[27] For this study the learning rule, Levenberg‐Marquardt,
is found to be best at modeling extreme events. It is a higher‐
order adaptive algorithm known for minimizing the mean
squared error (MSE) of a neural network. In terms of learn-
ing, it attempts to approximate the matrix of the second
derivatives of the performance surface. This determines
the best direction to adjust the weights in order to achieve a
lower error. Extreme events are here defined as those that
exceed the 90th percentile of daily rainfall distribution [Chu
et al., 2009].
[28] Table 2a shows a case using this learning rule during

the training phase for the Campbell station. In this leeward
region, heavy rainfall events are uncommon and often occur
due to large‐scale circulation conditions. Forecast results for
ANN in categories (i.e., yes or no) are evaluated. Because
heavy rainfall events are rare, Table 2a is dominated by a
correct ‘no’ forecast.
[29] Verification for categorical forecasts is easier to

understand and several measures are readily available to
evaluate forecast skill. The hit rate (HR) is used as an
accuracy measure. Hit rate measures the proportion of
observed events correctly forecasted. The worst possible
value for the HR is zero and the best is one. The frequency
bias (FB) is calculated to evaluate the ratio of yes forecasts
to the number of yes observations. A value of one would
indicate an unbiased forecast, while a value greater/less than
one would indicate the event was forecasted by the models
more/less often than the observed. Moreover, one of the
most frequently used skill scores for summarizing square

Table 1. Mean and SD of the Seven Stationsa

Campbell
Honolulu International

Airport
Honolulu

(Observatory) Paiko Punchbowl Pali Golf
Waimanalo

Farm

Mean (mm/d) 1.25 1.20 1.23 1.91 2.37 5.13 3.03
SD 7.15 6.49 6.60 7.71 7.11 15.10 11.35
Frequency of wet days 1422 1497 1530 2694 3742 5742 3539
Wet day mean (mm/d) 9.47 8.65 8.72 7.67 6.89 9.82 9.33
SD wet days 17.90 15.85 15.94 14.26 10.98 19.98 18.70

aKey statistics (mean and standard deviation) for the stations used in this study. The first five stations are located on the leeward and the last two stations
are located on the windward Oahu. Unit for mean and standard deviation (SD) is mm/d. Unit for the frequency of wet days is days.

Figure 2. A representation of an artificial neural network
with an input layer, a hidden layer, and an output layer.
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contingency table is known as the Peirce skill score (PSS),
which is chosen over other skill measures because the con-
tributions made to the score by a correct no or yes forecast
increases as the event is more or less likely, respectively. PSS
is similar to the Heidke skill score (HSS) except that the
imagined random reference forecasts in the denominator are
constrained to be unbiased. For perfect forecasts, PSS = 1 and
for random forecasts the score is zero. Note that PSS and HSS
are standard metrics to evaluate forecast performance [World
Meteorological Organization, 2002]. Because the event to be
forecast occurs substantially less frequently than the nonoc-
currence (Table 2a), the Gilbert Skill Score (GSS) is also
used. It is often referred to as the ratio of success [Wilks,
2006]. The best value for GSS is one and the worst is zero.
[30] More recently, the Extreme Dependency Score (EDS)

has been employed as an assessment of the skill the models
have with forecasting rare events [Stephenson et al., 2008;
Ferro, 2007; C. A. T. Ferro and D. B. Stephenson, Extremal
Dependence Indices: Improved verification measures for
deterministic forecasts of rare binary events: Revised, http://
empslocal.ex.ac.uk/people/staff/ferro/Publications/edi.pdf].
It is calculated from the equation: EDS = (2*log((a + c)/n)/
(log(a/n))) − 1, where a is number of correct forecasts, c is
the number of times the event occurred but was not forecast,
and n is the total number of forecasts. For perfect forecasts,
EDS = 1 and for random forecasts EDS = 0. The various skill
scores from Table 2a are shown in the “Learning Rule
Training Performance” column of Table 3. Clearly, the ANN
model presented in this study outperforms the benchmark
random forecast. It is found that the other five learning rules
significantly underestimate the extremes.

5.3. MLP ANN Performance

[31] To further demonstrate the model’s skill, Table 2b
displays the 2 × 2 contingency table for the cross‐testing
data set at the Campbell station. This site is chosen as an
example because the MLP topology is found to work rather
well in both training and independent test stages (Table 4).
For this entire data set, the correct “no” forecast category
again dominates in Table 2b. The metrics for Table 2b are
shown in the “MLP Cross‐Test Performance” column of
Table 3. While the model’s skill decreases from the train-
ing period to cross testing as the sample size increases, the

metrics still show the model’s ability to outperform the ran-
dom forecast. The MLP model performance for daily pre-
cipitation extremes during 1979–2008 is further evaluated
in terms of the Pearson correlation coefficient and RMSE
skill score relative to a persistence model (Table 4). The skill
score based on the RMSE was calculated using the formula:
SSpersistence = 1 − (RMSEneural network/RMSEpersistence).
[32] During the training stage, four of five leeward sta-

tions exhibit significant correlation values at the 5% level
between observations and model outputs (Table 4). The
Punchbowl station is marginally significant. For two wind-
ward stations (Pali Golf and Waimanalo Farm), the results
from the model exhibit no linear association between obser-
vations and model simulations.
[33] During the independent ‘test’ phase, correlations are

generally found to be high for stations that had high corre-
lations during the training stage (Table 4). In this case, three
of the five MLP models are statistically significant at drier
stations. As shown in the “RMSE SS” column of Table 4,
the skill score based on RMSE supports the notion that
ANN is skillful in producing extreme precipitation events
given the selected predictors (i.e., low‐level moisture con-
tent, low‐level winds, and sea level pressure) during the
current climate condition. These values suggest that the
MLP network is able to model extreme events reasonably
well at the drier stations. Wetter station data tend to be noisy
and MLP networks model toward the mean of precipitation
rather than finding the patterns of extremes. Having tested
the performance of ANNs using data for the current cli-
mate (1979–2008), the next task is to estimate changes in
the frequency and intensity of precipitation extremes for the
future thirty years starting from 2011. For this task, the
projection of future climate from a GCM is used.

Table 3. Scalar Attributes for the Contingency Tablesa

Attribute
Learning Rule

Training Performance
MLP Cross‐Test
Performance

HR 0.72 0.46
FB 0.91 0.90
PSS 0.72 0.46
GSS 0.60 0.32
EDS 0.88 0.75

aThe scalar attributes of Hit Rate (HR), Gilbert Skill Score (GSS), Pierce
Skill Score (PSS), Frequency Bias (FB), and Extreme Dependency Score
(EDS) for contingency Tables 2a and 2b.

Table 4. MLP Correlation Performancea

Station MLP Training MLP Test RMSE SS

Campbell 0.64b 0.29b 0.31
Honolulu 0.51b 0.21 0.28
Honolulu International Airport 0.72b 0.34b 0.34
Paiko 0.48b 0.27b 0.22
Punchbowl 0.29 0.17 0.08
Pali Golf 0.09 0.04 −0.71
Waimanalo Farm 0.05 0.03 −1.56

aMLP model performance for daily precipitation extremes in terms of
correlation (second and third columns) and RMSE skill score (the last
column) during 1979–2008. The top five stations are located in the dry
region and the bottom two stations are located near the wet region of Oahu.

bStatistical significance of correlations at the 5% level.

Table 2a. The 2 × 2 Contingency Table for Precipitation > 90th
Percentile During Training of Time Period 1979–2008 for the
Campbell Stationa

Observed (Yes) Observed (No)

Forecast (Yes) 23 6
Forecast (No) 9 8722

aThe Levenberg Marquardt learning rule is implemented in MLP.

Table 2b. The 2 × 2 Contingency Table for Precipitation
Extremes of the MLP Cross‐Testing Data Set During 1979–2008
at the Campbell Station

Observed (Yes) Observed (No)

Forecast (Yes) 19 18
Forecast (No) 22 10,891
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5.4. Future Projection From GCM Simulations

[34] The two‐test approaches outlined in section 3.1.3
suggest that for Oahu daily precipitation the GCM
ECHAM5 A2 could be used. Assuming that the present‐day
relationships discovered will hold into the future, the GCM
predictor variables are used as inputs into the statistical model
built for the MLP stations after each run of the cross‐testing
procedure. This allows for a ten model ensemble to be made
and the result is determined from the ensemble average of
these model runs. In order to assess the confidence interval of
the test statistics, the frequency and intensity of precipitation
extremes from both the actual observations and model outputs
are calculated using the BCa percentile resampling technique
[e.g., Efron and Tibshirani, 1993; Gilleland, 2010; Jolliffe,
2007; Chu et al., 2009]. The BCa method is an extension of
the commonly used percentile method which simply uses a/2
and 1 − a/2 percentiles of the bootstrap distribution to define
the interval [e.g., Chu, 2002]. Here a is the common 5% level
of significance. The conventional method works well when
the resulting statistics are unbiased and have a symmetric
sampling distribution. If statistics are biased, the common
percentile method would amplify the bias. To overcome this
problem, the BCa method corrects the common percentile
interval for bias and skewness. In this study, 10,000 bootstrap
replications are generated using the BCa percentile method.
[35] As an example, the Honolulu International Airport is

used to illustrate changes in precipitation extremes on lee-
ward Oahu. During the 1979–2008 period, 47 heavy rainfall
events are observed at this station and there is a 95% con-
fidence that their true values lie in the interval between 36
and 63 (Table 5). For the same period and the identical
threshold for defining extreme events, the model output
shows 44 extreme events. Thus, the ECHAM5 model
slightly underestimates the frequency of events under cur-
rent climate conditions. This model bias is also found at four
other dry stations. For the next 30 years (2011–2040), the
model output predicts 55 extreme events at the Honolulu

International Airport. Note that the 95% confidence inter-
vals for the extreme events in the future climate shift to
higher values than those in the current climate from both
actual observations and model simulations. However, the
spread of the 95% confidence intervals for future climate is
conservative relative to the current climate. Given the like-
lihood of GCM bias in simulating the number of precipi-
tation extremes in the present‐day climate (47 versus 44),
it is possible that the 55 events at the Honolulu International
Airport projected in the future also are slightly biased
toward lower frequency than reality. In principle, this also
applies to the other four sites.
[36] For rainfall intensity (Table 6), the average value is

79 mm/d at the Honolulu International Airport from actual
observations, with 95% confidence intervals between 72 and
89 mm/day. This is in contrast to 73 mm/d from model
simulations during 1979–2008. Compared to observations,
the model exhibits a slightly dry bias, which is also pre-
valent at the other four stations. On average, the model
simulates 7 mm less rainfall per day for all five stations.
During 2011–2040, the average intensity of an extreme
event at the Honolulu International Airport is predicted to
be 64 mm/d. This projected average precipitation intensity
is lower than those from the actual observations and model
simulations under the current climate conditions. This decrease
is also found at the other four stations. Among the five lee-
ward stations, the decrease in average precipitation intensity
from the current observation to the future is largest at
Punchbowl, from the observed 89 mm/d in the current climate
to 73 mm/d in the future. Combining results from changes in
the frequency and intensity of precipitation extremes (Tables 5
and 6), our study suggests that in the next 30 years, the fre-
quency of extreme events will increase but their mean inten-
sity will decrease on leeward Oahu.
[37] In analyzing observed rainfall records from 1950s to

2007, Chu et al. [2010b] recently noted a prevailing
downward trend in daily rainfall intensity on Oahu. In

Table 5. Frequency of Extreme Eventsa

Campbell
Honolulu International

Airport
Honolulu

(Observatory) Paiko Punchbowl

Extreme frequency 1979–2008 41 47 51 62 58
Confidence interval 1979–2008 [29, 54] [36, 63] [38, 67] [48, 79] [45, 74]
Model extreme frequency 1979–2008 37 44 46 55 50
Confidence interval model 1979–2008 [24, 51] [32, 59] [33, 62] [43, 72] [38, 65]
Model extreme frequency 2011–2040 46 55 54 67 64
Confidence interval model 2011–2040 [37, 63] [43, 72] [41, 71] [50, 87] [48, 83]

aExtreme rainfall frequency for observed (1979–2008), current climate (1979–2008) from model, and future climate (2011–2040) from model.
The corresponding 95% confidence interval of the storm frequency based on the BCa bootstrap resampling method is given in brackets.

Table 6. Intensity of Extreme Eventsa

Campbell
Honolulu International

Airport
Honolulu

(Observatory) Paiko Punchbowl

Average extreme intensity 1979–2008 (mm/d) 90.4 78.5 74.4 81.4 88.8
Confidence interval 1979–2008 [80.8, 105.7] [72.4, 88.7] [67.6, 84.7] [75.3, 89.3] [82.5, 99.0]
Average extreme model intensity 1979–2008 (mm/d) 84.2 73.4 65.9 74.7 79.6
Confidence interval model 1979–2008 [74.3, 97.8] [66.1, 85.07] [58.0, 77.6] [68.9, 83.2] [71.4, 90.9]
Average extreme model intensity 2011–2040 (mm/d) 74.8 64.4 59.9 68.1 72.5
Confidence interval model 2011–2040 [65.2, 88] [57.3, 75.1] [51.3, 71.5] [61.6, 77.4] [64.2, 83.3]

aSame as Table 5 but for mean extreme rainfall intensity.
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particular, the decreasing trend at the Honolulu International
Airport since 1950s is statistically significant at the 5% level
using a nonparametric Mann‐Kendall test and Sen’s method.
Therefore, the projected decrease in mean storm rainfall
intensity in Table 6 is consistent with what was observed
during the past 60 years. If the model bias is taken into
account, the increase in the frequency of extreme events in
the future would perhaps be even higher than the model’s
projection (e.g., 55 events at the Honolulu International
Airport) and the average intensity will likely be stronger than
the projected (e.g., 64 mm/d at the Honolulu International
Airport) for the southern shoreline of Oahu.

6. Conclusion

[38] Heavy rainfall and flash floods are common in the
Hawaiian Islands due to their steep terrain, orographic
mechanisms, rain‐producing weather systems, and abundant
moisture supply. They have caused multimillion dollars
damage to homes, properties, roads, agriculture, and other
sectors. Environmentally, heavy rainfall and runoff events in
Hawaii, which are likely to cause slope and coastal erosion,
pollutant discharges to nearshores, coral reef degradation,
among others, are expected to change as the planet Earth has
been undergoing an unprecedented warming process since
the Industrial Revolution. Given the socioeconomic reper-
cussions resulting from past storm events, it is of consid-
erable interest to investigate changes in the frequency and
intensity of heavy rainfall events in Hawaii, particularly for
Oahu as it is the most populous island in Hawaii.
[39] This study is based on observational station data on

Oahu, NCEP/DOE reanalysis II data, and GCM data to
project future changes in precipitation extremes via the MLP
topology. Due to the limited availability of long‐term and
complete precipitation records, as well as local‐scale pro-
cesses which affect precipitation, stations selected in this
study are restricted to only seven on Oahu. Using a large
number of GCMs and their emission scenarios, the two‐test
approach recommended by IPCC reveals that the ECHAM5
A2 is the most appropriate in downscaling extreme precip-
itation events for Oahu. The application of ANNs results in
relatively high correlation values (e.g., Table 4) for daily
precipitation in both the training and independent test
stages. It is found that MLP networks performed better in
drier areas. The MLP trained models are used together with
ECHAM5 A2 data to provide estimates of the model’s
present‐day climate and future climate.
[40] There is a general agreement in key test statistics

(e.g., the frequency of extreme events) between actual obser-
vations and GCM outputs under present‐day conditions at all
five leeward stations, although the model exhibits a small bias
in underestimating both the frequency of storm occurrences
and their mean intensity. For future projection (2011–2040),
the model calls for higher number of extreme events but lower
mean intensity relative to the present‐day statistics. Con-
sidering the model bias, the rainstorm in the future would
occur even more frequently than those indicated in Table 5
and its average intensity would be stronger than those
given in Table 6. To provide a range of variability of the
test statistics, a nonparametric BCa bootstrap technique is
used for all three data sets (i.e., actual observations, GCM
outputs from current climate, future GCM simulations).

[41] The results presented in this study may benefit many
agencies who are concerned with floods and relevant policy
making in the face of climate change. For instance, changes
in rainstorm intensity may be a serious concern for the Pearl
Harbor aquifer as precipitation is the primary water resource
for streams and groundwater supply. Because many people
live near this aquifer and most of their water use is drawn
from the freshwater lens buried underground, a projected
decrease in precipitation extremes in the future would
inevitably alter local hydrology and management practices
for this aquifer. Due to the effect of the mountains on Oahu,
areas with high average daily precipitation did not perform as
well as leeward regions. Further research in dynamical
downscaling would provide more insight into the physical
processes causing the change in extreme events with increased
greenhouse gases.
[42] Many tropical Pacific islands are experiencing rapid

population growth that places an increasing demand on
water for drinking, food production, recreation, and other
needs. Further compounding this problem is the great vari-
ability of interannual and interdecadal precipitation in this
region [e.g., Chu and Chen, 2005]. It is hoped that the
method demonstrated in Hawaii would be of value to other
tropical Pacific islands in projecting future precipitation
extremes, which would be vital to various governments for
future water resources planning and management.
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