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ARTICLE INFO ABSTRACT

Article history: This article reviews Bayesian analysis methods applied to extreme climatic data. We
Received 8 October 2010 particularly focus on applications to three different problems related to extreme climatic
Received in revised form 4 July 2011 events including detection of abrupt regime shifts, clustering tropical cyclone tracks, and

Accepted 11 July 2011 statistical forecasting for seasonal tropical cyclone activity. For identifying potential change

points in an extreme event count series, a hierarchical Bayesian framework involving three
Keywords: layers - data, parameter, and hypothesis - is formulated to demonstrate the posterior
Bayesian analysis probability of the shifts throughout the time. For the data layer, a Poisson process with a
Extreme events gamma distributed rate is presumed. For the hypothesis layer, multiple candidate hypotheses
Chan.ge'pomt . with different change-points are considered. To calculate the posterior probability for each
Tropical cyclone path clustering K . . .
Tropical cyclone prediction hyppthesw and its associated par.ameters we developec! an exact analytlca! formula, a Markgv

Chain Monte Carlo (MCMC) algorithm, and a more sophisticated reversible jump Markov Chain
Monte Carlo (RJMCMC) algorithm. The algorithms are applied to several rare event series: the
annual tropical cyclone or typhoon counts over the central, eastern, and western North Pacific;
the annual extremely heavy rainfall event counts at Manoa, Hawaii; and the annual heat wave
frequency in France.
Using an Expectation-Maximization (EM) algorithm, a Bayesian clustering method built on a
mixture Gaussian model is applied to objectively classify historical, spaghetti-like tropical
cyclone tracks (1945-2007) over the western North Pacific and the South China Sea into eight
distinct track types. A regression based approach to forecasting seasonal tropical cyclone
frequency in a region is developed. Specifically, by adopting large-scale environmental
conditions prior to the tropical cyclone season, a Poisson regression model is built for
predicting seasonal tropical cyclone counts, and a probit regression model is alternatively
developed toward a binary classification problem. With a non-informative prior assumption for
the model parameters, a Bayesian inference for the Poisson regression model and the probit
regression model are derived in parallel. A Gibbs sampler is further designed to integrate the
posterior predictive distribution. The resulting Bayesian Poisson regression algorithm is
applied to predicting the seasonal tropical cyclone activity.
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1. Introduction
1.1. Concept of Bayesian inference

In principle, Bayesian analysis is grounded on a probabilistic
generative model of a process. With the generative model,
Bayes' theorem provides an approach to inferring one or more
parameters in a process from the observed data, where the
parameters are supposed to characterize the process of interest.
In the Bayesian viewpoint, probability can be used to quantify
degrees of belief of inference with given assumptions. Thus,
Bayesian inference deals with uncertainty of unknown param-
eters or hypotheses of interest in probabilistic forms. Under a
Bayesian framework, the unknown quantities are modeled as
random variables, instead of constants or fixed values. This
feature fits well with climate research because climate should
not be considered stationary but rather as something that is
always changing. When new information is obtained, prior
knowledge about the unknown quantities of interest is revised
accordingly. In this regard, Bayes' theorem provides a formal
mechanism to revise or update prior beliefs in light of new data
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Fig. 1. A 3-layer hierarchical Bayesian analysis model.

to yield posterior probability statements about the unknown
parameters or hypotheses.

The number of inference problems that can be tracked by
Bayesian analysis is enormous and across a lot of research fields
(e.g., Berger, 1985; MacKay, 2003; Trotta, 2008). The general
paradigm of a Bayesian inference analysis can be sketched as
the hierarchical flow chart displayed in Fig. 1. On the top of the
Bayesian network is the hypothesis or model layer, which
defines a hypothesis or model with its associated parameter set.
Presumably, the observed data is sampled from this generative
model. Before observing the data, there is some subjective
belief of the hypothesis or model along with its associated
parameter set, which is termed as “prior”. Through the Bayes'
theorem, one can update the degree of belief of a hypothesis
and its relative parameters, yielding the “posterior” probability
of the hypothesis and parameter set of interest. Assuming a
hypothesis H is given and we denote the observed data by h, the
Bayesian formula to infer the parameter set 0 is given by:

Pth|e,H)P(6|H) _ P(h|8,H)P(6|H)

hH) = -
P(6|h,H) P(h|H) |/ P(h|6,H)P(6|H)d® (1)
0

o< P(h|0,H)P(8|H).

If the hypothesis or model H is unanimously accepted, Eq. (1)
provides the full solution for the inference problem. Note that, as
the denominator P(h|H) does not contain any information on
parameter 6, the likelihood term P(h |6, H) in Eq. (1) conveys all
the “new” information obtained from the data.

Table 1
Raftery's guideline for interpreting the Bayes factor.

2InB Evidence for Bayesian model

0-2 Not worth more than a bare mention
2-6 Positive

6-10 Strong
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In many real applications, such as a change-point or a signal
detection problem, the choice of hypothesis (or model) may
not be unique. The posterior probability of hypothesis is thus
needed, and the Bayesian inference for the hypothesis layer is
governed by

P(H)P(h|H)

P(HIN) = =5

o P(H) [ P(h|6,H)P(6|H)do 2)
[}

where the “new” information for a hypothesis or model

yielded from the observed data is represented by P(h|H) =

fP(h|9,H)P(9|H)d9, which is often termed as “evidence”.

[}

Generally speaking, in a model or hypothesis selection problem,
with increasing hypothesis or model complexity (i.e., with
introducing more model parameters), the likelihood term
P(h|6,H) increases, whereas the density of model parameter
prior P(8|H) becomes thinner, which is referred to as the
“Occam’'s razor” from a Bayesian perspective (MacKay, 2003).
This tradeoff in evidence between likelihood and prior hence
lays the core concept for a hypothesis or model selection
problem in the Bayesian analysis. In many hypothesis selection
problems, in order to compare a hypothesis H; against its
complementary hypothesis Hy, “Bayes factor” is often referred:

o= (rm)| (r) = P .

Bayes factor can be seen as the likelihood ratio of the two
hypotheses or models. In essence, it is a measure of whether the
observation data h have increased or decreased the odds on the
hypothesis H; relative to the hypothesis Hy. Raftery (1996)
suggested a conservative guideline to interpret Bayes factor
(Table 1), which favorably mitigates the effects of hypothesis
prior bias.

In general, a generative model and prior is usually presumed
for a particular problem. In the context of modeling climate
data, for instance, a popular choice of generative model for
continuous real data is normal distribution. Gamma distribu-
tion or log-normal distribution is commonly chosen for
modeling non-negative data. Regarding the modeling of
extreme climate events, the Poisson distribution is widely
used for quantifying their occurrence counts. In order to define
occurrence of an extreme event, a sufficiently high threshold
value should be provided, such that the occurrence of any
extreme event is independent of each other. Intensity wise, for
the peak over threshold (POT) data, an exponential distribution
is often selected when sample size is small or moderate, with
which the associated annual or seasonal maxima shall follow a
Gumbel distribution. If sample size is sufficiently large, one can
choose the Generalized Pareto distribution as the POT model,
and the block maxima shall follow the Generalized Extreme
Value (GEV) distribution (e.g., Lang et al., 1999).

Besides the generic nature of choice of generative data model,
a target learning problem can be either non-supervised, such as
a clustering problem, or supervised, such as a classification or
regression problem. Hence, although the Bayes' formula in
Egs. (1) and/or (2) is straightforward, it's worth emphasizing the
fact that very few integrating problems embedded in a Bayesian
inference analysis have analytical solutions. For this reason,
researchers have developed many approximation techniques

toward solving a Bayesian inference problem, which can be
mainly categorized as “deterministic approximations” or “Monte
Carlo methods”. The deterministic approximations include such
as maximum likelihood estimation and Laplace's approximation.
In comparison, random numbers play an integral part in Monte
Carlo methods, the main stream of which includes the Markov
chain Monte Carlo (MCMC) method to integrate Eq. (1) and
using the reversible jump Markov chain Monte Carlo (RIMCMC)
method to integrate Eq. (2). The MCMC method is an efficient
algorithm for calculating Bayesian inference and provides an
unbiased estimate for the posterior expectation of a parameter of
interest (e.g., Lavielle and Labarbier, 2001; Gelman et al., 2004).
Essentially, a general Bayesian analysis involves calculating the
posterior expectation E[a|h] = f a(e)P(6|h)de, where P(6|h)

0
is the posterior probability of the model parameters defined in
Eq. (1) and a(8) can be any function of the parameter 6 (such as
the 90th percentile value of 6). With the MCMC method, an
alternative way to numerically calculate this expectation is by
N .
Ela|h] N% > a(Bm>, where N is a sufficiently large number

i=

and values 6762 ... 6™ are sampled from a Markov chain
(after convergence) having P(6|h) as its stationary distribution
(e.g., Neal, 1996; Ripley, 1987).

1.2. Bayesian analysis applied to climate data

There has been a wealth of Bayesian climate papers
published during the past 25 years or so. Epstein (1985) was
the first one who wrote a comprehensive book introducing
the Bayesian paradigm and its applications to climate data.
Since then, many research works related to Bayesian analysis
have been done on subjects such as climate change analysis,
climate data uncertainty analysis, climate model combina-
tion, climate signal detection, extreme event forecast, etc.

Bayesian analysis can be used to detect climate signals and
subsequently to rate climate models based on the predictions.
For example, Leroy (1998) showed the analytical solution for the
climate signal detection problem under a Gaussian generative
model with Gaussian prior, and the method was used to detect a
signal introduced by the solar circle in surface temperature. For
the change-point problem, using the normal distribution for
energy inflow sequence, Perreaulta et al. (2000a) developed a
Bayesian framework for detecting abrupt shift in mean level or
variability of hydrometeorological time series. They further
generalized the framework via incorporating the hypothesis
selection into the Bayesian analysis (Perreaulta et al., 2000b).

For data uncertainty analysis, Bayes' rule is an efficient
way to provide a coherent and rational framework for
reducing uncertainties by incorporating diverse information
sources such as subject beliefs, historical records, model
simulations, and new information. For example, Rosbjerg and
Madsen (1996) resorted to the partial duration series (PDS)
model for individual rainfall observations and they proposed
a MCMC method based Bayesian procedure to estimate the
PDS-parameters. Based on this framework, they suggested an
approach to adopting regional information to help improve
the at-site estimation of extreme point rainfalls and provide
more reliable estimates for the non-monitored site rainfalls.
In another example in terms of enhancing the reliability of
extreme climate event records, by combining the less reliable
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historical accounts of hurricanes in the nineteenth century
with the more reliable records from the twentieth century,
Elsner and Bossak (2001) showed the exact solution for the
Bayesian inference with a Poisson process modeling the
hurricane occurrence, and demonstrated a probabilistic esti-
mate for the annual U.S. hurricane rates through a simple
Bayesian analysis. In the research line of robust analysis, based
on a climate model of intermediate complexity, Tomassini et al.
(2007) performed a robust Bayesian uncertainty analysis for
climate sensitivity and other parameters. Instead of relying on
single prior distributions or single likelihood functions, they
used a robust analysis that considered sets of prior distributions
or likelihood functions so it was possible to construct upper
and lower bounds of quantiles of interest. In this research, the
authors built an MCMC algorithm to solve the inference problem.

In the context of climate change analysis, Solow (1988)
applied a Bayesian method for inferences about climate change
based on the two-phase regression model. Rooted on a two-
phase abrupt shift model, Chu and Zhao (2004) provided the
exact solution for a hierarchical Bayesian change-point analysis
to the central North Pacific tropical cyclone series. Elsner et al.
(2004) proposed a MCMC approach to solving the inference
problem using a similar hierarchical generative model. Bayesian
analysis has also been used for detecting changes in phenological
data. For example, three different models (constant, linear,
and one change point) with Gaussian observation error are
employed to the cherry blossom time series (1896-2002) near
Frankfurt, Germany, to examine the impacts of global temper-
ature change on regional plant phenology (Dose and Menzel,
2004). The authors gave an analytical solution to this problem
and the results from Bayesian model comparison revealed that
the one change-point process is most preferred.

More and more interests have been raised in the Bayesian
model combination (BMC) problem during the past decade or
so. For example, numerical experiments based on atmosphere-
ocean general circulation models (AOGCMs) are one of the
major tools used in deriving projections for future climate
change. Min and Hense (2006) applied a Bayesian decision
method to compare observed and simulated surface air
temperatures for both single and multimodel ensembles with
four forcing scenarios. When tested against varying prior
probabilities, the Bayesian decision method was found to be
“largely robust.” Tebaldi et al. (2004, 2005) found that their
Bayesian model was a useful platform for synthesizing un-
certainties in regional temperature and precipitation changes
from a multimodel ensemble of AOGCM simulations. Bayesian
analysis yields posterior probability distributions of all the
uncertain quantities of interest. These posterior distributions
for regional temperature and precipitation change and for a
suite of other parameters provide a wealth of information
about AOGCM reliability and temporal correlations. In Tebaldi
et al. (2004), the Gaussian distribution was tacitly assumed to
represent seasonal precipitation amounts. Because precipita-
tion distributions are bounded by zero on the left and positively
skewed, it is perhaps more meaningful to use a gamma
distribution for the likelihood functions for representing precip-
itation variations. In this case, the conjugate prior would also be
a gamma distribution.

Berliner and Kim (2008) developed a two stage hierar-
chical Bayesian model to combine ensembles from multiple
climate models to quantify the uncertainties of Northern and

Southern Hemispheric monthly averaged surface temperature.
By choosing Gaussian distribution as the generative model, the
inference for this problem was derived and the authors used the
MCMC method to obtain the solution. Kallache et al. (2010)
followed a similar approach and recently suggested a hierarchical
Bayesian model to combine several general circulation model
(GCM) outputs, in which a Kalman filter was integrated to
account for the potential time dependence. They also resorted to
the MCMC method to solve the inference problem. Jagger and
Elsner (2010) applied the Bayesian model averaging (BMA)
procedure to develop a statistical consensus model for seasonal
hurricane forecasting. In their study, the authors adopted the
Poisson distribution for the hurricane counts and the consensus
model is essentially built on a generalized linear model (GLM).
The authors used the Bayesian information criteria (BIC) to solve
the inference integral, which is based on the Laplace approxi-
mation method. The authors showed that the proposed BMC
approach delivered more accurate forecasts than only using one
“best” model.

1.3. Bayesian analysis applied to extreme climate events

Recently, interest in extreme climate events has grown
rapidly. Extreme events are commonly perceived as events that
depart pronouncedly from mean conditions. Examples of
extreme events include hurricanes (or typhoons in the western
North Pacific), heavy rainfall and associated floods, summer
heat waves, sea level extreme surge, wildfires, freezing spells,
and unusually strong wind gusts, to name a few. Katrina in 2005
is a grim example of the devastation a hurricane can bring to the
United States. Typhoons are one of the most destructive natural
catastrophes that recur frequently in the western North Pacific
and on the eastern Asian coasts. Strong winds, torrential rain,
mudslides, and coastal storm surges often lead to loss of life and
enormous property damage.

Bayesian analysis to extreme climate events is a new
frontier in research. Understanding, modeling, and predicting
variations and changes of extreme events is a topic of profound
societal significance because of their potential to cause severe
damage. As the climate is changing, it is of great interest to
explore whether there is any noticeable shift in the frequency
and intensity of extreme events from past history. In terms of
intensity, grounded on a Gumbel distribution model, Lima and
Lall (2010) developed a hierarchical Bayesian model to assess
nonstationarity in the scaling of annual maximum flood series,
aiding in reducing parameter and model uncertainties while
analyzing extreme streamflow time series. In a similar work on
the subject of extreme intensity shifting analysis, Renard et al.
(2006) presented a more comprehensive, GEV distribution
model based, Bayesian framework to analyze extreme time
series while considering the probabilistic models including
“stationary”, “step-change”, and “linear trend”. They suggested
using regional prior knowledge of quantiles as prior distribu-
tion and applied MCMC methods to solve the Bayesian inferring
problem.

In this review article, we shall particularly focus on
detecting abrupt shifts in frequency of extreme climate events,
as such abrupt shifts are common characteristics of climate
systems. Specifically, researchers need to know when the
abrupt shift occurred and what is the likelihood of its
occurrence? This knowledge is not only important in its own
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right but may also be extremely useful to others, such as
government agencies, for better long-term planning and
mitigations. In addition, many diagnostic studies are rooted
on the basis of comparing active and inactive (or positive and
negative) phases of climate states conditioned on the prior
knowledge of a regime shift (e.g., Chu, 2002; Deser et al., 2004).
In the following, we will review three applications related to
the identification of abrupt shifts in climate systems — tropical
cyclone (TC) series, clustering of TC tracks, and forecasting of
seasonal TC activity. Elsner and Bossak (2001) proposed a
fundamental Bayesian approach to modeling the U.S. hurricane
climate. Subsequently, Chu and Zhao (2004) applied a
hierarchical Bayesian change-point analysis to the central
North Pacific tropical cyclone series. In the fundamental
Bayesian framework, only two layers - a data layer and a
parameter layer — were considered for deriving the posterior
distribution and obtaining the optimum predictive distribution.
In this framework, no change points were assumed. Expanding
from this two-layer approach, Chu and Zhao (2004 ) introduced
a new layer called the hypothesis layer (Fig. 1). For this layer, a
“no change in the cyclone intensity” and a “single change in the
intensity” hypotheses were considered. For the data layer, a
Poisson process with gamma distributed intensity is presumed.
In this three-layer paradigm, both the data layer and parameter
layer are conditional on hypothesis selection. The results of this
study indicate that there is a great likelihood of interdecadal
variability with a shift on tropical cyclone rates around 1982.
Bayesian analysis is also applied to detect shifts in the time
series of seasonal typhoon counts in the vicinity of Taiwan (Tu
etal., 2009). An abrupt shift occurs in 2000, with a lower annual
rate prior to 2000 and a higher rate since 2000.

For a regime shift analysis problem, strictly speaking, the
method employed in Chu and Zhao (2004) and Elsner et al.
(2004) was only applicable to detecting a single change-point
in an extreme event count series. Because of decadal climate
variability and abrupt climate change due to external forcings
(e.g., volcanic eruptions), multiple shifts in the climate series
are not uncommon. Accordingly, Zhao and Chu (2006)
extended the two-hypothesis model in Chu and Zhao (2004)
to a multi-hypothesis hierarchical model and applied a MCMC
approach to detecting shifts in the annual hurricane counts in
the eastern North Pacific.

Although the MCMC algorithm was shown to be viable for
calculating the posterior probability for a multiple hypothesis
model, it suffers from a shortcoming. Because parameter spaces
within each hypothesis are typically different from each other,
a simulation has to be run independently for each of the
candidate hypotheses. If the hypotheses involved have a high
dimension, this strategy is not efficient and is computationally
prohibitive. Simply put, a standard MCMC approach is not
appropriate for a model selection problem because different
candidate hypotheses usually do not share the same parameter
sets. To overcome this problem, Zhao and Chu (2010) recently
introduced a reversible jump Markov Chain Monte Carlo
(RIMCMC) algorithm to calculating posterior probability for
each hypothesis and its within-hypothesis parameters.

Bayesian analysis has also been applied to objective
clustering historical tropical cyclone (TC) path tracks in a
basin. For example, based on a mixture Gaussian model, the TCs
over the western North Pacific are categorized into a definite
number of path patterns (Camargo et al., 2007; Chu et al.,

2010a). In the proposed numerical clustering technique therein,
the membership probability of a TC track belonging to any of
the clusters is virtually the Bayes' posterior probability of each
track type, given all model parameter sets. The membership
probability can be thought of as a kind of probability of how
strongly a typhoon track belongs to a certain cluster. The
Expectation-Maximization (EM) algorithm is employed to solve
the model parameters. It is worth noting that other clustering
methods, such as the fuzzy c-mean method (Kim et al., 2011),
can also be applied to objectively classify TC tracks over a basin.

Besides for analyzing an unsupervised learning problem,
such as making inferences of abrupt shifts in extreme event
series and objectively classifying TC tracks into a few patterns,
the Bayes' theorem has also been applied in many supervised
learning real world applications, which include such examples
as building a probabilistic predictive model for seasonal
hurricane (or typhoon) rates for the Atlantic, the central North
Pacific, the east China Sea, and a region near Fiji and Taiwan
(Elsner and Jagger, 2006; Chu and Zhao, 2007; Ho et al., 2009;
Chand et al., 2010; Lu et al., 2010). In these studies, researchers
attempted to either forecast seasonal TC frequency for an entire
ocean basin or for a specific region within a basin.

For the rest of this article we will briefly review for some
case studies to illustrate how a Bayesian model is built for a
specific problem, how the inference problem is solved, and
some important concepts related to Bayesian analysis. We shall
first address the issue related to the detection of abrupt shifts in
three kinds of extreme events, namely, hurricanes and
typhoons, heavy rainfall, and heat waves. We will demonstrate
the analytical approach, MCMC approach, and RJMCMC
approach to solve the inference in Eq. (2) with a hierarchical
Poisson generative model. Subsequently, we will show how the
Bayes' theorem can be applied to clustering spaghetti-like
shapes of historical TC tracks into several distinct patterns over
the western North Pacific with a mixture Gaussian generative
model. The last application of Bayesian thinking is to predict the
frequency of seasonal tropical cyclones in a region of interest to
illuminate the Bayesian regression approach to this problem.

2. Data

Tropical cyclone data for the western North Pacific comes
from the Joint Typhoon Warning Center in Honolulu, Hawaii.
For the frequency data used in the change-point analysis, the
period is 1960-2006 and only super-typhoons are used, which
are defined as having maximum sustained 1-min wind speed
equal to or greater than 130 kt (66.9 m s~ ). For the clustering
analysis, the dataset contains measurements of the TC center
location in latitude, longitude, one-minute sustained maximum
wind speed, and central pressure at 6-h intervals for all TCs in
the western North Pacific (WNP) and the South China Sea. Here,
tropical cyclones refer to tropical storms and typhoons. Tropical
storms are defined as maximum sustained wind speeds
between 17.5 and 33ms™ !, and typhoons are defined as
wind speeds at least 33 m s~ . For cluster analysis, the data
cover the period 1945-2007 and a total of 1621 cases are
analyzed.

For the central North Pacific (CNP), the tropical cyclone
data come from the National Hurricane Center's best tracks
dataset and the Central Pacific Hurricane Center, an entity of
the National Weather Service Forecast Office in Honoluluy,
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Hawaii; the data period is 1966 to 2002. To illustrate the non-
MCMC approach for detecting abrupt shifts in TC series
(Section 3.2), prior information of TCs before 1966 is needed.
Data prior to 1966 in the CNP can be found in Shaw (1981). We
also use the annual major hurricane counts over the eastern
North Pacific (ENP). Whitney and Hobgood (1997) suggested
that reliable hurricane statistics over the ENP began in the early
1970s, when the Dvorak scheme for estimating the intensity of
TCs was operationally implemented. Collins and Mason (2000)
chose 1972 as the starting year for their investigation on
interannual variations of local environmental conditions for TC
activity over the ENP. Thus, the data for the ENP from 1972 to
2003 are used.

For heavy rainfall data, historical daily records for Manoa
in Oahu, Hawaii, were obtained from the National Climatic
Data Center web page and the archives from the Hawaii State
Climate Office. The data period for Hawaii extends from 1920
to 2009. To define extreme rainfall events, we chose a specific
threshold (i.e., 95th percentile) of precipitation days as heavy
events. Here we ignore days of no precipitation or days with
precipitation less than 0.01 in. (2.5 mm). For each year, we
count the number of events when the threshold is crossed.

For heat waves, we adopt the World Meteorological
Organization definition. That is, daily maximum temperature
with more than five consecutive days exceeds the maximum
temperature normal by 5 °C, where the normal is the period
1961-90. The infamous 2003 heat wave was one of the hottest
summers in Europe, especially in France. More than 40,000
Europeans died as a result of the heat wave in 2003. The
countries mostly affected by the heat waves included France,
Portugal, Spain, Netherlands, Switzerland, United Kingdom,
and Germany. Because France bore the major brunt of this wave
with 14,802 heat-related deaths, we selected one station
(Mont) from France for this study; the data set is from 1949
to 2009. As with the heavy rainfall series, for heat waves, we
count the number of events when the threshold is crossed for
each year.

3. Bayesian change-point analysis for extreme
climate events

3.1. Hierarchical Bayesian model for extreme event count series

Because a change-point problem is essentially a hypoth-
esis selection problem, we adopt a hierarchical Bayesian
model in this study. The occurrence of independent, rare
events is commonly assumed to follow a Poisson process (e.g.,
Elsner and Bossak, 2001; Wilks, 2006; Khaliq et al., 2007,
Briggs, 2008). Given the rate parameter A, the probability
mass function (PMF) of h counts occurring in T unit seasons is
(Epstein, 1985)

(AT)"

P(hA,T) = exp(—AT)-%;

, where h=20,1,2,...and A>0,T > 0.
(4)

The Poisson mean is the product of A and T, so is its
variance. Throughout this section all of our cases are annual
or seasonal count series; therefore we always set T=1 in
Eq. (4).In Eq. (4), the rate parameter A is treated as a random
variable to construct a hierarchical framework (e.g., Chu and

Zhao, 2004; Elsner and Jagger, 2004). We choose the
conjugate prior, the gamma distribution, for rate A, which is
formulated by:

N
P()\,'h/,T/) — Le—)\r’

I A>0h>0T >0 (5)

where the gamma function is defined by I'(x) = fo T le .

The advantage to choosing a conjugate prior is that, given h
counts occurring in T years, if the prior density for A is gamma
distributed with parameters h’ and T’, the resulting posterior
density for A is also gamma distributed with parameters h + h’
and T+ T'. With regard to Eq. (5), the prior expectation of A is
E[A]=Hh'/T". It should be noted that under the statistical model
defined by Egs. (4) and (5), the marginal PMF of h counts
occurring in T years when the intensity is gamma distributed
with prior parameters h’ and T’ is a negative binomial distri-
bution (Epstein, 1985).

To further define a generic hierarchical model for the
change-point problem, we assume that there are K possible
candidate hypotheses {Ho,Hj, ...,Hk — 1}. Under each hypothesis
Hy, k=0,1,...,K—1, there presumably exists exactly k change-
points in this period and we denote the parameter set under
hypothesis H, by 6,. Note that the annual typhoon counts,
h = [hy, hy, ..., hy]’, are assumed to be a series of independent
random variables. The model of hypothesis Hy, k=0,1,...,K—1,
is postulated as follows.

Hypothesis Hy: “A k-changes of the rate” of the annual
typhoon series:

Assuming that T = [Ty, Ty2, ..., Tk’ denotes the vector of
all k change-points that occurred in the time series h under
hypothesis Hy, where the element 7 ; represents the first year
of the j-th epoch. We have the model:

h; ~Poisson(h; | Ngp, 1),if i = Ty, Tyo + 1,..., 7y —1
h; ~Poisson(h; |\, 1), when i = 7,7y + 1,...,Tjp—1

h; ~Poisson(h,-|)\kvk i 1,1),when =Ty T t 1, T + 11
(6)

where T <Tp1 <Tpa <... <Ti <Tkk+1 and

Ajg~gamma (hl/d ; Tl:l)

! !
N~ gamma (hkz, Tkz)
! !
}\’<J< + 17~ §amma (hk,k + 1’TI<,I< + 1)'

InEq. (6), To=1and 7, + 1 =n+ 1 for all k; and the prior
knowledge of the hyper-parameter set {hg;, Ty j=1,2,....k+1;
and k=0,1,...,K— 1} must be given a priori. Note that under
hypothesis Hy, there are k+ 1 epochs separated by k change-
points 7y, j= 1,...,k. The jth change-point is defined as the first
year of the (j+ 1)-th epoch. Although the prior for change-
point can be any discrete distribution, throughout this study we
adopt its non-informative prior form; that is, it is uniformly
distributed.
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3.2. Exact Bayesian inference under the hypothesis with only
one change-point

In this section we will illustrate the exact analytical Bayesian
inference under the one change-point hypothesis H;. Subject to
the assumption that the number of occurrence of annual TCs is
independent from year to year, and dropping the notations for
the prior parameters h}4, Ti1, hi2, Ti2 for the sake of simplicity,
with the likelihood function yielded from Eq. (6), the vector
form of the likelihood function with a given change-point is

n
Pth|7,Hy) = [[ P(h;|7,H;), whereh = [hy, hy, ..., hy]" is the
i=1

i=
vector form of the observation data (Chu and Zhao, 2004). With
the Bayes formula, Eq. (1), the posterior distribution function of
the change-point 7 under the hypothesis H; is given by

P(h|7,H)P(T|Hy) ﬁ P(h;|T,Hy), T=2,....n
T Hy), feen T

P(t|h.H;) = — 1
2 PhiT.H)P(TIH) T

(7)

Using Eq. (5) and keeping in mind of the conjugate property
of gamma distribution, the conditional posterior distribution
(with a given change-point 7) of the intensity before and after
the change-point, say A; and Ay, is also a gamma distribution.

The posterior PDF for intensity A;; and A;; under H;
hypothesis is

! ! n ’ ! .
F (Nl Ty Hy b)) = py F (Nl T3 Hy ) P(T [ UH )i = 1.2
®)

In the Bayesian inference formula, Eq. (8), f(Aqi]
h;i,T{i,T,Hl,h) is the conditional posterior distribution of the
intensity given 7, and P(7 |h, Hy) is calculated by Eq. (7).

3.3. Bayesian inference under the hypothesis H; using MCMC
method

In Section 3.2, we described the analytical formula for the
change-point hypothesis model H;. Even with this very
simple hypothesis model, it can be seen that the analytical
inference formulae for change-point parameter 7 in Eq. (7)
and rate parameters A; and A, in Eq. (8) are not standard and
fairly complicated. To solve for the posterior distribution of
the hypothesis using Eq. (2) is even harder, implying that the
analytical approach to the multiple change-points analysis
problem is not viable in practice.

Using a Gibbs sampler, one of the most widely used MCMC
methods, as the core, Elsner et al. (2004) applied an algorithm
to calculate the Bayesian inference for the change-point model
under the H; hypothesis defined in Eq. (6). In an earlier study,
Elsner et al. (2004) applied a hierarchical hyper-prior model
for gamma prior parameters. Later, Zhao and Chu (2006)
extended this algorithm to calculating Bayesian inference
under a more general multiple change-point hypothesis H.

If there are p parameters, 8 = [6;,6-,...,6,]" in the model
then presumably direct sampling from the posterior distri-
bution P(6|h) will be very difficult. In a Gibbs sampler, a
sample is drawn from the conditional distribution for any
component of 6, given values for the rest of the other

components of 8; this sampling method involves successive
sampling from the complete conditional posterior densities
P(6|h,64,....6k—1,6¢ 4 1,....0,), where k is from 1 to p.
Referring to the model under hypothesis H; in Eq. (6), there
are three model parameters — two rate parameters (A and A,)
and one change-point parameter (7). As an alternative
approach to the theoretical formulae given in Eqgs. (7) and (8),
the algorithm for calculating the Bayesian inference under H; is
provided as follows.

1. Initialize A1, A5, and 7 = 7,; with any allowable value,
then proceed.

T—1
2.Draw Ay from Ay \h,T,}\lz,Hfgamma(hn’ + > h Ty + T—l).
i=1

n
3.Draw A, from }\12|h,T,)\11,H1Ngamma<h12’+‘E i Ty + n—7+ 1)_
1=T7
-1
—(r— - >
4. Draw 7 from T|h, Ayq, Ay, Hyoce " DR =M (1 /x yisn

5.If the required iteration number is not met, go to step 2 to start a new
iteration.
9)

In algorithm (9), the posterior probability of two rate
parameters are gamma distributed due to the conjugate
property. The detailed derivation for the conditional posterior
distribution for the change-point given the Poisson rate
before and after the change-point for Step 4 is found in Elsner
et al. (2004). The extension of algorithm (9) to multiple
change-point hypothesis Hy, k>1, is derived in Zhao and Chu
(2006). After a proper burn-in period, the output of algorithm
(9) within each iteration is equivalently drawn from the joint
pOStEI'iOl' distribution P(}\“,)\12,T‘h,h]],,Tn’,h]z,,T]z’,Hl).
One can use these posterior samples for any further analysis
under hypothesis H;.

3.4. Bayesian change-point analysis using RIMCMC method

In Section 3.2 and 3.3, we provide a solution for the
Bayesian inference calculation under hypothesis H;. Howev-
er, the Bayesian inference for the hypothesis layer, as
formulated by Eq. (2), remains untouched. The Bayesian
modeling selection problem has been well studied in the
literature (i.e., Congdon, 2007). In the context of Monte Carlo
methods, via the MCMC output samples from algorithm (9),
Zhao and Chu (2006) suggested a Monte Carlo integration
approach to calculating the posterior probability for different
hypotheses. However, due to the fact that parameter spaces
within different hypotheses are typically different from each
other, a simulation has to be independently run for each of
the candidate hypotheses. Furthermore, if a candidate
hypothesis has a large dimension, this strategy is even
computationally prohibitive. In essence, a standard MCMC
algorithm is not appropriate for a model selection problem
because different candidate models or hypotheses usually do
not share the same parameter sets.

To overcome this problem, Green (1995) first introduced
the reversible jump Markov chain Monte Carlo (RJMCMC)
algorithm as a simultaneous integrative approach to deal
with the model or hypothesis selection problem. The RIMCMC
algorithm is so termed to maintain the detailed balance of an
irreducible and aperiodic chain that converges to the correct
target measure. With the introduction of an extra pseudo
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random variable for each investigated model, the dimension-
mismatching for a different model is well contained. Since
Green (1995), many others have successfully applied and
extended the RJMCMC to a broad range of problems such as
variable selection, curve fitting, neural network, etc. (e.g.,
Godsill, 2001). One of its main real-world applications is on
the detection of multiple structure or regime changes in a
physical process (e.g., Richardson and Green, 1997; Rotondi,
2002).

In a general setting, if the candidate hypotheses are
enumerable and represented by the set H={Hy,Hy,...,Hx_ 1},
we denote the joint set of parameters under hypothesis H, by
0, k=0,1,... K— 1. We further introduce a random vector uy,
k=0,1,...K—1, such that forany k'=0,1,... K—1, k" #k, the
dimension of {6, u;} and {8,/,u,/} can be matched. We then
set 6,/ to be a deterministic function of 8, and u,. For the
reversible move, we propose a vector u,, and set 6; to be a
deterministic function of 8, and u,,. Thus, there must be a
bijection between {6, u;} and{8,,,u, }, which is defined by
(8,,u,) = i Ok, ). The iteration for a general RIMCMC
algorithm (with given observation dataset h) can be sketched
as below (after initialization and assuming that the current
accepted hypothesis is Hy).

1. Propose a visit to hypothesis H,/, k'#k, with probability ] (H,—H,/).

2.Sample u, from a proposal densityQ (uy |6, Hy, H,/).

3.Set (0, uy) = g v (O, 1)

4. Calculate the odds ratio rand accept H,, as the hypothesis in the
next iteration with the probability “min(1,r)”, where

_ P(1[8, Hy)P(8y [Hy )P(Hy )] (Hy—H)Q(y |0, Hy Hy)
P(h |8y, Hy)P(8y | Hy)P(H )] (He—H, /) Q (wy |8, Hy, Hy)

agk_k’ (8, 1)
a(eks uk)

If H,is rejected, we maintain the current hypothesis Hj.

5. Return to the step 1 until the required number of iterations is
reached.
(10)

With the general RIMCMC algorithm (10), after a burn-in
period the number of times that hypothesis H; is accepted in
the simulation (after Step 4) divided by the total number of
iterations gives a good estimation for the posterior probabil-
ity of Hy, P(Hi|h). Also, the samples from each iteration
within the hypothesis Hj, will be equivalently drawn from the
posterior joint PDF P(8 |h, H).

In algorithm (10), the choice of an appropriate proposal
probability function Q (uy |8y, Hy, H,/) is critical to the efficiency
of the algorithm, which is generally preferred to take a closer
form to the posterior probability function of the proposed
parameter set under the new hypothesis. For this purpose, Zhao
and Chu (2010) proposed that the hypothesis space defined in
the change-point model (Eq. 6) followed a “nested structure.”
Specifically, referring to Step 2 of the general RIMCMC algorithm
(10), to move from the hypothesis H, to the hypothesis H 1, all
change-points and most rates under H, are kept unchanged and
only one new change-point is introduced, for example, T
(without losing generality, assuming 7 <7 <7y j+1, 0<j<k).
The researcher then proposes two new rate parameters for the
period [Ty, 7—1] and [T, 7k ;+1— 1], respectively, under the
hypothesis Hy 1 and discards the old rate parameter Ay 1.
Conversely, to move from hypothesis Hy ; ; to hypothesis Hj,

one change-point is randomly selected under H 4 1, say Tk +1,j,
1<j<k+1, and then the two phases adjacent to this change-
point are merged, while introducing a new rate Ay ; for the new
phase [Tx41,j—1,Tk+1,j+1— 1] under the hypothesis Hy. Si-
multaneously, the two old rate parameters and the referred
change-point parameter are discarded. With this nested
structure model, any two adjacent hypotheses in model (6)
share most of the parameters.

Adopting this nested model, Zhao and Chu (2010) devel-
oped a RJMCMC algorithm to analyze the inference for
detecting multiple abrupt shifts in an extreme climate event
count series. The detailed derivation and explicit formulae for
the algorithm are covered in that paper. Specifically, the
algorithm uses the same structure of the general RIMCMC
algorithm given in algorithm (10). For the bijection function in
Step 3, it is the identity mapping. For the hypothesis transition
function J(Hy— Hy') in Step 1, the allowable moves for the
current hypothesis are constrained only to its adjacent
hypotheses. That is, there are only two possible moves in Step
2: from H,. to Hy, ;. 1, which can be viewed as the “birth” of a new
change-point; and from Hy, ;. ; to H,, which can be viewed as the
“death” of an existent change-point. The proposal density
function Q in Step 2 of algorithm (10), as defined in Zhao and
Chu (2010), was motivated by and derived from the conditional
posterior distribution given in the relative MCMC algorithm (9).
With the proposal density function Q and hypothesis transition
function, the acceptance ratio in Step 4 of algorithm (10) is
available for both the “birth” move (H,—H;,{) and the
“death” move (Hy . 1 = Hy). Thus this RIMCMC based algorithm
dedicated to detecting multiple abrupt regime shifts for an
extreme event count series is completed.

3.5. Prior specification

There must always be a prior assumption for any Bayesian
inference. For the prior distribution of the parameter set 6
under hypothesis H; defined in Eq. (6), those change-point
parameters can be assumed to be uniformly distributed. It is
however not appropriate to use the non-informative prior for
the Poisson rate parameters. In a hypothesis selection problem,
a flat non-informative prior usually does not work well because
it would almost always favor the simplest hypothesis due to the
extremely huge normalization term for each rate parameter. As
discussed in detail by MacKay (2003), to fit a set of data using
two different models the posterior probability of the compli-
cated model is penalized by a stronger Occam's factor, which
conceptually is a ratio of its parameters' posterior and prior
widths. In Eq. (6), a non-informative prior for the rate (A) will
lead to infinite prior width or, in other words, an infinitely small
Occam's factor. In order to make sound model or hypothesis
selection, there needs a reasonable informative prior for model
parameter. For this purpose, Zhao and Chu (2010) simplified
the model (6) by assuming that all hyper parameters hy; and Ty;
are equal to constant h’ and T’, respectively. They then
proposed a procedure to obtain the hyper-prior parameters h'
and T', which is briefly described below.

With time series h = [hy,hy, ..., h;]’, theL independent
iterations are run first. Within the j-th iteration, 1<j<L, two
different points from 1 to n, i.e., ko and kq (ko <k;), are randomly
chosen. Then the sample mean of this batch of samples {h;,
ko<i<k,} is calculated and a realization of the Poisson rate of
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Fig. 2. Bayesian change-point analysis result for the annual tropical cyclone
counts over the central North Pacific. (a) The time series of annual tropical
cyclone counts over the central North Pacific from 1966 to 2002. Broken lines
denote the means for the period 1966-1981 and 1982-2002 respectively.
(b) The posterior probability distribution of the change-point P(7|h,H;) for
the time series. (¢) The smoothed posterior density function with a Gaussian
kernel window of annual TC intensity before the shift, P(A;|h,H;,7=1982),
and after the shift, P(\,|h, H;, 7= 1982) for the time series (adapted from Chu
and Zhao, 2004).

this iteration, AUl = W Z h;, is obtained. In the end,

this process yields a series of samples (AU 1<j<L}. Empiri-
cally, it is assumed that this Poisson rate is gamma distributed
with parameters h’ and T'. Using a moment estimation
approach, an approximation of the hyper-parameters h’ and T’
can be calculated from these samples (c.f. Zhao and Chu, 2010).

Table 2

Results of the Bayesian analysis on change-point of
annual TC counts over the central North Pacific. 7
stands for the change-point year, B is the Bayes
factor, Ay and A\, represent the TC intensity before
and after the change-point under H, hypothesis,
respectively, and P(H;|h) is the posterior proba-
bility of hypothesis Hy.

7 1982
E(ﬂh,Hl) 031
M 1.88
X 357
21In(B) 222
P(Hy[h) 0.75

3.6. Case study for the Bayesian change-point analysis

3.6.1. Exact Bayesian inference

Example 1. Tropical cyclone activity in the central North
Pacific

In this example, the exact Bayesian inference method as
detailed in Section 3.2 is applied to the annual tropical cyclone
count series in the CNP (Chu and Zhao, 2004). Fig. 2(a) shows
the time series of annual TC rates over the CNP since 1966. The
average rate from 1966 to 1981 is about 1.9 TCs per year, and it
increases to almost 3.6 TCs per year from 1982 to 2002. The
result of the Bayesian analysis on the shift year of the annual TC
counts in CNP is listed in Table 2. From this table, we can see
that the measure of Bayes factor (2 In(B)) for the annual TC
counts during the 1966-1989 period is 2.22, which positively
favors H; over the Hp hypothesis (refer to Table 1). The
posterior probability that a change has occurred is rather high,
reaching 0.75. Fig. 2(b) shows the posterior probability of the
change-point of TC activity, plotted as a function of time. The
maximum probability of 0.31 occurs in 1982. This suggests that
the most likely year of the new epoch is 1982, although other
change-point years such as 1981 and 1980 are plausible
candidates. The posterior PDFs of TC intensity before and after
the change-point, A; and A,, are plotted in Fig. 2(c). The
posterior distribution represents a combination of the prior
distribution and likelihood function. In this plot, the change-
point year is fixed in 1982. Fig. 2(c) shows very little
overlapping in the tail areas between these two posterior
distributions, and the p-value for the TC intensity difference
before and after the shift, (P(A, —A\y < 0|Hy,h)), is very small
(<0.01), strongly supporting the contention of a shift toward a
higher rate of annual TC intensity since 1982.

3.6.2. Bayesian inference using MCMC method

Example 2. Hurricane frequency in the eastern North Pacific

In this example, the MCMC method described in Section 3.3 is
applied to the annual major hurricane count series in the eastern
North Pacific (Zhao and Chu, 2006). Fig. 3(a) shows the time
series of annual major hurricane counts over the eastern North
Pacific from 1972 to 2003. Using the uniform prior for the
hypothesis space, with a Monte Carlo integration method over
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Fig. 3. Bayesian change-point analysis result for the annual major hurricane counts in the eastern North Pacific. (a) The time series of annual major hurricane
counts over the ENP from 1972 to 2003. The posterior PMF for both change-points are shown in (b) and (c). The posterior PDF for the rate of each epoch is plotted

in (d), (e), and (f), respectively (adapted from Zhao and Chu, 2006).

the MCMC simulation, it yields a posterior probability for each
hypothesis:P(Hp|h) = 0.021; P(H;|h) = 0.195; P(H;|h) =
0.784. This indicates that the H, hypothesis is by far the most
likely choice. Under the H, hypothesis, the posterior probability
mass functions for both change-points are shown in Fig. 3(b) and
(c), through which it appears that the best choice for the first
change-point is 1982 and the second change-point appears to be
1999. The posterior probability density function for the rate of
each epoch is plotted in Fig. 3(d), (e) and (f), respectively. The

Table 3

Bayesian analysis results on change-point of annual
major hurricane counts in East North Pacific from
1972 to 2003. Here, under the uniform prior
assumption in the hypothesis space, P(Holh), P(H|
h) and P(H,|h) denote the posterior probability of
the Ho, H, and H, hypotheses, respectively. T, and
T, are the maximum likelihood estimates for the
first and second change-point under the H, hypoth-
esis, respectively. Aj| T1, T2, Ao T1, T2 and
A3 1:1, 'T'z denote the average rate, under the H,
hypothesis, in three consecutive epochs (i.e., 1972-
1981, 1982-1998, and 1999-2003), respectively,
given change-points in 1982 and 1999.

Term Value
P(Holh) 0.021
P(H;|h) 0.195
P(H,|h) 0.784
T 1982

Ty 1999
M|Ti, Ta 2.64
Nl T, Ta 441
3| T, Ta 1.40

average rate prior to 1982 is about 2.6 major hurricanes per year,
and increases to almost 4.4 major hurricanes per year from 1982
to 1998, and drops back to 1.4 major hurricanes per year
thereafter (Table 3). The p-values for the rate shift from the first
epoch to the second epoch (A, —A¢), and the rate shift from
second to the third epoch (A, —A3) are all very small, 0.006 for
the first and 0.004 for the second respectively. This strongly
implies the existence of two change-points in this major
hurricane time series.

3.6.3. Bayesian inference via using RIMCMC method

In this section, the RJMCMC based generic Bayesian extreme
event regime shift analysis method as elaborated in Section 3.4
is applied to several real-world cases. For all examples, the
maximum number of change-points is set as nine.

Example 3. Typhoon frequency in the western North Pacific

In this example, the RIMCMC method is applied to the
annual super typhoon count series over the WNP from 1960 to
2006 (Zhao and Chu, 2010). Fig. 4(a) shows the count time
series. After running the proposed RIMCMC simulation, the
output for the posterior probability of ten candidate hypotheses
are plotted in Fig. 4(e). The probability for hypothesis H, is as
high as 0.39, which is higher than that for hypothesis H; (0.24).
Therefore H, is chosen as the winning hypothesis. Under
hypothesis H,, the marginal posterior PMF for the two change-
points are depicted in Fig. 4(c) and (d), respectively, through
which one can see that by far the most likely choice for the first
change-point is 1972 and for the second change-point is 1989.
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Fig. 4. Plots for the change-point analysis for the annual super typhoon count series over the western North Pacific from 1960 to 2006. (a) Time series. (b) Posterior
probability density functions for the rates of each epoch. (c) Posterior probability mass function for the first change-point. (d) Posterior probability mass function
for the second change-point. (e) Posterior probability mass function for the candidate hypotheses. In (b), A, is for the period 1960-71, A, for the period 1972-88,

and A3 for the period 1989-2006 (adapted from Zhao and Chu, 2010).

The posterior PDF for the rates of each epoch, along with the
universal prior, are collaboratively demonstrated in Fig. 4(b).
The average rate prior to 1972 (A;) is about 5.7 super typhoons
per year; decreases to about 2.4 super typhoons per year from
1972 to 1988 (A;); then increases to 5.0 super typhoons per
year thereafter (A\3). The p-values for the both shifts are all very
small (0.054 for the first and 0.059 for the second), which
strongly implies the existence of these two change-points in
this storm time series. The Bayes factor between H, and Hj is
1.61, which shows only slight evidence in favor of H, over Hs.
However, under hypothesis Hs, based on the obtained change-
point samples, besides the two shifts (1972 and 1989)
identified under H,, the third most probable change-point is
1987, which is very close to 1989. In summary, it is plausible to
suspect two regime shifts that occurred within this series; one
was around early 1970s and the other was around late 1980s.

Example 4. Heavy rainfall records in Hawaii

In this example, the RJMCMC method is applied to the
annual heavy rainfall count series at Manoa in Oahu, Hawaii
from 1920 to 2009. Fig. 5(a) shows the relative count series.
The output for the posterior probability for ten candidate
hypotheses is plotted in Fig. 5(c). The posterior probability for
hypothesis Hs is as high as 0.37, which is almost the double of
that for the next highest possible choice, hypothesis Hy or Hy
(both with 0.20). Therefore Hs; is chosen as the winning
hypothesis. Under hypothesis Hs, the marginal posterior PMF
for the three change-points are depicted in Fig. 5(d), (e) and

(f), respectively, through which one can see that by far the
most likely choice for the first change-point is 1963, 1993 for
the second change-point, and 2004 for the most recent
change-point. The posterior PDF for the rates of each epoch
are collaboratively demonstrated in Fig. 5(b). The average
rate from 1920 to 1962 is about 8.8 heavy rainfalls per year
(A1); drastically increases to about 13.1 heavy rainfalls per
year from 1963 to 1992 (A,); decreases to 7.0 heavy rainfalls
per year from 1993 to 2003 (A3); and thereafter the average
heavy rainfall count goes to 15.0 (A4). The p-values for the
three shifts are all very small (0.043, 0.053, and 0.066 for the
three change-points, respectively), which strongly implies
the existence of these three change-points in this time series.

Example 5. Heat wave records in France

In this example, the RIMCMC method is applied to the
annual heat wave count series in French from 1949 to 2009
(Fig. 6(a)). The output for the posterior probability for ten
candidate hypotheses is plotted in Fig. 6(b). The posterior
probability for hypothesis H; is as high as 0.44, which is much
higher than H, (0.33). Therefore H; is chosen as the winning
hypothesis. Under hypothesis H;, the marginal posterior PMF
for the only change-point is depicted in Fig. 6(c), through which
one can see that the most likely choice for this change-point is
1983. The posterior PDF for the rates of both epochs are
collaboratively demonstrated in Fig. 6(d). The average heat
wave rate from 1949 to 1982 is about 0.6 heat wave events per
year, which is equivalent to an expectation of one heat wave
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Fig. 5. Plots for the change-point analysis for the annual heavy rainfall count series at Manoa in Hawaii from 1920 to 2009. (a) Time series. (b) Posterior probability
density functions for the rates of each epoch. A, is for the period 1920-62, A, for the period 1963-92, A5 for the period 1993-2003, and A4 for the period 2004-09.
(c) Posterior probability mass function for the candidate hypotheses. (d) Posterior probability mass function for the first change-point. (e) Posterior probability
mass function for the second change-point. (e) Posterior probability mass function for the third change-point.

event every other year. This rate dramatically increases to about
1.8 heat waves per year starting from 1983, almost to an
expectation of 2 heat waves per year. This rate hike is significant
as it has almost quadrupled since the shift. The p-values for this
shift is extremely small as well (0.001), strongly suggesting the
existence of the significant mean shift in this time series.

4. Bayesian tropical cyclone track pattern Clustering

4.1. Finite mixture Gaussian model for tropical cyclone track
pattern clustering

Camargo et al. (2007) proposed a finite mixture Gaussian
model to solve the tropical cyclone track clustering problem.
More recently, Chu et al. (2010a) applied the same method to
the same basin but with longer record lengths and focused on
the climate change aspects for each track type. In this section,
we shall elaborate this clustering model in the Bayesian context.

A key feature of the mixture Gaussian model is its ability to
model multimodal densities while adopting a small set of basic
component densities. Finite mixture models have been used
for clustering data in a variety of areas such as large-scale
atmospheric circulation. Based on the assumption that there
are a few distinct types characterizing TC tracks in a basin of
interest, we model each TC track path as a second-order
polynomial function of the lifetime of this TC. Mathematically,
for each specific track type, the set of coefficient of this
polynomial function is presumably jointly Gaussian distribut-
ed. Each TC track type thus has a unique distribution parameter.

The space spanned by the parameters of this track type model is
a linear combination of a set of distinct Gaussian distributions.

Assuming there are n observed track records for a given TC.
For each record, there are three features reported — latitude,
longitude, and the time. We denote the path record of a TC and
its relative observed time vector for the second order
polynomial function, respectively, by

Z],lat Zl,long
7= [Z,at7zlong] = 7T =
Zn lat Zn,long 1 t t2
n n

(11a)

where z; ;o and z; jong for i = 1,..,n represent the i-th latitude and
longitude record; and t; represents the time for the i-th records
of this TC relative to the first record for i=1,.,n. We further
assume that there are K distinct TC track types in the basin of
interest, where K is assumed to be a constant in a given
hypothesis or model. With the model defined in Eq. (11a), if a
TC is categorized as type k, 1 <k <K, the link function between
the TC track path and relative time is governed by the following
formula

k k
BO.Iar BOJong

z =TR" + & wherep® = BY e Bg(,zong ande~N(0,2k),lsk§I(‘

BIZ(,lut Bg‘long
(11b)
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Annual Heat Wave Counts in French
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Fig. 6. Plots for the change-point analysis for the annual heat wave count series in Mont, France from 1949 to 2009. (a) Time series. (b) Posterior probability mass
function for the candidate hypotheses. (c) Posterior probability mass function for the change-point. (d) Posterior probability density functions for the rates of each

epoch.

In model (11b), the parameter set B is distinct for each TC
clustering types and N(e,*) denotes the normal distribution.
With this model, intuitively one can see that the zero-order
coefficient dual provides the mean genesis location of this
clustering type; the first-order term features the character-
istic linear direction of this path type; the second-order term
determines the recurving shape of the typical path of this
type; and the covariance matrix () in determines the spread
of a particular type. The noise term in model (11b), g;, is
assumed multivariate Gaussian with zero mean and a 2 by 2
covariance matrix, ;.

The conditional density for the i-th cyclone, conditioned
on membership in the cluster type k, is therefore defined as

P(z;|T;,8) = (2m) "3y ™/ *exp{—tr[(z;—TiB) %z —T;Ry)']/ 2}
(12a)

In Eq. (12a), operator exp{+} denotes an exponential function
with a natural base; we adopt the notation 8, = {By, 3}, which
is referenced in model (11b); and operator tr(.) denotes the
matrix operation function “trace.” By the definition of a mixture
Gaussian model, Eq. (12a) leads to the marginal mixture model

K
P(z|T;) = k; P(z;|T;, 8) (12b)

where, P(z;|T;,0,) is given by (12a), and o is the posterior
K

probability of cluster k, which implies >~ o, = 1. If we let
k=1

7 = [z;z;z,’\,] be the complete set of all observed TC

trajectories, and T = [T;7T;, ...7T,’V] be the associated mea-

surement times, then the full probability density of Z given T,
the conditional likelihood, is formulated by

N K
PZ|T) = igl k; o P(z;|T;, 8) (13)

where P(z;|T;, 0,) is defined in Eq. (12a).
4.2. Bayesian inference for tropical cyclone track pattern clustering

Throughout this section, we assume that the number of
cluster type, K, is given. For a real application, we can refer to the
literature to choose the proper number for this parameter (e.g.,
Camargo et al., 2007; Kim et al., 2011). Because hypothesis
selection is not the focus of this section, it is proper to choose a
non-informative prior for those model coefficients; that is,
P(8y, 04 )1 for model (13). With this non-informative prior
assumption, and following the basic Bayes formula given in
Eq. (1), the posterior distribution for {0, o} is proportional to
the conditional likelihood given in Eq. (13). It is important to
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Fig. 7. Eight tropical cyclone track types over the western North Pacific identified by the mixture Gaussian model. The number in each panel indicates the number
of cases in each type. Black circles denote the mean track for each type (adapted from Chu et al.,, 2010a).

note that a non-informative prior is not proper for a hypothesis
selection problem. To include cluster number K in a hierarchical
Bayesian model, it is necessary to either resort to a hierarchical
hyper-prior (e.g., Richardson and Green, 1997) or make a proper
informative prior (e.g., Zhao and Chu, 2010) for parameter 6.

In many real-world applications, only the peak areas of the
posterior distribution may be of interest. An efficient approach
to estimating the mode of the posterior distribution is the
Expectation-Maximization (EM) algorithm. Given the likelihood
model (13), in the E-step the membership probability of a TC
categorized to each clustering type is calculated. In the M-step,
the optimization estimation for the model parameter set of each
type is calculated. These include regression parameters, the
posterior probability of cluster k, and the covariance matrix. The
maximization formula for coefficient parameter B and variance
parameter 3¥ are derived from a linear Bayesian regression
model (Gelman et al., 2004). The details of the formula for the
EM algorithm are provided in Camargo et al. (2007) or Chu et al.
(2010a).

Given the number of clusters and an initial setting of the
model parameters, after a few iterations, the proposed EM
algorithm will converge to a fixed set of parameter estimation.
Usually, the convergence of an EM algorithm is determined
when the difference between two iterations is less than a
sufficiently small value. Note that these convergent values are
not necessarily the global optimum estimation and are deter-
mined by the initial starting values. Therefore, multiple different
initial values should be selected and the set of estimation with
the maximum likelihood of the observation chosen.

4.3. Typhoon track types over the WNP via using the Bayesian
track path clustering

In this case study, we apply the mixture Gaussian clustering
method to objectively cluster TC tracks over the WNP. Fig. 7
shows the eight major track patterns over the WNP and the
South China Sea from the proposed clustering analysis, with
three straight movers (types A, B and C), four recurving ones
(types D, E, F, and G), and one mixed pattern of both straight
moving and recurving (type H). The type A and B clusters are
similar in nature in that they both move more or less straight
across the Philippines to the South China Sea and/or Hong Kong,
Hainan, and Vietnam. The major difference is that type B storms
tend to form farther eastward and southward than type A
storms. As a result, the mean track for type B storms is longer
than that of Type A. Type C cyclones form in the South China Sea
and are landlocked by the Indochina peninsula and southern
China coast, with a very short path. Similar to types A and B,
type D and E systems form in the Philippine Sea but they follow
a northward path and many of them made landfall on Taiwan,
the eastern China coast, Japan, and Korea. Type F storms tend to
form in low-latitudes and away from Asia. Type G storms also
form far away from the Asian continent but at higher latitudes
(~15°N). They move northwestward and then northward to the
east of Japan over the open ocean. Storms associated with type
H are generally formed near the equator and to the east of
165°E, and have a long track path.

On a side note, the output results from the track path
clustering can serve as the platform for further analyses. For
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example, based on the results provided herein, Chu et al.
(2010a) examined temporal changes of TC activity (e.g.,
lifetime, intensity) for each type of typhoon over the last
60 years and interesting results were reported therein.

5. Bayesian prediction for seasonal tropical cyclone activity

In Section 3 and 4, we present two different types of non-
supervised Bayesian learning problems. For both types there
is no response or target variable involved in the analysis. In
this section, we will discuss the Bayesian analysis applied to
supervised learning problems. Specifically, we first describe
two statistical regression models for seasonal tropical cyclone
activity — the generalized Poisson regression model and the
probit regression model. We then discuss the predictor
selection procedure followed by introducing the overall
Bayesian forecast scheme. With a regression model, the
relationship between the target response variable, seasonal
typhoon counts, and selected predictors can be mathemati-
cally built; the details are discussed in this section.

5.1. Bayesian regression via the generalized Poisson regression
model

If we assume that there are Nobservations that are conditional
on K predictors, we define a latent random N-vector Z such that
for each observation h;, i=1,2,...,N, Z;=log\;, and A; is the
Poisson rate for the i-th observation. The link function between
the latent variable and its associated predictors is expressed as
Zi = XiP + ¢, where B = [Bo,B1,2,...,Bx]’ is a random
vector; noise & is assumed to be identical, independently
distributed, and normally distributed with zero mean and o>
variance; X; = [1, X1, Xi2, ..., Xix] denotes the predictor vector.

Correlation Map (Predictors & TCs)

!}

N observations (i=1~N yrs)
+ Numbers of TCs 4,
* Predictors X,

3

Bayesian Regression Model
Zt = X|B+£!

:

MCMC (Gibbs sampler)
Z.B. o’

¥

Newly observed predictor sct X
PlF|X.X.1)

7

257

In vector form, the general Poisson linear regression model is
formulated as follows

N
P(h|Z) = [] P(h;|Z;),where h;|Z;~Poisson <hi \ ezl)7

i=1

Z|B, 02, X~Normal (Z |XB, O'ZIN> ,where, specifically

X = {X;,X;, ...,X,'\,] Jy is the N x N identity matrix, and
X; = [1,X;1, X3, ..., Xj| 1s the predictor vector for h;,i = 1,2,...,N,

B = [507[517[52’ "'*,BK]/'
(14)

Here, Normal(*) and Poisson(*) stand for the normal
distribution and the Poisson distribution, respectively. The
probability mass function of the Poisson distribution is defined
in Eq. (4). In model (14), 3 is referred to as the intercept.

To complete the Bayesian inference model for the
generalized regression model, a prior distribution for the
model parameters is needed. Because we do not have any
credible prior information for the coefficient vector g and the
variance o7, it is reasonable to choose the non-informative
prior, P(B,0?)<o~2, which is not a proper probability
distribution function; however, it leads to a proper posterior
distribution.

The posterior distribution for the hidden variable Z, which is
conditionally independent from each other given the model
parameters B and 0?, is derived in Chu and Zhao (2007). With
the newly observed predictor set X = |1, X1, Xi2, ..., Xix |, the
predictive distribution for the new latent variable Z and TC
counts h is governed by

P(Z\ XX, h) = ffB‘UzP(2| X,B,UZ)P(&OZ X, h)dBdoZ
(15a)

- : h, ~ Poisson(4,)
Z,=logl,
L T Z
Metropolis-Hasting algorithm
p— Leave-one-out cross validation
(LOOCY)

Fig. 8. Schematics of the Bayesian regression forecast model, after Lu et al. (2010).
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P(E\X,X,h) =/ P(Zp?,x,h)dz (15b)

In (15b), operator expf{*} denotes an exponential function
with the natural base; the “new” variables refer to those that are
not involved in the model construction and only used for
prediction. Fig. 8 illustrates a conceptual framework of the
Bayesian regression forecast model (Lu et al., 2010).

With the non-informative prior, the posterior distribution
for the model parameter set (B,02) is not standard and
sampling directly from it is difficult. Alternatively, Chu and
Zhao (2007) designed a Gibbs sampler to solve this Bayesian
inference problem. This inference problem is grounded on the
ordinary linear regression model, which can be found in most
classic Bayesian literatures (e.g., Gelman et al., 2004). The
algorithmis listed in Eq. (16) and a detailed derivation for this
algorithm is available in Chu and Zhao (2007).

exp(—eZ + Zﬁ)
h!

1. Select proper initial value for Z%, g, 0*% and seti = 1.
2.Draw " from Z' |, g, 0®" Y forj = 1,2,..., Nvia (17)
the conditional distribution for the hidden variable Z.

3. Draw B from B |h, Z, 0®'~via(18), a multivariate Gaussian
distribution. (16)

4. Draw 0! from o |h, 2", g via (19), an inverse y*distribution.

5.Seti =i + 1then go back to step 2 until the required
number of iterations are met.
In algorithm (16), the conditional posterior distribution
for each hidden variable Z is given by

1

P(Z,» |h.B, 02) ocexp{ " + Zh—=— (Z, —x,.B)Z},i =12,.N.

20
(17)

In Eq. (17), the operator exp{+} is defined in Eq. (15b). To
sample Z; from Eq. (17), one can choose Metropolis-Hasting
algorithm (Hastings, 1970) or Laplace approximation meth-
od. The conditional posterior distributions for the coefficient
vector and noise variance term are provided by Egs. (18) and
(19), respectively, both of which are derived from the
ordinary linear regression model.

B|Zh, 02~Normal(mB, (X'X) ‘102)7 where B = (X'X) 'X'Z.
(18)

(Z—XB)'(Z—XB).
(19)

o’ |Z,h, B~Inv—)(2 <02 IN, sz) ,where §2 =

2=

In (19),Inv — y? denotes the scaled-inverse- y distribution.
5.2. Bayesian classification via the probit regression model

The generalized Poisson regression model introduced in
Section 5.1 has been proved very effective for most rare event
count series (e.g., Chu et al., 2007; Lu et al., 2010). However, if
the underlying rate is significantly below one then this model
may introduce significant bias. For this kind of application, it
is more effective instead to adopt a binary classification
model. That is, the response variable here is a binary class
label, which is termed by “Y.” For each observation period, we

define a class “Y=1" if one or more TCs are observed and
“Y=0" otherwise.

The probit regression model (e.g., Albert and Chib, 1993)
assumes that there are Nobservations conditional on K
selected predictors. A latent random N-vector Z is defined,
such that for each observation y;, i=1,2,...,N, y;=1if Z;>0
and y;=Ootherwise. The link function between the latent
variable Z and its associated predictors is also linear,
Zi = Xip + ¢, where B = [Bo,S1,82,...,B«] is a random
vector; noise g is assumed to be identical, independently
distributed, and normally distributed with zero mean and o>
variance; X; = [1,Xj1, Xp, ..., Xix] denotes the predictor vector.
In vector form, the probit regression model is described by
(Chu et al., 2010b):

N 1 if Z,>0
PyIZ) = [T PY;IZ) whereyi={0 720 (20
i=

The classification model (20) is very similar to the Poisson
regression model (14). In this case study, the probability of
class Y=1 can be viewed as the rate of TC counts.

In model (20), the posterior distribution of hidden
variable Z is conditionally independent from each other
given the model parameters B and o?. Similar to the Poisson
regression model, with the newly observed predictor set
X = [1,)21'17;(1‘2,---,)21‘1(]. the predictive distribution for the
latent variable Z and TC counts h will be

P(Z| X, X.h) = [[y,:Normal( Z| X8,0%)P(B,0” | X, h)dpdo’
(21a)

P<ﬁ|)~(,x7h) = f220P<Z|)~(,X,h)dZ (21b)

The posterior distribution for the model parameter set
(B,0?) in Eq. (21a) is not standard with a non-informative
prior. Similar to Section 5.1, a Gibbs sampler is alternatively
designed to solve this Bayesian inference problem; then the
Monte Carlo method can be used to integrate the prediction
in Eq. (21b).

Because the hierarchical probit regression model in
Eq. (20) is very similar to the Poisson regression model in
Eq. (14), it is proper to adopt most of the formulae provided
in the Bayesian inference for a generalized regression model.
Algorithm (16) can also be used to solve this model, except
that the conditional posterior distribution for the Ilatent
variable Z (Step 2 in algorithm (16)) should be drawn from a
truncated Gaussian distribution. That is:

Z;| X, Bo, o%y; = 1=N (X,B, 02) truncated at the left by 0

Z,|X;, Py, 0%, y; = 0N (X,B, 02) truncated at the right by 0
i=1,2,...,N, X; represents the i—th row the predictor matrix X.
(22)

Note that the probit regression based Bayesian classifica-
tion model described in this subsection is neither necessarily
limited to a binary classification problem, nor to a generalized
linear link function. Via a multinomial probit regression
model, the probabilistic model (20) can be extended to solve
a multi-classification problem. With some straightforward
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Fig. 9. (a) The median (solid line), and upper and lower quartiles (dotted line) of the LOOCV predicted TC rate are plotted together with the actual observed TC
counts (dash-dotted line) over the CNP from 1966 to 2003. (b) The median (solid line), and upper and lower quartiles (dotted line) of the LOOCV predicted TC
counts are plotted together with the actual observations (dash-dotted line) from 1966 to 2003 (adapted from Chu and Zhao, 2007).

revision, algorithm (16) (the version for the probit regression
model) can be used to solve multi-classification problems. It's
worth noting that, the linear link function in model (20) can
be replaced by other more generic functions such as Gaussian
processes (GP). A relevant application involving this non-
trivial extension is found in Zhao and Cheung (2007, 2011).

5.3. Case study

The following example demonstrates the general proce-
dure of the Bayesian analysis framework elaborated in this
section. The example only adopts a Poisson regression model,
which is detailed in Section 5.1. However, the procedure for
using the probit regression based classification model given
in Section 5.2 is very similar to that for a Poisson regression
model. One application for using a Bayesian probit regression
model can be found in Chu et al. (2010b); the probit
regression model applied for tropical cyclone formation
forecast can be found in Chand and Walsh (2011).

Regarding the regression model verification, a general
way to verify the effectiveness of a regression method is to
apply a strict cross-validation (CV) test for the relevant
dataset. Because the TC variation is approximately indepen-
dent from year to year, it is proper to apply the leave-one-out
cross-validation (LOOCV). That is, given there are N years of
observations, a target year is chosen and a model is developed
using the remaining data as the training set. The observations
of the selected predictors for the target year are then used as
inputs to forecast the missing year. This process is repeated
successively until all N forecasts are made. This LOOCV

verification procedure shall be applied to the example
discussed in this section.

In this example, there are a total of 38 years (1966-2003)
of TC counts in the central North Pacific. After applying the
simple correlation based predictor selection procedure
proposed in Chu and Zhao (2007) to this count series, five
predictors are chosen at a confidence level of 99% for this
regression problem. These five predictors include sea surface
temperature (SST), sea level pressure (SLP), vertical wind
shear, low-level relative vorticity, and precipitable water.
With these predictors, after applying the Gibbs sampler
algorithm (16) to this data set under a LOOCV verification
procedure, as detailed above, the yielded results are provided
in Fig. 9. The figure shows the predicted TC rate and counts
when using the median, upper, and lower quartiles (the
upper 75% and lower 25%) of model parameter set through a
LOOCV. These are plotted together with the actual observa-
tion for each year. The distance between the upper quartile and
lower quartile locates the central 50% of the predicted TC
variations. The Pearson correlation between the median of the
predictive rate and independent observations is 0.63. Out of a
total of 38 years, there are only 9 years in which the actual TC
counts lie outside the predictive central 50% boundaries. It's
worth noting that although the correlation based predictor
selection approach referred herein is simple and practically
robust, it is a non-Bayesian approach. To embed the predictor
selection into the Bayesian regression or classification model is
one of the active research subjects in many scientific fields. Also,
as the predictor selection is not included in the LOOCV, the out-
of-sample skill estimate tends to be slightly overrated.
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Fig. 10. Estimated marginal posterior PDFs for model parameter set (B,0) given the peak season TC counts in the CNP and the selected predictors from 1966 to

2003 (adapted from Chu and Zhao, 2007).

With all the samples, the marginal probability density
function (PDF) for the parameter set, B, and o can also be
estimated. The marginal posterior PDF for each model
parameter for this example is shown in Fig. 10. The relative
contribution of each regression coefficient in the Bayesian
strategy can be judged approximately by the so-called p-
value. This can be evaluated by the ratio of the number of
samples that lie to the left of zero to the total number of
iterations if the predictor is expected to have a positively
orientated impact on the forecast quantity (e.g., SST).
Conversely, if the predictor is to have a negatively orientated
impact (e.g., SLP), the ratio of the number of samples that lie
to the right of zero to the total number of iterations is of
concern. Graphically, the smaller the area to the left
(positively oriented predictors) or right (negatively oriented
predictors) of zero in the PDF plots, the more important this
predictor is in the regression model. Fig. 10 indicates that SLP
and, to a lesser extent, relative vorticity are key predictors.

6. Summary

In this review article, we present three important
applications of the Bayesian paradigm to extreme climatic
events. The applications include: (1) identifying abrupt shifts
for an extreme event count series; (2) objective clustering of
the large quantity and seemingly complex historical typhoon
tracks over the WNP into several distinct track types; and (3)
prediction of seasonal tropical cyclone frequency in a region.
For the task outlined in (1), the extreme events encompass
the tropical cyclone count series in the central North Pacific,
major hurricane count series in the eastern North Pacific,
super typhoon count series in the western North Pacific,
heavy rainfall count series at Manoa in Oahu, Hawaii, and heat

wave count series in France. For task (2), the tropical cyclones
in the western North Pacific are categorized into eight distinct
types based on their track pathways and genesis locations.
And for task (3), the seasonal tropical cyclone activity is
predicted using the antecedent environmental conditions as
predictors.

As the Earth's climate is changing, the frequency of
extreme events is expected to change accordingly. Hence,
developing a state-of-the-art method to objectively identify
the turnaround of such changes is an initial vital step for a
more comprehensive scientific analysis. If we know when a
regime shift occurred this enables researchers to compare
active and inactive epochs of climate states for future
diagnostic and modeling studies. Traditionally, rates for
extreme event counts have been modeled in a data-
parameter two-layer hierarchical Bayesian framework. In
this view, the rates are assumed to be invariant throughout
the time. A few studies provided different Bayesian ap-
proaches to detecting and quantifying potential abrupt shifts
in an extreme event series (e.g., Elsner et al., 2004; Zhao and
Chu, 2006) by treating the Poisson rate as a random variable.
However, as discussed in the “Introduction” section, each of
them has some limitations.

A general 3-layer hierarchical Bayesian model - which
includes data, parameter, and hypothesis — with a nested
hypothesis space is built in this study. A seasonal extreme
event count series is modeled as a Poisson process with a
gamma distributed rate. We consider multiple candidate
hypotheses, within each of which there presumably exists a
certain number of abrupt shifts of the Poisson rate. We started
with a simple, non-MCMC approach for detecting abrupt shift
in the tropical cyclone series over the central North Pacific.
The result shows that the likelihood of an abrupt shift on
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tropical cyclone rates is around 1982. We then introduced a
MCMC based detection method for the major hurricane series
over the eastern North Pacific. The result suggests that there
are two significant rate shifts for this series, one is an upshift
in 1982 and the other is a downshift in 1999 with lower
activity since then.

Due to the inability of a regular MCMC algorithm to
effectively deal with the model selection problem, we resort
to its extended version, the RJMCMC algorithm, and design an
algorithm to automatically calculate the Bayesian inference of
the 3-layer Bayesian model to efficiently solve the hypothesis
competition problem. The RJIMCMC algorithm was applied to
three examples of extreme event series: the annual super
typhoon counts over the WNP; the extremely heavy rainfall
counts at Manoa in Oahu, Hawaii; and the annual heat wave
counts in French. The results indicate that typhoon activity
over the WNP is very likely to have undergone a decadal
variation with two change-points occurring around 1972 and
1989; the average super-typhoon rate is 5.7 per year during
the active 1960-1971 epoch, drops to 2.4 super-typhoons per
year during the inactive 1972-1988 epoch, and then goes up
to 5.0 super-typhoons per year from 1989 to 2006. The
extreme rainfall occurrence frequency at Manoa in Hawaii
has had three significant shifts between 1920 and 2009:
before 1963, the heavy rainfall frequency for this site is about
8.8 counts per year; thereafter this rate increases to 13.1;
from 1993 to 2003, the heavy rainfall frequency decreases to
7.0 counts a year; and starting from 2004, Manoa enters
another heavy rainfall active period, recording 15.0 heavy
events a year until the present. For the heat wave counts in
French, there has been an abrupt jump since 1983, from 0.6
counts per year jumping to 1.8 counts per year.

This paper also shows how the complex individual,
historical typhoon tracks over the vast western North Pacific
and South China Sea can be reasonably clustered into a few
distinct patterns, which may yield physical insights. In simple
terms, cluster analysis is a statistical technique that objectively
separates data into groups whose identities are not known in
advance. It is the degree of similarity and difference among each
individual track that is used to define the group and to assign
the membership. We use a regression mixture model to
separate the data into groups. Under this model, we consider
the genesis location, pathway (i.e., straight or recurving), and
shape of the tracks as key elements. Our results show that eight
track patterns with three straight moving, four recurving, and
one mixed straight moving/recurving appear to be plausible
over the last 60 years. This is somewhat different from those of
Camargo et al. (2007) and Kim et al. (2011), in which seven
types were adopted as an optimal number. This difference may
result from the different time periods used in each study.

The third application of the Bayesian paradigm to extreme
events is the probabilistic forecasting of seasonal tropical
cyclone frequency over the central North Pacific. By consid-
ering large-scale environmental variables prior to the
hurricane season, a Poisson regression model is used to
illustrate the mechanics of the forecasting approach. Specif-
ically, the predictor variables include sea-level pressures, sea
surface temperatures, vertical wind shear, low-level relative
vorticity, and precipitable water. A Gibbs sampler based on
the MCMC method is designed to integrate the desired
posterior predictive distribution. Results from cross-valida-

tion suggest that the Bayesian, Poisson regression model is
skillful in predicting seasonal TC frequency, with a correlation
coefficient of 0.63 for 1966-2003. Moreover, the relative
importance of each environmental variable in the forecasting
strategy can be judged by the so-called Bayesian p-value. In
this example, the sea-level pressure and, to a lesser extent,
the relative vorticity, are identified as key predictors.

Along the TC forecasting based on the Poisson regression
method, a new approach called the probit regression is
demonstrated as a binary classification problem. The probit
regression is adopted when the underlying TC rate is significantly
below one, which is a very rare event. Following the framework
for the conditional posterior distribution for a Poisson regression
model, we developed a similar posterior distribution for a probit
regression model explicitly.
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