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ABSTRACT

A new approach to forecasting regional and seasonal tropical cyclone (TC) frequency in the western North

Pacific using the antecedent large-scale environmental conditions is proposed. This approach, based on TC

track types, yields probabilistic forecasts and its utility to a smaller region in the western Pacific is demon-

strated. Environmental variables used include the monthly mean of sea surface temperatures, sea level

pressures, low-level relative vorticity, vertical wind shear, and precipitable water of the preceding May. The

region considered is the vicinity of Taiwan, and typhoon season runs from June through October. Specifically,

historical TC tracks are categorized through a fuzzy clustering method into seven distinct types. For each

cluster, a Poisson or probit regression model cast in the Bayesian framework is applied individually to forecast

the seasonal TC activity. With a noninformative prior assumption for the model parameters, and following

Chu and Zhao for the Poisson regression model, a Bayesian inference for the probit regression model is

derived. A Gibbs sampler based on the Markov chain Monte Carlo method is designed to integrate the

posterior predictive distribution. Because cluster 5 is the most dominant type affecting Taiwan, a leave-one-

out cross-validation procedure is applied to predict seasonal TC frequency for this type for the period of 1979–

2006, and the correlation skill is found to be 0.76.

1. Introduction

Typhoon is one of the most destructive natural catas-

trophes that cause loss of life and enormous property

damage on the coasts of East Asia–western North Pacific

(WNP). To mitigate the potential destruction caused by

the passing of typhoons, understanding climate factors

that are instrumental for the year-to-year typhoon variabil-

ity in this area and developing a consistent and innovative

method for predicting seasonal typhoon counts have be-

come increasingly important.

To this purpose, numerous efforts have been made to

improve the capability of typhoon or tropical cyclone

(TC) activity forecasting. William Gray and his team

pioneered the seasonal hurricane prediction enterprise us-

ing regression-based linear statistical models (Gray et al.

1992, 1993, 1994). They showed that nearly half of the

interannual variability of hurricane activity in the North

Atlantic could be predicted in advance. Klotzbach and

Gray (2004, 2008) have continued to revise their fore-

casts as peak seasons approach, and they operationally

issue seasonal forecasts for the Atlantic basin (available

online at http://hurricane.atmos.colostate.edu/Forecasts).

Chan et al. (1998) used a different kind of deterministic

regression model called the projection pursuit method to

predict typhoon activity over the western North Pacific

and the South China Sea for the period 1965–94. Skillful

forecasts are noted for some basinwide predictands, such

as the number of annual typhoons.
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Elsner and Schmertmann (1993) considered a different

approach to predicting intense annual Atlantic hurricane

counts. Specifically, the annual hurricane occurrence is

modeled as a Poisson process, which is governed by a

single parameter: the Poisson intensity. The intensity of

the process is then linked to a set of covariates, such as the

stratospheric zonal winds and the west Sahel rainfall, via

a multiple regression equation. Elsner and Jagger (2004)

introduced a Bayesian approach to this Poisson linear

regression model so that the predicted annual hurricane

numbers could be cast in terms of probability distribu-

tions. This is an advantage over the deterministic fore-

casts because the uncertainty inherent in forecasts can be

quantitatively expressed in the probability statements.

They especially addressed the issue regarding the un-

reliable records by introducing an informative prior for

the coefficient parameters of the model via a bootstrap

procedure. With a similar Bayesian regression model,

Elsner and Jagger (2006) attempted to predict annual

U.S. hurricane counts. The model includes predictors

representing the North Atlantic Oscillation (NAO), the

Southern Oscillation (SO), the Atlantic multidecadal os-

cillation, as well as an indicator variable that is either 0

or 1 depending on the period specified.

Apart from the Atlantic, Bayesian analysis has been

applied to analyze TC variability in the North Pacific. For

example, Chu and Zhao (2004) applied a hierarchical

Bayesian changepoint analysis to detect abrupt shifts in

the TC time series over the central North Pacific (CNP).

Following this research line, they (Zhao and Chu 2006,

2010) further developed more advanced methods for de-

tecting multiple change points in hurricane time series for

the eastern North Pacific and for the western North Pa-

cific. Extending from the changepoint analysis to fore-

casting, Chu and Zhao (2007) developed a generalized

Poisson regression Bayesian model to predict seasonal TC

counts over the CNP prior to the peak hurricane season so

the forecasts are expressed in probabilistic distributions.

In particular, the ‘‘critical region’’ concept is introduced.

A critical region is defined as an area over the tropical

North Pacific where the linear correlation between the TC

counts in the peak season and the preseason, large-scale

environmental parameters are statistically significant at

a standard test level. This identification approach is fur-

ther applied to forecast the typhoon activity in the vicinity

of the Taiwan area (Chu et al. 2007; Lu et al. 2010) and in

the East China Sea (Kim et al. 2010), and satisfactory

forecasting skill was achieved as well.

In the methods aforementioned, attempts have been

made to either forecast TC activity for an entire ocean

basin or for a specific region within a basin. In this regard,

seasonal forecasts for an area are categorized by their

geographic locations without considering the nature and

variability of typhoon tracks. This spatial TC classification

approach has been proved effective. However, even for

a limited region, such as the vicinity of the Taiwan area,

the origin of each typhoon and its tracks within a season

are not the same. Some typhoons are straight movers and

others are prone to recurve from the Philippine Sea or

even from the South China Sea. Therefore, a categoriza-

tion of the historical typhoon tracks and forecasting of

each individual track type may result in a better physical

understanding of the overall forecast skills.

Motivated by this fact, in this study, we extend the

probabilistic Bayesian framework suggested in the prior

works from the CNP (Chu and Zhao 2007), the East China

Sea (Ho et al. 2009), and the Fiji region (Chand et al. 2010)

to the WNP, with a particular focus toward the vicinity of

the Taiwan area. Different from prior studies, we adopt a

feature classification approach based on the fuzzy clus-

tering analysis of TC tracks in this study. Then we analyze

the time series of each cluster type. The structure of this

paper is as follows. Section 2 discusses the data used,

and section 3 outlines the fuzzy clustering approach. The

mathematical model of the TC counts, Bayesian inference,

and Gibbs sampler for our proposed probabilistic models

are described in section 4. Section 5 describes the pro-

cedure to select the appropriate predictors for each type of

the TC count series. Results are presented in section 6. The

conclusion is found in section 7.

2. Data

The present study used TC data obtained from the Re-

gional Specialized Meteorological Center Tokyo–Typhoon

Center. The data contain information on the name, date,

position (in latitude and longitude), minimum surface

pressure, and maximum wind speed of TCs in the WNP

and the South China Sea for every 6-h interval. A TC is

categorized as one of three types depending on its 10-min

maximum sustained wind speed (wmax): tropical depres-

sion (wmax , 17 m s21), tropical storm (17 m s21 # wmax ,

34 m s21), and typhoon (wmax $ 34 m s21). In this study,

we consider only tropical storms and typhoons for the pe-

riod from 1979 to 2006.

Monthly-mean sea level pressure (SLP), wind data at

850- and 200-hPa levels, relative vorticity at the 850-hPa

level, and total precipitable water (PW) over the WNP

and the South China Sea are derived from the National

Centers for Environmental Prediction–National Center

for Atmospheric Research (NCEP–NCAR) reanalysis

dataset (Kalnay et al. 1996; Kistler et al. 2001). The hori-

zontal resolution of the reanalysis dataset is 2.58 latitude 3

2.58 longitude. Tropospheric vertical wind shear is com-

puted as the square root of the sum of the square of the

difference in zonal wind component between 850- and
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200-hPa levels and the square of the difference in merid-

ional wind component between 850- and 200-hPa levels

(Chu 2002). The monthly-mean sea surface temperatures,

at 28 horizontal resolution, are taken from the National

Oceanic and Atmospheric Administration (NOAA) Cli-

mate Diagnostics Center in Boulder, Colorado (Smith

et al. 1996). Monthly circulation indices, such as NAO,

Arctic Oscillation (AO), and Niño-3.4, are downloaded

from NOAA’s Climate Prediction Center.

3. Fuzzy clustering of typhoon tracks

The basic structure of large-scale circulation variability

or TC tracks have been grouped into several distinct types

by many researchers (Harr and Elsberry 1995; Elsner

2003; Camargo et al. 2007). Through the use of a vector

empirical orthogonal function analysis and fuzzy cluster-

ing technique, Harr and Elsberry (1995) defined six re-

current circulation patterns that represent the monsoon

trough and subtropical ridge characteristics over the trop-

ical western North Pacific. Elsner (2003) used a K-means

cluster analysis for North Atlantic hurricanes. On the basis

of a regression mixture model, Camargo et al. (2007)

classified historical typhoon tracks from 1950 to 2002

into 7 types, although they claimed that the optimum

types would range from 6 to 8 types in the WNP.

A fuzzy clustering method (FCM) was applied to the

TC tracks in this study. Because the FCM requires equal

data length for all target objects, all TC tracks are in-

terpolated into the same data points with equal length by

leaving out time information. The mean TC lifetime in the

WNP is about five days, so we simply choose 20 segments

(i.e., 4 times daily 3 5 days) as the points of interpolated

TC tracks, which retain the shape, length, and geograph-

ical path information covering the TC tracks (Kim et al.

2011). The dissimilarity between two tracks is defined

as the Euclidean norm of the difference of two vectors,

which contain the interpolated latitudes and longitudes

for each TC track. With the defined dissimilarity, the fuzzy

c-means algorithm was applied to each of the tracks

(Bezdek 1981). The fuzzy clustering is in essence an

extension of the soft k-means clustering method. This

algorithm allows objects to belong to several clusters si-

multaneously, with different degrees of membership. The

fuzzy clustering algorithm is more natural than the hard

clustering algorithm, as objects on the boundaries among

several clusters are not forced to fully belong to one of the

classes, which means that partial membership in a fuzzy

set is possible.

On the basis of this fuzzy clustering method, we ana-

lyze a total of 557 TCs over the entire WNP basin during

the typhoon season [June–October (JJASO)] from 1979

to 2006 and categorize them into seven major groups.

The TC tracks and its mean path for each of the seven

types over the WNP are depicted in Fig. 1. The overall TC

tracks are shown at the right bottom panel in Fig. 1. It is

apparent that each type of TC has its own active region

and distinct track patterns. For example, cluster 1 repre-

sents the TC track pattern mainly striking Japan and

Korea and the eastern China coast. Most TCs in this

cluster type develop over the Philippine Sea, move north-

westward, and then turn northeastward toward Korea or

Japan. For cluster 2, most TCs develop in the subtropics

farther away from the East Asian continent and move

northward or northeastward over the open ocean; they

have the least number of occurrences among all seven

clusters (56). Cluster 3 represents the TCs that tend to

develop to the east of Taiwan and move northward to the

east of Japan. Its mean track is shorter than that in type 1,

and the genesis location is more poleward than type 1. For

cluster 4, most TCs develop over the South China Sea and

are confined in the same region. Cluster 5 is of particular

interest in this study since this type represents the TCs that

develop over the core of the Philippine Sea and move

northwestward through Taiwan and the southeast China

coast. Among all seven clusters, clusters 4 (90) and 5 (92)

have the largest numbers. For cluster 6, most TCs are

straight movers from the Philippine Sea through the South

China Sea to south China and Vietnam. The cluseter 7

TCs tend to form near 158N and between 1408 and 1808E;

they pass through the east of Japan after recurving pole-

ward over mainly the open ocean. Overall, the mean

cluster tracks identified in this study are similar to those of

Camargo et al. (2007).

Albeit the method developed in this paper is applicable

for the entire East Asian coast and the WNP, only a case

study is presented for the vicinity of Taiwan, which is

defined as a region bordered between 218 and 268N and

1198 and 1258E. This is justified because of the relatively

high annual number of TCs observed there and the sig-

nificant amount of damage typhoons inflicted (Tu et al.

2009). Table 1 lists the seasonal typhoon counts affecting

Taiwan, as stratified by the seven cluster types, from 1979

to 2006. We notice that about 63% of TCs that have af-

fected Taiwan are classified as cluster 5. This is followed,

in descending order of historical occurrence, by clusters 1,

6, 4, and 3. Not surprisingly, because of their distant

geographic locations, clusters 2 and 7 have no effects on

Taiwan.

4. Prediction methods and Bayesian inference

Once historical TC tracks are classified into distinct

clusters, the next goal is to develop a modern method-

ology for predicting seasonal TC counts for a target re-

gion (Taiwan) influenced by various track types. In this
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FIG. 1. Track pattern of each type of TC in the WNP.
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section, we will first describe the two statistical models

used and the Bayesian inference for each model. We will

then discuss the predictor selection method followed by

the overall forecast scheme.

a. Model description

1) THE GENERALIZED POISSON REGRESSION

MODEL

Poisson distribution is a proper probability model for

describing independent (memoryless), rare event counts.

Given the Poisson intensity parameter l, the probability

mass function (PMF) of h counts occurring in a unit of

observation time, say, one season, is as taken from

Epstein (1985)

P(hjl) 5 exp(�l)
lh

h!
, where h 5 0, 1, 2, . . .

and l . 0. (1)

The Poisson mean is simply l, so is its variance. In many

applications, Poisson rate l is not treated as a fixed con-

stant but rather as a random variable.

Through a regression model, the relationship between

the target response variable, seasonal typhoon counts, and

the selected predictors can be mathematically built. In this

study, we adopt the Poisson linear regression model. As-

sume there are N observations that are conditional on K

predictors. We define a latent random N-vector Z, such

that for each observation hi, i 5 1, 2, . . . , N, Zi 5 logli,

where li is the Poisson rate for the ith observation. The

link function between the latent variable and its associ-

ated predictors is expressed as Zi 5 Xib 1 «i, where b 5

[b0, b1, b2, . . . , bK]9 is a random vector; noise «i is assumed

to be identical and independently distributed (IID) and

normally distributed with zero mean and s2 variance; and

Xi 5 [1, Xi1, Xi2, . . . , XiK] denotes the predictor vector. In

vector form, the general Poisson linear regression model

is formulated as follows:

P(hjZ) 5 P
N

i51
P(h

i
jZ

i
), where

h
i
jZ

i
; Poisson(h

i
jeZ

i) and

Zjb, s2, X ; Normal(ZjXb, s2I
N

), where, specifically

X9 5 [X
1
9, X

2
9, . . . , X

N
9 ], I

N
is the N 3 N identity matrix,

and

X
i
5 [1, X

i1
, X

i2
, . . . , X

iK
] is the predictor vector for h

i
,

i 5 1, 2, . . . , N,

b 5 [b
0
, b

1
, b

2
, . . . , b

K
]9. (2)

Here, Normal and Poisson stand for the normal distribu-

tion and the Poisson distribution, respectively. In model

(2), b0 is referred to intercept.

It is worth noting that Poisson rate l is a real value,

while the TC counts h is only an integer. Accordingly, l

contains more information relative to h. Furthermore,

because h is conditional on l, l is subject to less vari-

ations than h is. Taken together, l should be preferred

as the forecast quantity of the TC activity than h for

decision making. We also notice the fact that this hi-

erarchical structure essentially fits well for Bayesian

inference.

2) THE PROBIT REGRESSION MODEL FOR

A BINARY CLASSIFICATION PROBLEM

The Poisson regression model detailed in section 4a(1)

has been approved very effective for most rare event

count series. However, if the underlying rate is signifi-

cantly below one, this model may introduce significant

TABLE 1. Seasonal (JJASO) TC counts in the vicinity of Taiwan,

stratified by seven cluster types, from 1979 to 2006. The last column

refers to the total number of TCs for each year.

Year

Type

1

Type

2

Type

3

Type

4

Type

5

Type

6

Type

7 Total

1979 1 0 0 0 2 0 0 3

1980 0 0 0 0 3 1 0 4

1981 1 0 0 1 1 0 0 3

1982 2 0 0 1 2 1 0 6

1983 0 0 0 0 1 0 0 1

1984 0 0 0 1 2 0 0 3

1985 0 0 2 0 4 0 0 6

1986 0 0 0 1 2 0 0 3

1987 1 0 0 0 4 0 0 5

1988 1 0 0 0 1 0 0 2

1989 0 0 1 0 1 0 0 2

1990 1 0 0 0 3 1 0 5

1991 0 0 1 1 1 1 0 4

1992 2 0 0 0 2 0 0 4

1993 0 0 0 1 0 0 0 1

1994 0 0 0 0 6 1 0 7

1995 1 0 0 0 2 0 0 3

1996 0 0 0 0 1 1 0 2

1997 0 0 0 0 2 0 0 2

1998 1 0 0 1 2 0 0 4

1999 0 0 0 0 1 1 0 2

2000 1 0 0 0 4 1 0 6

2001 1 0 0 0 4 1 0 6

2002 3 0 0 0 1 0 0 4

2003 1 0 0 0 4 1 0 6

2004 2 0 0 1 5 0 0 8

2005 0 0 0 0 5 0 0 5

2006 1 0 0 0 4 0 0 5
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bias. In this study, for a given typhoon type, if the mean of

its historical seasonal occurrence is less than 0.5, then we

shall instead adopt a binary classification model; that is,

the response variable here is a binary class label, which is

termed by ‘‘Y.’’ For each observation period, we define a

class ‘‘Y 5 1’’ if one or more TC is observed and ‘‘Y 5 0’’

otherwise.

As below we formulate the probit regression model

(Albert and Chib 1993; Zhao and Cheung 2007). Again,

we assume there are N observations conditional on K-

selected predictors. We define a latent random N-vector

Z, such that for each observation yi, i 5 1, 2, . . . , N, yi 5 1

if Zi $ 0 and yi 5 0 otherwise. The link function between

the latent variable Z and its associated predictors is also

linear, Zi 5 Xib 1 «i, where b 5 [b0, b1, b2, . . . , bK]9

is a random vector; noise «i is assumed to be identical

and IID and normally distributed with zero mean and

s2 variance; and Xi 5 [1, Xi1, Xi2, . . . , XiK] denotes the

predictor vector. In vector form, the probit regression

model is described by

P(yjZ) 5P
N

i51
P(y

i
jZ

i
), where y

i
5

1

0

�
if

if

Z
i
$ 0

Z
i
, 0

and

Zjb, s2, X ; Normal(ZjXb, s2I
N

), where, specifically

X9 5 [X
1
9, X

2
9, . . . , X

N
9 ], I

N
is the N 3 N identity matrix,

and

X
i
5 [1, X

i1
, X

i2
, . . . , X

iK
] is the predictor vector for h

i
,

i 5 1, 2, . . . , N,

b 5 [b
0
, b

1
, b

2
, . . . , b

K
]9. (3)

Classification model (3) is very similar to the Poisson re-

gression model (2). Actually, the probability of class Y 5 1

can be viewed as the rate of the TC counts.

b. Bayesian inference for the constructed models

With the built models provided in section 4a, we shall

derive the posterior distribution for the model given by (2)

and (3) separately in this section.

1) BAYESIAN INFERENCE OF THE POISSON

REGRESSION MODEL

Since we do not have any credible prior information for

the coefficient vector b and the variance s2, it is rea-

sonable to choose the noninformative prior. In formula, it

is taken from Gelman et al. (2004, p. 355)

P(b, s2) } s�2. (4)

This is not a proper probability distribution function;

however, it leads to a proper posterior distribution.

The posterior distribution of a hidden variable Z, which

is conditionally independent from each other given the

model parameters b and s2, is derived in Chu and Zhao

(2007) and given in (A2). With the newly observed pre-

dictor set ~X 5 [1, ~Xi1, ~Xi2, . . . , ~XiK], the predictive dis-

tribution for the new latent variable ~Z and TC counts ~h

will be

P( ~Zj ~X, X, h)

5

ð ð
b,s2

P( ~Zj ~X , b, s2)P(b, s2jX, h) db ds2 and

(5a)

P( ~hj ~X, X, h) 5

ð
~Z

exp(�e
~Z 1 ~Z ~h)
~h!

P( ~Zj ~X , X, h) d ~Z.

(5b)

Here the ‘‘new’’ variables refer to those not involved

in the model construction and are only used for pre-

diction. With the noninformative prior, the posterior

distribution for the model parameter set (b, s2) in (5) is

not standard and directly sampling from it is difficult.

In this section, we design a Gibbs sampler, which has

P(b, s2jX, h) as its stationary distribution, and then

we can use an alternative approach, the Monte Carlo

method, to integrate (5) by

P( ~Zj ~X, X, h) 5
1

L
�
L

i51
P( ~Zj ~X, (b, s2)[i]) and (6a)

P( ~hj ~X, X, h) 5
1

L
�

L

i51

exp(�e
~Z
[i]

1 ~Z
[i] ~h)

~h!
, (6b)

where (b, s2)[i] is the ith sampling from the proposed

Gibbs sampler after the burn-in period; ~Z
[i]

is sampled

from ~Z
[i]j ~X , (b, s2)[i]

; Normal( ~Z
[i]j ~Xb[i], s2[i]) subse-

quently; and L is a sufficiently large number (e.g.,

throughout this study, we use L 5 10 000). The con-

cept and detailed algorithms of a Gibbs sampler can

be found in many literatures, such as Gelman et al.

(2004).

On the basis of the inference analysis derived in

the appendix, the Gibbs sampler yields the following

algorithm:
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1) Select the proper initial value for Z[0], b[0], s2[0] and

set i 5 1.

2) Draw Zj
[i] from Zj

[i]jh, b[i21], s2[i21] for j 5 1, 2, . . . , N

via (A3), a conditional distribution for the hidden

variable Z from the Poisson regression model.

3) Draw b[i] from b[i]jh, Z[i], s2[i21] via (A6), a multi-

variate Gaussian distribution.

4) Draw s2[i] from s2[i]jh, Z[i], b[i] via (A7), an inverse

x2 distribution.

5) Set i 5 i 1 1 and then go back to step 2 until meeting

the required number of iterations. (7)

With the observation data h and following (7), after a

burn-in period, one can sample set Z, b, s2 within each

iteration, which will have the desired posterior distri-

bution that facilitates the numerical computation of (6a)

and (6b).

A practical issue in step 2 of algorithm (7) is that the

distribution governed by Eq. (A3) is not standard. We

resort to the Metropolis–Hasting algorithm in this study,

which is relatively computationally expensive. Some other

approaches can be considered here. For example, based

on our simulation results, the estimated posterior proba-

bility density functions for the hidden variables are all

Gaussian like, which theoretically also can be proven log-

concave. Therefore, using Laplace approximation in this

context should be a sound choice as well.

2) BAYESIAN INFERENCE OF THE PROBIT

REGRESSION MODEL

The probit regression model for a binary classification

problem is detailed in (3), which implies that the pos-

terior distribution of any hidden variable Z is condi-

tionally independent from each other given the model

parameters b and s2. Therefore, similar to the Poisson

regression model, with the newly observed predictor set
~X 5 [1, ~Xi1, ~Xi2, . . . , ~XiK], the predictive distribution for

the latent variable ~Z and TC counts ~h will be

P( ~Zj ~X, X, h)

5

ð ð
b,s2

Normal( ~Zj ~Xb, s2)P(b, s2jX, h) db ds2 and

(8a)

P( ~hj ~X, X, h) 5

ð
~Z$0

P( ~Zj ~X , X, h) d ~Z. (8b)

The posterior distribution for the model parameter set

(b, s2) in (8a) is not standard with a noninformative

prior. Hence, we design a Gibbs sampler, which has P(b,

s2jX, h) as its stationary distribution, and thereby we

can use the Monte Carlo method to integrate (8) by

P( ~Zj ~X , X, h) 5
1

L
�
L

i51
Normal( ~Zj ~Xb[i], s2[i]) (9a)

P( ~y 5 1j ~X, X, h) 5
1

L
�

L

i51
F( ~Xb[i]/

ffiffiffiffiffiffiffiffiffi
s2[i]
p

) and

P( ~y 5 0j ~X, X, h) 5 1� P( ~y 5 1j ~X, X, h), (9b)

where b[i] and s2[i] is the ith sampling from the proposed

Gibbs sampler after the burn-in period; F(�) denotes the

probability cumulative function of the standard normal

distribution; and L is a sufficiently large number.

Since the hierarchical probit regression model in (3) is

very similar to the Poisson regression model in (2), we

adapt most of the formulas provided in the appendix for

the Bayesian inference. The only major difference is the

conditional posterior distribution of the latent variable,

which is from a truncated Gaussian distribution based on

the definition in (3). In formula, it is

Z
i
jX

i
, b

0
, s2, y

i
5 1 } N(X

i
b, s2) truncated at the left

by 0;

Z
i
jX

i
, b

0
, s2, y

i
5 0 } N(X

i
b, s2) truncated at the

right by 0; and

i 5 1, 2, . . . , N, X
i

represents the ith row of the

predictor matrix X. (10)

The overall Gibbs sample for the probit regression model

(3) is executed as follows:

1) Select the proper initial value for Z[0], b[0], s2[0] and

set i 5 1.

2) Draw Zj
[i] from Zj

[i]jyj, b[i21], s2[i21] for j 5 1, 2, . . . , N

via (10), a truncated Gaussian distribution.

3) Draw b[i] from b[i]jZ[i], s2[i21] via (A6), a multivari-

ate Gaussian distribution.

4) Draw s2[i] from s2[i]jZ[i], b[i] via (A7), an inverse x2

distribution.

5) Set i 5 i 1 1 and then go back to step 2 until meeting

the required number of iterations. (11)

In step 2 of (11), we choose the fast algorithm of Robert

(1995) to draw a sample from a truncated Gaussian

distribution.

5. Predictor selection procedure

In model (2) or (3), we assume the predictors are given

a priori. In real applications, however, choosing the ap-

propriate environmental parameters that are physically
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related to the formation and typhoon tracks is crucial

for the success of the final forecast scheme. In Chu and

Zhao (2007) and Chu et al. (2007), environmental pa-

rameters such as sea surface temperatures, sea level

pressures, low-level relative vorticity, vertical wind shear

(VWS), and precipitable water were chosen. The analysis

and forecast procedure is illustrated in Fig. 2.

a. Critical region determination

In this study, we apply the same procedure suggested

in Chu and Zhao (2007) and Chu et al. (2007) to de-

termine the critical region for each candidate environ-

mental parameter. We calculate the Pearson correlation

between the count series of each type of typhoon track

and the preseason environmental parameters. If the

Pearson correlation between the predictor and the tar-

get count series is statistically significant, then it is

deemed as critical. On the basis of the linear regression

theory, for a sample size of 28, the critical value for a

correlation coefficient with two tails is 0.374 at the 99%

confidence level (Bevington and Robinson 2003). Hence,

a correlation coefficient with its absolute value greater

than 0.374 at a grid point is deemed locally significant,

and this point is then selected as a critical region. To

avoid the large dimensionality of the predictor matrix,

which would easily lead to overfitting the model, a sim-

ple average over the critical regions is chosen to serve as

a final predictor. We also examined the lagged correla-

tions between the circulation index (e.g., NAO, AO)

and the TC counts for each of the seven clusters listed

in Table 1. However, none of those correlations is sta-

tistically significant at the 95% confidence level. There-

fore, circulation indices are not chosen as predictors.

b. Large-scale circulations and track types

Because track type 5 accounts for almost three-fourths

of the overall TC activity near Taiwan, we will focus on

the selection of predictors for this type, and the interim

results are illustrated in Fig. 3. The isocorrelate map of

seasonal TC track type 5 and SSTs over the WNP during

the antecedent May is displayed in Fig. 3a; positive and

significant correlations are found near Taiwan and the

equatorial western Pacific. Warmer SSTs are expected

to fuel the overlying atmosphere with additional warmth

and moisture, possibly reducing atmospheric stability

and increasing the likelihood of deep tropical convec-

tion. The occurrence of deep convection is important for

typhoon formation because it provides a vertical coupling

between the upper-level outflow and lower-tropospheric

inflow circulations. For SLPs (Fig. 3b), negative corre-

lations are observed in the eastern half of the western

Pacific, suggesting that type 5 TCs are more abundant if

the antecedent SLP in the western Pacific subtropical

high is anomalously low. In Fig. 3c, a dipole structure of

correlation patterns is seen with the negative correlation

region to the north and positive region to the south. Ac-

cordingly, more atmospheric moisture, or an increase of

the depth of the moisture layer, in low latitudes is at-

tributable to more type 5 TCs.

Figure 3d shows the correlations between type 5 TCs

and the low-level relative vorticity in the preceding May.

An elongated band of positive correlations in the sub-

tropics is noted with a critical region between 1408 and

FIG. 2. (a) Flowchart of analysis procedure for predicting sea-

sonal typhoon activity in the vicinity of Taiwan. (b) Flowchart of

forecast procedure for seasonal TC activity in the vicinity of Taiwan.
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1708E. Local concentration of cyclonic vorticity in the

critical region would enhance the spin-up process by

strengthening boundary layer convergence. An increase

in cyclonic vorticity near Taiwan may also reflect the

southward shift of the mei-yu front in May. Such a pos-

sibility is supported by the positive SLP correlation near

Taiwan (Fig. 3b) and the negative PW (Precipitable Water)

correlation over the subtropical WNP (Fig. 3c). A mei-yu

front is a prominent feature during the developing stage

of East Asian summer monsoon. However, to the best of

our knowledge, the relationship between a mei-yu front

and the subsequent TC activity over the WNP has not

been well studied. This relationship can be particularly

important for the type 5 TCs.

It is possible that as easterly waves in the subtropics

approach the monsoon confluence region (say, near 1408E),

they will interact with monsoon westerlies to the west

to increase cyclogenesis potential. Together with moist

FIG. 3. Predictor selection for type 5. Isocorrelates of

seasonal (JJASO) tropical cyclone frequency in the vicinity

of Taiwan (the box) with the antecedent May (a) SSTs,

(b) SLPs, (c) PW, (d) low-level relative vorticity, and (e) VWS.

The hatching denotes the critical region for which the local

correlation is statistically significant at the 99% confidence

level.
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convergent flow at low levels, TC may form on the cy-

clonic shear side of the monsoon circulation. This pattern,

known as the cyclogenesis in the monsoon confluence

region, is one of the distinctive flow fields for TC forma-

tion in the WNP during the peak typhoon season (Ritchie

and Holland 1999).

The isocorrelate map of seasonal typhoon frequency

of type 5 and VWSs over the WNP during the ante-

cedent May is displayed in Fig. 3e. Negative correla-

tions are generally found in the subtropics and the

midlatitudes. It is well known that strong VWS disrupts

the organized deep convection (the so-called ventilation

effect) that inhibits intensification of the typhoons. Con-

versely, weak vertical shear allows TC development. A

small critical region is found near Taiwan (Fig. 3e).

c. Overall model

With the predictors selected through correlation anal-

ysis, the regression model (2) and classification model (3)

are set. Through the algorithms provided in section 4b,

the analysis and forecast procedure deliberated in Fig. 2

can be executed.

The selected predictor vector Xi and the associated

coefficient parameter vector b 5 [b0, b1, b2, . . . , bK]9 in

models (2) and (3) can both be explicitly formulated by

X
i
5 [1, SST

i
, SLP

i
, VWS

i
, RV

i
, PW

i
],

i 5 1, 2, . . . , N and

b 5 [b
0
, b

1
, b

2
, b

3
, b

4
, b

5
]9. (12)

In (12), if an environmental variable is not selected, then

its associated parameters and coefficients are set as null.

In case of a variable with two predictors (one with posi-

tive correlation and the other with negative), its associ-

ated parameters and coefficients represent two vectors.

In practical applications, it is desirable to normalize each

predictor series before further analysis to avoid the scal-

ing problem among the different predictors.

6. Prediction results

As briefly discussed earlier, we have a total of 28 yr

(1979–2006) of tropical cyclone track records and en-

vironmental variable data in the WNP. Following the

flowchart in Fig. 2, we apply the method detailed in

section 4 to this dataset.

In detail, we first categorize each of the typhoons

observed in the WNP into seven classes based on the

fuzzy clustering algorithm. Thereafter, we tabulate each

type of typhoon that occurred in the Taiwan area. His-

torically, types 2 and 7 never had any effect on Taiwan

(Table 1). For types 3, 4, and 6, the average typhoon rate

in peak season is 0.143, 0.286 and 0.357, respectively, all

of which are well below 0.5. Hence, we apply the probit

regression model to analyze types 3, 4, and 6 typhoon

tracks, and we use the Poisson regression model for the

types 1 and 5 (with an average typhoon rate of 0.714 and

2.50, respectively). Again, since the type 5 typhoon has

been the dominant typhoon type for the typhoon activity

in Taiwan, we shall provide the detail analysis results for

this type.

A general way to verify the effectiveness of a regres-

sion or classification method is to apply a strict cross-

validation test for the relevant dataset. Considering the

fact that the typhoon activity variation is approximately

independent from year to year, it is proper to apply a

leave-one-out cross validation (LOOCV) in this context

(Elsner and Schmertmann 1993; Chu et al. 2007); that is,

a target year is chosen and a model is developed using

the remaining 27-yr data as the training set. The obser-

vations of the selected predictors for the target year are

then used as inputs to forecast the missing year. This

process is repeated successively until all 28 forecasts are

made. We shall apply this LOOCV process for each ty-

phoon type and thereby the overall activity.

With all the samples drawn, we can estimate any

statistic deemed as important. To demonstrate this, we

illustrate the analysis results for the type 5 typhoon sea-

sonal series in the following. We first apply the Poisson

regression algorithm (7) to the data and the output me-

dian, the upper and lower quartiles (the upper 75% and

lower 25%, respectively) of the predicted rates, through

a LOOCV, are plotted together with the actual obser-

vation for each year in Fig. 4a. The distance between the

upper quartile and lower quartile locates the central 50%

of the predicted TC variations. The Pearson correlation

between the median of predictive rate and independent

observations is as high as 0.76, which implies that about

58% of the variation of this type near Taiwan can be

predicted. In Fig. 4b, the median and the upper and lower

quartiles of the predicted typhoon counts are plotted to-

gether with the actual observation for each year. Out of

a total of 28 yr, there is only 1 yr in which the actual TC

counts lie outside the predictive central 50% boundaries,

achieving 96% accuracy.

The similar Poisson regression procedure is applied

to the type 1 typhoon series as well. The correlation co-

efficient between the LOOCV median rate and true ob-

servation series is 0.63 for type 1. Note that the actual

typhoon occurrence rate of this type near Taiwan is ac-

tually very small (0.71 per year).

We also apply the probit regression algorithm in (11)

to the seasonal typhoon series of types 3, 4, and 6. The

labeling of the year with more than one TC as belonging

to one group (i.e., class 1) or the other is arbitrary. With

15 DECEMBER 2010 C H U E T A L . 6663



an LOOCV procedure, we obtain the median and the

upper and lower quartiles of the probability of class ‘‘1’’

(equivalently, with a typhoon) for each season. Specifi-

cally, the correlations between the median probability

of class 1 and the observation series of types 3, 4, and 6

are 0.65, 0.72, and 0.74, respectively. On the basis of the

median (or quartile) probability, we can make a class

decision.

From each individual simulation, we summarize the

relative probability outputs and then obtain the mar-

ginal forecast for the typhoon frequency in Taiwan

(Fig. 5). For simplicity, for all the simulations in this study,

we take the first 2000 samples as burn in and use the fol-

lowing 10 000 samples as the output of the Gibbs sampler.

Figure 5a displays the median and the upper and lower

quartiles of the predicted (LOOCV) overall seasonal ty-

phoon rates in the vicinity of Taiwan. The correlation

between the median of predictive rate and observa-

tions is 0.71. In comparison to the correlation skill of

0.63 from a different regression model and without

clustering TC tracks (Chu et al. 2007), the current re-

sult is a noticeable improvement. In Fig. 5b, the me-

dian and the upper and lower quartiles of the summed

predicted typhoon counts are plotted together with the

actual observation for each year. Out of a total of 28 yr,

only 2 yr (93% accuracy) fall outside the interquartile

range. This result further supports the efficiency of the

proposed feature-oriented regional typhoon frequency

forecast framework.

As the Poisson or probit regression model provides

probability forecasts, it is also of interest to evaluate the

model performance using the Brier skill score (BSS),

which provides a measure of improvement percentage

of model forecast over a climatology model [BSS 5 0

indicates no skill relative to the climatological forecast,

and BSS 5 1 means perfect prediction. A detailed def-

inition, for example, can be found in Jagger et al. (2002)].

If we treat the seasonal typhoon activity that occurred

in the Taiwan area as a binary-class problem (seasonal

count either above normal or below normal), then the

BSS score of the proposed track-pattern-based forecast

model is 0.32.

7. Summary and conclusions

The importance of typhoon prediction research can-

not be overemphasized. Heavy rain, destructive winds,

and coastal storm surges associated with typhoons cause

FIG. 4. Simulation results for the seasonal TC activity near Taiwan based on track type 5. (a) The median (solid)

and upper and lower quartiles (broken) of the predicted TC rate are plotted together with the actual observed TC

rate (dotted) during 1979–2006. (b) As in (a), but for the predicted and observed TC counts.
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flood and landslide disasters, often resulting in loss of

life and enormous property damage. Improving forecast

skill of seasonal TC counts before the peak season has

become increasingly important for society and econ-

omy. Traditionally, seasonal TC forecasting has been

attempted for an entire ocean basin or for a specific

region within a basin; that is, seasonal forecasts for a

basin (or an area) are categorized by its geographic lo-

cation without considering the nature and variability of

typhoon tracks. However, even for a limited region, the

formation point of each typhoon and its subsequent

track within a season are not the same. Therefore, a cat-

egorization of the historical typhoon tracks and fore-

casting of each individual track types may result in a

better physical understanding of large-scale circulation

characteristics and an improvement in overall forecast

skills. Motivated by this, based on a TC-track-oriented

categorization approach, we apply a marginal mix of

Poisson regression and probit regression model to pre-

dict the seasonal TC activity in the Taiwan area, which

has been repeatedly ravaged by typhoons, and typhoon

activity there has undergone a significant upward shift

since 2000 (Tu et al. 2009).

Following a fuzzy clustering algorithm, we first pro-

jected all the recorded TC tracks from 1979 to 2006 into

seven distinct groups featured by their genesis locations

and pathways. Then for each type of cluster, we apply

a Poisson regression model or probit regression model

to construct the relationship between the large-scale cir-

culations and the seasonal TC frequency. As an example,

for the case of Taiwan, which is mainly affected by track

type 5, we resort to the Poisson regression model (Fig. 2;

Table 1). For other types with less than 0.5 average sea-

sonal typhoon rate, such as types 3, 4, and 6, we adopt

the probit regression to solve a binary classification prob-

lem. Because Taiwan is not affected by track types 2 and 7,

no analysis is applied to these two types.

In the analysis of each type of TC, we choose the pre-

diction selection procedure suggested in Chu and Zhao

(2007) and Chu et al. (2007); that is, for each target TC

cluster, we identify the associated critical regions for each

considered environmental variable via a simple correla-

tion analysis, forming the relative predictors. The vari-

ables include SST, SLP, PW, relative vorticity, and VWS.

Subsequently, we derive Bayesian inference for both

the Poisson regression model and the probit regression

FIG. 5. Simulation results for the seasonal TC activity near Taiwan based on a mix of track types. (a) The median

(solid) and upper and lower quartiles (broken) of the LOOCV-predicted TC rate are plotted together with the actual

observed tropical cyclone rate (dotted) during 1979–2006. (b) As in (a), but for the predicted and observed TC

counts.
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model by assuming a noninformative prior. In this study,

the Markov chain Monte Carlo (MCMC) method is

adopted to numerically analyze the data, since it is diffi-

cult to analytically evaluate complex integral quantities

of the posterior distribution because it is not a standard

probability density function. The MCMC is based on

drawing values of the parameters of interest from prob-

ability distributions and then correcting these draws to

better approximate the posterior distribution. For de-

tails on the MCMC, see Zhao and Chu (2006). The de-

signed Gibbs samplers for both regression models are

very similar, through which we are able to forecast the

probabilistic distribution of TC activity of each type

prior to the peak season. When tested for the period

1979–2006, the leave-one-out cross-validation correlation

test delivers satisfactory results as described in section 5.

Especially for type 5 TC, the correlation between the

leave-one-out forecasts and actual observations is as

high as 0.76, highlighting the efficiency of our proposed

feature-oriented approach (Fig. 3a). By summarizing the

marginal distributions of the forecasts for all five track

types (1, 3, 4, 5, and 6), the overall correlation skill is 0.71,

an improvement over the geographic-based categorization

approach (Chu et al. 2007). The proposed forecast model

also provides a 0.32 Brier skill score, showing significant

enhancement over a simple climatology prediction.

The TC forecast framework developed in this study is

valuable. First, it is physically based on the TC origin

and track path feature. Hence, it should be easier to

interpret and forecast the TC activity in terms of the

mean genesis location, mean tracks, and the preferred

landfall location for a given type (Fig. 1). Second, fore-

casts of seasonal TC counts are presented in probabi-

listic format, which is preferred for decision makers,

since it provides the uncertainty of the prediction. In

addition, the proposed hierarchical probabilistic struc-

ture for both regression models can serve as the perfect

platform for further studies, because any probabilistic

model can be treated as an independent modulo and

seamlessly plugged into a unified Bayesian framework.

Albeit in this study we assume that the link function

between the TC rate and the predictors is linear (or gen-

eralized linear), which is not necessarily the best ap-

proximation for the true underlying physical model. In

principle, these models can be extended to nonlinear

link function via a proper nonlinear probabilistic model,

such as kernel-based Gaussian processes. Obviously, the

predictor selection procedures are also needed to be re-

vised accordingly in this regard. However, this promising

approach is beyond the scope of this study.
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APPENDIX

Conditional Posterior Distribution for a Poisson
Regression Model

For the sake of simplicity, in the following derivation,

we will drop the notation of the predictor matrix X,

which is always given by default.

On the basis of Eq. (3) and model (2), it follows that

P(Zjh, b, s2) } P(hjZ, b, s2)P(Zjb, s2)

5 P(hjZ)P(Zjb, s2). (A1)

Substituting the probability model (2) into (A1) and

ignoring the constant part yields

P(Zjh, b, s2) }
1

sN
P

N

i51
exp �eZ

i 1 Z
i
h

i

�

� 1

2s2
(Z

i
�X

i
b)2

�
. (A2)

This is not a standard density distribution, but we can

design a Gibbs sampler through which the output of each

of its iteration will be of the distribution given by (A2).

From (A2), one can see that Zi is conditionally in-

dependent from each other for i 5 1, 2, . . . , N given b

and s2; therefore, sampling from Zijh, b, Z2i, s2, where

Z2i 5 [Z1, . . . , Zi21, Zi11, . . . , ZN]9, is equivalently sam-

pling from Zijh, b, s2. We ignore the constant part and

obtain

P(Z
i
jh, b, s2) } exp �eZ

i 1 Z
i
h

i
� 1

2s2
(Z

i
�X

i
b)2

� �
,

i 5 1, 2, . . . , N. (A3)

To sample Zi from (A3), in this paper we apply the

Metropolis–Hasting algorithm. One can refer to Ripley

(1987), Gelman et al. (2004), or originally Hastings

(1970) for the details of this algorithm.

After the latent vector Z is obtained, the model is ex-

actly the same as the so-called ordinary linear regression

and its Bayesian inference derivation is straightforward.

The joint posterior distribution for (Z, b, s2) can be ex-

pressed as
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P(Z, b, s2jh) } P(hjZ, b, s2)P(Z, b, s2)

5 P(hjZ)P(Zjb, s2)P(b, s2). (A4)

With (A4) and under the noninformative prior for the

parameter given by Eq. (4), we have

P(b, s2jZ, h) } P(Z, b, s2jh) } P(Zjb, s2)P(b, s2)

} (s2)�(N/211) exp �(Z�Xb)9(Z�Xb)

2s2

� �
.

(A5)

From (A5), if s2 is given, the conditional posterior dis-

tribution for b obviously is multivariate Gaussian:

bjZ, h, s2 ; Normal(bjb̂, (X9X)�1
s2),

where

b̂ 5 (X9X)�1X9Z. (A6)

Alternatively, if b is given, the conditional posterior

distribution for s2 is a scaled-inverse-x2 distribution;

that is

s2jZ, h, b ; Inv� x2(s2jN, s2),

where

s2 5
1

N
(Z�Xb)9(Z�Xb). (A7)

In (A7), Inv 2 x2 refers to the scaled-inverse-x2 distri-

bution. With (A3), (A6), and (A7), we have completed

the proposed Gibbs sampler, and its stationary output

within each iteration will be equivalently sampled from

the joint posterior distribution of set (Z, b, s2) from the

model given by Eq. (2).
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