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Abstract:

The objective of this study is to develop an operational canonical correlation analysis (CCA) statistical model for sea-level
forecasts in the U. S.-affiliated Pacific Islands (USAPI) with lead times of several months or longer. The El Niño-Southern
Oscillation (ENSO) climate cycle and the sea-surface temperatures (SSTs) in the tropical Pacific Ocean are taken as the
primary factors in modulating sea-level variability on the seasonal time scales.

Observations revealed that the sea-level variations in the USAPI are sensitive to ENSO cycle with low sea level during
El Niño and high sea level during La Niña events. The correlation between the sea-level variability and the fluctuations of
tropical Pacific SSTs has been found to be strong. The cross-validated results indicated that the SST-based CCA model is
potentially useful in predicting seasonal sea-level variations in the USAPI. For all target seasons at 1- and 2-season lead
times, the average correlation skill has been found to be 0.50 or better. Based on this operational CCA model, the real-time
forecasts for seasonal sea-level variations (i.e. deviations with respect to climatology) are published at the official web
site of Pacific ENSO Applications Center (PEAC) (http://lumahai.soest.hawaii.edu/Enso/peu/update.html) for planning and
decision options regarding hazard management in the USAPI. Copyright  2007 Royal Meteorological Society
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INTRODUCTION

This study is aimed at providing a basis for the
development of an outlook for seasonal sea-level vari-
ability in the U.S-affiliated Pacific Islands (USAPI).
At present, the USAPI consisting of Guam, Repub-
lic of Palau, Commonwealth of the Northern Mari-
ana Islands, Federated States of Micronesia, Marshall
Islands, and American Samoa are provided with an El
Niño–Southern Oscillation (ENSO)-based seasonal rain-
fall prediction. This information is significant to haz-
ard preparedness actions in these islands. For example,
the advance information on ENSO during the year of
1997–1998 helped the USAPI islanders to prepare, col-
lectively and individually, a real-time hazard mitigation
response.

In addition to seasonal rainfall products, there
is a strong demand for forecasts of sea-level

* Correspondence to: MD. Rashed Chowdhury, Research Scientist,
Pacific ENSO Applications Center, University of Hawaii at Manoa,
2525 Correa Road, HIG 350, Honolulu, Hawaii 96822.
E-mail: rashed@hawaii.edu

variations with a lead time of a season or longer
for the USAPI. This demand was raised by the
representatives of each of these islands in the last Pacific
ENSO Applications Center (PEAC) review meeting
(http://research.eastwestcenter.org/climate/PEAC/) held
in Honolulu, Hawaii (USA), June 1–3, 2004. Their
motivation stems from the necessity to plan for
extreme events and to facilitate basin-wide planning.
Such forecasts would be expected to have far-reaching
economic ramifications. Therefore, our primary intentions
are to identify the nature and strength of possible
teleconnections between variations in sea level and the
ENSO events, and to develop a statistical scheme that
can capture the natural variability of seasonal sea level,
quantifying the skill at lead times of one to three seasons.

ENSO has a significant impact on the climate variabil-
ity in the Pacific Islands. Bjerknes’ (1966, 1969) pioneer-
ing studies indicated that tropical climate was strongly
influenced by ENSO episodes. Subsequent empirical
studies (e.g. Ropelewski and Halpert, 1987; Chu, 1995;
Chu and Chen, 2005) supported the results of Bjerknes.
Lau’s (1985) global climate model experiments indicate
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that much of the atmospheric response to ENSO is associ-
ated with the changes in sea surface temperatures (SSTs)
in the Pacific. Pacific SSTs can thus be used to forecast
regional climate fluctuations, especially in the tropical
Pacific (Barnston and He, 1996; Yu et al., 1997). The
state of the ENSO not only directly affects the climate
in the tropical Pacific, but also affects the climate over
many large regions of the world far removed from the
Pacific through a chain of teleconnections that take only
a few weeks to occur once an El Niño or La Niña has
established itself (Tribbia, 1991).

While the monsoon subsystems in the western Pacific
are connected to variations in SSTs in the Pacific,
research specifically addressing the ENSO climate cycle
and sea-level variation in the USAPI is rather limited.
Xue et al. (2000) provided some initial findings on
ENSO prediction and its impact on sea-level variability,
concluding that the sea level contains the most essential
information for ENSO because it represents the filtered
response of the ocean to noisy wind forcing (also see
Xue and Leetmaa, 2000). Our study, however, examines
the robustness of the ENSO and sea-level relationship by
analyzing the composites of seasonal variations and by
correlating the SST time series at each geographical grid-
point with sea levels at various gauges. Also, different
from Xue and Leetmaa’s Markov model for sea-level
forecasts, we employed CCA to develop an operational
forecasting scheme for sea-level variability.

U.S.-AFFILIATED PACIFIC
ISLANDS – ENVIRONMENTAL SETTINGS

The U.S-affiliated Pacific Islands include Territory of
Guam, Republic of Palau, Commonwealth of the North-
ern Mariana Islands, Republic of the Marshall Islands,
Federated States of Micronesia, and American Samoa
(Figure 1). A brief summary of environmental settings
of these Islands is as follows:

Guam is the largest Micronesian island, with a land
area of 212 square miles. The Republic of Palau (RPalau)
is the westernmost jurisdiction in Micronesia, less than
500 miles from the Philippines. The Commonwealth of
the Northern Mariana Islands (CNMI) forms a chain of
17 volcanic islands, with a land area of 181 square miles.
The Republic of the Marshall Islands (Marshalls) consists
of two chains of 29 coral atolls and five low islands
stretching several hundred miles from north to south
with a total land area of 70 square miles. The Federated
States of Micronesia (FSM) consist of four states: Chuuk,
Kosrae, Yap, and Pohnpei. American Samoa (ASamoa),
a group of islands in the mid-South Pacific, has a land
area of 76 square miles.

DATA, BASIC INDICES, AND METHOD

Sea-level data

The University of Hawaii Sea Level Center (UHSLC)
provides three online databases: research quality data,
fast delivery data, and map data. The quality assessment
is mostly based on the residuals (observed data minus
predicted tides) of the hourly data. This assessment also
applies to the daily and monthly data since they were
derived from the quality-controlled hourly data. In order
to maintain the required quality of data, the UHSLC
emphasizes three main aspects: 1) the linking of the
data to a reference level (tidal datum), 2) the inspection
of the timing quality, and 3) the replacement of short
gaps and spikes. Daily values are obtained by using a
two-step filtering operation. First, the dominant diurnal
and semidiurnal tidal components are removed from the
quality-controlled hourly values. Secondly, a 119-point
convolution filter (Bloomfield, 1976) centered on noon is
applied to remove the remaining high-frequency energy
and to prevent aliasing when the data are computed
to daily values. The 95, 50, and 5% amplitude points
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Figure 1. Geographical locations of the U.S-affiliated Pacific Islands (Note that tide gauge stations Marianas from Guam, Kwajalein from
Marshalls, and Pago Pago from American Samoa (underlined) are taken for comprehensive composite analyses). See Table I for geographical

details (latitude, longitude) of these tide gauge stations.
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are 124.0, 60.2, and 40.2 h, respectively. The Nyquist
frequency of the daily data is at a period of 48 h, which
has a response of about 5% amplitude; thus, aliasing is
minimal. The primary tidal periods have a response of
less than 0.1% amplitude.

The technical aspects of quality-control procedures
have been well documented in Kilonsky and Caldwell
(1991) and Caldwell and Kilonsky (1992). This research
quality data of the UHSLC is the largest global col-
lection of quality-controlled sea-level data. More com-
prehensive data-related discussions are also available at
http://ilikai.soest.hawaii.edu/UHSLC/jaslpr2/slman2.html
(also see references therein). We simply downloaded
the research quality monthly sea-level data for some of
the specific tide gauge stations from the UHSLC web
site (available at http://ilikai.soest.hawaii.edu/uhslc/rqds.
html). The monthly sea-level values available in the
UHSLC are calculated from the daily data with a sim-
ple average. Geographical details (latitude, longitude) and
length of data records of the tide gauge stations are listed
in Table I. Tide gauge stations located at Guam, Mar-
shalls, and American Samoa have the longest data records
and, in order to maintain consistency, detailed analyses
are conducted for all the above three stations using data
records from 1950 to 2003. For the other three stations
with shorter records in Table I, some analyses are also
performed.

While most statistical techniques require that data
are stationary, most climate data exhibit cyclostationary
features due to the seasonal nature of climate. In order
to remove nonstationarity from the data, the periodic
mean function of sea-level variation, which is estimated
using data from 1975 through 1995, has been subtracted.
Although the annual maximum sea level shows an
increasing trend, the increase being concentrated in the
latter half of 20th century (see Pacific ENSO Update
12 : 2, 2006), the annual variability of mean did not show
any significant trend.

For a number of reasons, missing values existed in
some of the years in the UHSLC time series. For example,
the sea-level data of Guam in 1998 were missing because
the tide gauge was severely damaged by tornado. In
this case, missing values were replaced with the values

of the best ‘nearest neighboring stations’. In this case,
the missing values of Guam were replaced by the
values obtained by fitting a linear regression (r2 = 0.56,
significant at 0.01 level ) equation with the observed
values of Saipan, after observing that the two time series
are highly correlated to each other and also statistically
significant. Previous studies by Chowdhury et al. (2006)
have already confirmed that, with the exception of
American Samoa, the monthly sea-level fluctuations of
the USAPIs are significantly correlated with each other’s.
This finding also justifies our initial choice to utilize
two of the north Pacific Islands – one from the west
(Guam) and the other from the east (Marshalls) – and
one of the South Pacific Islands (American Samoa) for
detailed analyses. Data records for these three gauges
are longer and their locations are also geographically
representative. It is also worth noting here that currently
the CCA analyses for real-time forecasts are conducted
from a shorter time series data (1975–2005). The shorter
time series exhibited more data consistency for all the
available gauges in the USAPI and provided better
management capability to cyclostationary climate data.

Observed climate fields of SST and atmospheric
circulation data

The National Center for Environmental Prediction
(NCEP) historical monthly fields of the global SST have
been used in this study. In this NCEP data set, the
monthly SST data for the period of 1982–1994 have been
established by blending real-time in situ (ship and buoy)
and satellite measurements (Reynolds, 1988; Reynolds
and Marsico, 1993). For this study, the Extended
Reconstructed SST (ERSST) (ERSST: version 2) data
(Smith and Reynolds, 2002) from the National Oceanic
and Atmospheric Administration (NOAA) – National
Climate Data Center (NCDC) have been used. The mean
has been subtracted from the original data. The ERSST
data are based on the Comprehensive Ocean-Atmosphere
Data (COAD) data.

The SST data for the tropical region covered by lat-
itudes (30S ∼ 30N) and longitudes (100 °E ∼ 60 °W)
have been downloaded from the web link of the
International Research Institute for Climate Prediction

Table I. Geographical details (latitude, longitude) and length of data records of each tide gauge
station.

Islands Tide gauge
stations (#)

Latitude Longitude Years of data
records

Guam Marianas (# 053) 13.44 °N 144.65 °E 1948–2003
Rpalau Malakai – B (# 007) 7.33 °N 134.47 °E 1969–2003
CNMI Saipan (# 028) 15.23 °N 145.75 °E 1978–2003
Marshalls Kwajalein (# 055) 8.73 °N 167.73 °E 1946–2003
FSM Chuk (# 054) 7.45 °N 151.85 °E 1963–1991
ASamoa Pago Pago (# 056) 14.29 °S 170.69 °W 1948–2004

Note: RPalau stands for Republic of Palau, CNMI for Commonwealth of the Northern Mariana Islands, FSM for
Federated States of Micronesia, and ASamoa for American Samoa (underlined stations are taken for comprehensive
analyses).
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(http://iridl.ldeo.columbia.edu/expert/SOURCES/
.NOAA/.NCDC/.ERSST/.SST/). The time record is from
January 1950 to December 2003. For atmospheric circu-
lation data (zonal wind at 850-hPa), the NCEP/National
Center for Atmospheric Research (NCAR) reanalysis has
been used (Kalnay et al., 1996). This 850-hPa level is
known to be a good indicator of broad-scale features of
low-level winds.

Harmonic analysis

Harmonic analysis has commonly been used to determine
the annual fluctuations of geophysical time series (see
Chowdhury et al., 2006). In this study, the amplitude,
phase, and percentage explained by the annual and semi-
annual variations at these long-term sea-level stations are
analyzed.

Linear correlations and scatterplots

The standard approach to study the relationship among
the climate fields (such as SST) by correlating time
series at each geographical grid-point with the variable
of interest (such as sea level of each year) has been
conducted. The Pearson correlation was adopted and the
resulting correlations of seasonally averaged variables
have been plotted. Scatter plots were drawn to examine
whether the relationship between SST anomalies and sea-
level variations are linear.

Canonical correlation analysis (CCA) and cross
validation

The CCA technique was introduced by Hotelling (1935),
and since its introduction, prediction of climate varia-
tions using the method has received wide attention for its
many success stories. CCA is a procedure for assessing
the relationship between two fields of variables. Specif-
ically, this analysis allows us to investigate the rela-
tionship between two sets of basis vectors, one for x
and the other for y, such that the correlations between
the projections of the variables onto these basis vec-
tors are mutually maximized. Spatial loading patterns of
empirical orthogonal function mode 1 (EOF) (henceforth,
EOF1) and empirical orthogonal function mode 2 (hence-
forth, EOF2) for SST were plotted. Finally, the CCA
cross-validation skills results are provided. This popular
method has been described extensively in the literature
(see Barnston, 1994; Chu and He, 1994; Barnston and
He, 1996; Barnston and Smith, 1996; Yu et al., 1997),
and therefore not discussed here further. As in many
cases the operational CCA forecasts are usually derived
by applying linear statistics to a nonlinear system, there-
fore several authors have pointed out that caution needs to
be applied when interpreting CCA (Cherry, 1996; Cherry,
1997; Newman and Sardeshmukh, 1995).

In CCA, it is implicitly assumed that the first three
modes of the predictand field are the ones that are most
highly correlated with the first eight modes of the predic-
tor fields. However, there is no guarantee that one of the
higher modes of variations in the predictor set (e.g. higher

than the eighth mode) will not be strongly associated with
the predictand set. To overcome this potential problem,
an independent approach – Principal Component Regres-
sion (PCR) (Draper and Smith, 1981) – has been used.
The cross-validation scheme is also employed to assess
the PCR model validity and adequacy.

The Climate Predictability Tool (CPT) software
(available at http://iri.columbia.edu/outreach/software/)
has been used to generate the CCA and PCR analyses.
The CPT provides a Windows package for constructing
a seasonal climate forecast model, performing model
validation, and producing forecasts, given updated data.
Although the software is specifically tailored for these
applications, it can be used in more general settings
to perform CCA or PCR on any data, and for any
application. The help pages provide guidance for using
the software only in the applications for which it was
specifically designed, but should be sufficiently general
to provide guidance for other uses.

HARMONIC, CORRELATION, AND EMPIRICAL
ORTHOGONAL FUNCTION (EOF) ANALYSIS

Annual cycle of sea level

The climatology of the annual cycle of sea level has
been investigated, details of which are reported elsewhere
(Pacific ENSO Update 11 : 1, 2005; also see Chowdhury
et al., 2006). In brief, the sea-level variability for most
of the northern Pacific Islands, by and large, displayed a
strong annual cycle with a gradual increase of sea level
from January to July and recession from July to Decem-
ber. On the other hand, the lone South Pacific island
(American Samoa), tended to show several peaks in the
annual cycle. Results of harmonic analyses showed that,
except for the Marshalls, the annual cycle (i.e. first har-
monic) explained a considerable percentage (64–88%) of
variances of the sea-level variability for the other North
Pacific Islands (e.g. Guam, RPalau, CNMI, and FSM).
The variance explained for Marshalls is 44% and for
American Samoa it is only 20%. However, the semian-
nual cycle (i.e. second harmonic) adds considerably to
the variances in these two cases −17% for Marshalls and
11% for American Samoa respectively.

Linear correlation of seasonal averages of SSTs and sea
level

The 3-month average sea level for the target season
in July–August–September (JAS) was correlated with
the 3-month moving average of SSTs starting from
the preceding season. In Guam, the sea level in JAS
displays strong and positive correlations with the SSTs
of the preceding April–May–June (AMJ) in the tropical
western Pacific and negative correlation with SSTs in the
Niño 3.4 region (Figure 2(a)). The positive correlation
implies that warmer sea waters or more heat content with
a deeper thermocline in the tropical western North Pacific
correspond to higher sea levels in Guam. Conversely,
negative sea-level anomalies are associated with cooler
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sea waters or less heat content in the western North
Pacific. By JAS, the area of positive correlation expands
equatorward and the negative correlation in the equatorial
eastern Pacific strengthens (Figure 2(b)). Similar patterns
were also observed in the case of the Marshall Islands
(Figure 2(c),(d)). This correlation result between the sea
level for the target season JAS and the SSTs in the
tropical Pacific indicates a strong link with ENSO.
However, differing from Guam, local SSTs do not
seem to be in phase with sea-level variations at the
Marshall Islands. American Samoa showed a correlation
map in AMJ that is similar to that for Guam and
the Marshalls (Figure 2(e)). However, in the following
JAS, the positive correlation in the southwestern Pacific
strengthened, but the negative correlation in the Niño 3.4
region weakened and, as a result, the ENSO signal in the
central Pacific eroded (Figure 2(f)).

Scatterplots for SST anomalies and seasonal sea level
variations are shown in Figure 3. These plots are pre-
pared on the basis of the anomalous SSTs of the region
that displayed highest correlation with the sea-level vari-
ations (Figure 2). For example, the sea-level variations
of Guam displayed highest correlation (+0.6–0.7) with
the anomalous SSTs in the region enveloped by longi-
tude 140E–180 and latitude 10–20N (Figure 2(a)). Sim-
ilarly, the highest correlated (−0.5–0.6) region for Mar-
shalls lies between longitude 170E–140W and latitude is
0–20N (Figure 2(c)). For American Samoa, the correla-
tion is +0.5–0.7 and the region lies between longitude
170–100 °W and latitude 15–30 °S (Figure 2(e)).

The scatterplots tended to show that a moderate-to-
strong linear relationship exists between the anomalous
SSTs (in January-February-March (JFM), AMJ, and JAS)
and sea-level variations (in AMJ, JAS, and October-
November-December (OND)) (see Figure 3). It may be
mentioned here that, other than these seasons, a very
weak linear relationship has been found to exist (not
shown in Figure 3) between SSTs in OND and sea level
in JFM. This relationship is very strong for ASamoa
and relatively weak for Marshalls. Other than for the
season OND in Guam (Figure 3 (iii)), this relationship
is also strong. It is important to note here that some
nonlinearity among these data were observed, which was
somewhat expected. However, this did not cause any
serious barriers for CCA forecasts, because there are
examples that operational empirical forecasts are usually
derived by applying linear statistics to a nonlinear system
and assumes, rather than proves, causality (see Murphy
et al., 2001).

EOF analysis of SST and sea-level records

The EOF analyses of the SST data were carried out
to minimize problems of collinearity and to generate
relatively independent, contiguous SST indices. Lead-
ing empirical orthogonal function mode 1 (EOFs) are
selected as independent variables for the subsequent CCA
model. This is a recommended way of handling a predic-
tion problem when the candidate predictor is a spatially

co-varying field (Jolliffe et al., 1986). The EOF spatial
loading summarizes the variances of SST and sea level
respectively. The leading EOFs of SST anomalies (hence-
forth, X-EOFs) have been calculated for each season. A
total of 8 eigenmodes have been retained in SST analysis
as they explained 73–76% of the total variance (Table II).
The EOFs for sea levels (henceforth, Y-EOFs) provide
83–96% of variances with the first three modes retained
(Table III).

The spatial structure X-EOF1 resembles those of
the leading eigenmodes presented in past studies (for
example, see Kawamura, 1994 and references therein).
For X-EOF1, negative loadings exist over the tropical
western Pacific extending to the subtropical latitudes, and
large positive loadings exist over the central and eastern
equatorial Pacific (Figure 4 left panel ). In this EOF1,
the large positive loadings over the central and eastern
equatorial Pacific (Figure 4) and relatively weak loading
in the tropical Indian Ocean (not shown in Figure 4)
resemble slightly different features from other similar
studies (e.g. Hsiung and Newell, 1983; Nitta and Yamada,
1989). Furthermore, it can also be seen in this EOF1 that
negative loadings over the central North Pacific around
20° –30 °N are not very dominant. Thus, like Kawamura
(1994), it is concluded that this mode accounts for the
fundamental SST fluctuations over the equatorial Pacific
and is not very strongly linked to those over the tropical
Indian Ocean or the central North Pacific.

Table II. Percentage of variance explained by eigenvectors for
the Pacific sea-surface temperatures (values in parentheses are

cumulative variance by the k largest eigenvalues).

Ek/SST JFM
SSTs

AMJ
SSTs

JAS
SSTs

OND
SSTs

E1 30.5 (30.5) 26.2 (26.2) 29.0 (29.0) 31.5 (31.5)
E2 15.5 (46.0) 17.1 (43.3) 17.5 (46.5) 17.5 (49.0)
E3 10.5 (56.5) 9.5 (52.8) 8.1 (54.6) 8.1 (57.1)
E4 6.2 (62.7) 6.5 (59.3) 7.0 (61.6) 5.2 (62.3)
E5 5.1 (67.8) 5.0 (64.3) 5.0 (66.6) 4.0 (66.3)
E6 4.5 (72.3) 4.5 (68.7) 4.0 (70.6) 3.8 (70.1)
E7 3.5 (75.8) 3.8 (72.5) 3.2 (73.8) 3.0 (73.1)
E8 – 3.0 (75.5) 2.8 (76.0)

(Note: JFM: January–February–March, AMJ: April–May–June, JAS:
July–August–September, and OND: October–November–December).

Table III. Percentage of variance explained by eigenvectors for
sea levels (values in parentheses are cumulative variance by the

k largest eigenvalues).

Ek/Sea-level JFM
Sea

level

AMJ
Sea
level

JAS
Sea
level

OND
Sea

level

E1 66.0 (66.0) 58.0 (58.0) 52.0 (52.0) 54.0 (54.0)
E2 18.0 (84.0) 25.0 (83.0) 32.0 (84.0) 34.0 (88.0)
E3 7.0 (91.0) – – 8.0 (96.0)

(Note: See footnote in Table II).
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Figure 4. The principal loading patterns of SST anomalies for EOF1 (left panel ). Temporal score time series data (right panel ) (Note: Figures
in parenthesis are percentage of variances; see notes in Table II for abbreviations of OND, JFM, AMJ, and JAS).

The temporal variability of EOF1 coincides quite well
with the occurrence of ENSO events having a quasi
periodicity of 2–5 years (Figure 4 right panel). There
is also an indication of interdecadal variability in the
EOF1 time series, particularly in JFM and AMJ SST
modes (Figure 4(c) and (d)). From the time-dependent
EOF series, major years of El Niño such as 1982–1983
and 1997–1998 stand out. However, an expanded El
Niño signal (well off the tropics) is visible in EOF1 which
could be a combination of El Niño and Pacific Decadal

Oscillation (PDO). Therefore, although EOF1 has been
identified with the ENSO mode, at this stage, it is difficult
to conclude that no other eigenmodes include the ENSO
signal.

The spatial structure of EOF2 shows some noteworthy
differences to that of EOF1 (Figure 5). In EOF2, large
positive loadings are located over the western Pacific and
the South China Sea, whereas negative loadings exist in
the mid-latitude of the north Pacific (Figure 5(a)). Also
weak positive loadings exist in low-latitude regions of the
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Figure 5. See as Figure 4, except for EOF2.

eastern and central Pacific. The time component of EOF2
is in contrast with that of EOF1; it shows a long-term
upward trend with pronounced signal in the last 20 years
(Figure 5 right panel). Similar features have also been
found in Kawamura (1994) and Allan and Slingo (2002).

RESULTS

ENSO and seasonal sea-level variability

Results revealed that the sea-level variations in the
northwestern tropical Pacific islands (Guam and Mar-
shalls Islands) have been found to be sensitive to the

ENSO cycle, with low sea level during El Niño and high
sea level during La Niña events. Consistent with north-
western Pacific islands, American Samoa also displayed
pronounced fall and rise of sea levels during El Niño
and La Niña years. However, as compared to Guam and
Marshalls, American Samoa did show these variations
with a 4–6 month delay. While the sea-level variations
in Guam/Marshalls start showing up from July, it is usu-
ally January when the sea level in American Samoa starts
to fluctuate. A comprehensive analysis of El Niño/La
Niña events and the seasonal sea-level deviations for the
USAPI has been reported in Chowdhury et al. 2006.
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CCA model forecast and Hindcast skill
The hindcast skill of the CCA model for 1950–2003
is estimated using a cross-validated scheme. Cross-
validation is a generalization of the common technique
of repeatedly omitting a few observations from the data,
reconstructing the model, and then making forecasts for
the omitted cases (e.g. Stone, 1974; Chu and He, 1994).
Cross-validation is conducted to evaluate the overall
forecasting skill of the CCA model. The cross validation
is nonparametric and provides an unbiased estimate of
forecast skill.

In this study, only one observation was removed at a
time for each case. This is justified because interannual
autocorrelations in the data are small. Therefore all data
available were used except that for the season for which
the prediction was targeted. For example, to forecast
the summer (JAS) sea level of 1990 with 0-season lead
time, a 53-year JAS time series of sea level (1950–89,
1991–2003) and a 53-year AMJ SST series (1950–1989,
1991–2003) were used to build a CCA model. Then
this resulting CCA model was used to forecast sea-level
values in summer 1990 using the independent SST values
of spring 1990. The climatology is re-computed when
each year is held out, and the anomaly of the target year
is redefined in terms of the means of the other years. By
doing this repeatedly, we obtain 54 forecasts of sea level
which can be compared to the observed sea level. The
moving-average season of three consecutive months was

then used to identify the season with best predictability,
yielding a total of 12 target seasons (JFM, FMA, MAM,
AMJ, MJJ, JJA, JAS, ASO, SON, OND, NDJ, and DJF).

Table IV provides cross-validation correlation skills
for the 12 moving seasons at 0-season lead time. Overall,
sea-level forecasts for all the 12 seasons are reasonably
well predicted (with 0-season lead) with a mean correla-
tion skill of 0.635, 0.693, and 0.612 for Guam, Marshalls,
and American Samoa, respectively.

The aforementioned result is applied to a zero season
lead time. Now the question arises as to whether there
is any predictability of sea level at time scales one to
three seasons lead time. To provide a predictive skill at
longer lead time, CCA cross-validation skills up to three
seasons in advance for Guam, Marshalls, and ASamoa are
presented in Figure 6 (top panel ) and the average skills of
these stations at 0 to 3 seasons lead time are presented in
Figure 6 (bottom panel ). As indicated, different islands
show different levels of predictive skill. In general the
forecast skills for JFM and AMJ target seasons in Guam,
Marshalls, and American Samoa are well predicted with
an average correlation skill of 0.583, 0.632, 0.604 (for
JFM), and 0.607, 0.604, 0.642 (for AMJ) respectively.
As the season advances, forecast skills fluctuate and the
predictions skills in JAS are not as skillful as those
of JFM and AMJ. For instance, JAS predictions skills
in Guam and American Samoa are 0.490 and 0.567
respectively, when averaged from 0 to 3 seasons ahead.
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Figure 6. CCA cross-validation hindcast skills for Guam, Marshalls, and ASamoa (top Panel ) and average skills at 0 to 3 seasons lead time
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Table IV. Zero season lead CCA cross-validation skill for 12
moving seasons (from JFM SST × AMJ SL to DJF SST ×

MAM SL) in Guam, Marshalls, and A Samoa.

Target
season
(Sea-level)

Predictor
period
(SST)

Guam Marshalls A Samoa Average

AMJ JFM 0.631 0.695 0.730 0.685
MJJ FMA 0.619 0.699 0.708 0.675
JJA MAM 0.624 0.638 0.646 0.636
JAS AMJ 0.634 0.516 0.591 0.580
ASO MJJ 0.592 0.528 0.421 0.514
SON JJA 0.641 0.658 0.418 0.572
OND JAS 0.691 0.841 0.448 0.660
NDJ ASO 0.556 0.858 0.593 0.669
DJF SON 0.710 0.844 0.663 0.739
JFM OND 0.701 0.726 0.708 0.712
FMA NDJ 0.680 0.654 0.716 0.683
MAM DJF 0.540 0.660 0.705 0.635

Average 0.635 0.693 0.612

(Note: Lead time is the time interval between the end of the initial
period and the beginning of the forecast period. Also see footnote
in Table III for other abbreviations. Forecasts are thought to be of
useful skill (or at least fair skill) if the CCA cross-validation value is
greater than 0.3. Higher skills correspond to greater expected accuracy
of the forecasts. Skill levels greater than 0.4 and 0.5 are thought to be
moderate and good, while skill levels greater than 0.6 are thought to be
strong).

The average predictive skill for Guam has been found
to be strong (0.661 and 0.613) at 0 to 1-season lead time,
the skill remained considerably high (0.551) at 2-season

lead time, and the skill is still reasonably good (0.486)
at 3-season lead time (Figure 6, bottom panel)‘. Both
the Marshalls and American Samoa displayed similar
correlation skills −0.686, 0.631, 0.518, and 0.411 for
Marshalls at 0 to 3-seasons lead time, and 0.619, 0.642,
0.593, and 0.440 for American Samoa at 0 to 3-seasons
lead time respectively (Figure 6). If the average skills for
all four seasons are averaged, Guam exhibits the highest
skill in OND (0.631) and the lowest in JAS (0.490). The
highest and lowest 4-seasons average skills for Marshalls
is 0.632 in JFM and 0.403 in JAS, while American Samoa
displayed the highest and lowest skills in AMJ (0.642)
and OND (0.481) respectively.

One reason why JAS has weaker predictability is
probably due to the effect of the spring predictability
barrier. Previous studies by Yu et al. (1997) found it to
be very difficult to generate accurate rainfall forecasts for
the USAPI using spring SSTs as predictors. However,
unlike rainfall prediction, where the spring-barrier effect
has contributed to the difficulty of rainfall predictions,
this was a somewhat weaker obstacle for SST-based sea-
level predictions. The reason why JFM and AMJ have
better predictability is that ENSO responses are most
pronounced during boreal winter as the Pacific SSTs and
Southern Oscillation index anomalies reach their peaks
during boreal winter/spring.

Principal component regression (PCR) model forecast

The same cross-validation scheme was employed to
assess the PCR model validity and adequacy. Figure 7
(top panel ) shows the lead time-target season cross-
section of PCR cross-validation skill for the tide gauge
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Figure 7. Same as Figure 6, for PCR cross-validation hindcast skills for Guam, Marshalls, and ASamoa (top panel ) and average skills of these
stations at 0 to 3 seasons lead (bottom panel ). This figure is available in colour online at www.interscience.wiley.com/ijoc
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stations in Guam, Marshalls, and American Samoa. These
three stations have provided almost identical value with
the previous CCA analyses. The other three stations
at RPalau, CNMI, and FSM (not reported here) also
provided similar skills. The PCR model also provided
reasonably skillful prediction with one to three seasons
lead (Figure 7, bottom panel ).

Skills of CCA, PCR, and other sea-level forecast
models – comparative perspective

When comparing the skills of CCA and PCR models,
both the models provided similar skillful results. While
the CCA model-based average cross-validation correla-
tion skills for Guam, Marshalls, and American Samoa are
0.659, 0.628, 0.552, and 0.460 at 0-, 1-, 2-, and 3-seasons
lead respectively, the corresponding PCR model skills
are found to be 0.655, 0.628, 0.554, and 0.446 respec-
tively. Other than some sampling effects, the CCA and
PCR model are found to be equally skillful in handling
sea-level forecasting problems for the USAPI.

The skills of CCA and PCR models are compared
with the skills of persistence forecasts. It has been found
that at 0-season lead the correlation skill for persistence
forecast are comparable to CCA and PCR models. While
the average correlation skill for CCA and PCR models at
0-seasons lead are 0.659 and 0.655, the average skills for
persistence forecasts for the same time frame is 0.586.
However, as the lead time increases to 1 to 3-seasons,
the correlation skill for persistence forecasts appeared to
be weaker and were found to be poor when compared to
CCA and PCR models. Therefore, the CCA and PCR
models are more skillful than persistence forecasts in
handling sea level prediction schemes.

It is, however, worth comparing the skill of the CCA
model with other models forecasting the sea level in
the western Pacific region. One of the available mod-
els is the Markov model for sea-level forecasts (see
Xue and Leetmaa, 2000; available at the web site:
http://www.cpc.ncep.noaa.gov/products/people/yxue/
MKmodel sl clim7100 godas/corr SLfore TG27 weaver.
gif). As compared to the Markov model, our CCA fore-
cast model provides almost comparably skillful results
for the 0-season and 1-season lead time. As the lead time
increases, for example with 2-seasons and 3-seasons lead
time, our model provides a slightly better skill than the
Markov model. Another important finding is that, as com-
pared to the Markov process, our model captured a much
better skill for the Marshall Islands. While the Markov
model provides skill levels of 0.3 ∼ 0.4 and 0.2 ∼ 0.3 at
2- and 3-seasons lead for Marshall Islands, the skill of our
CCA model has been found to be 0.532 and 0.418 respec-
tively. While skill levels for tide gauge stations are likely
to be slightly lower than the sea level anomalies (see Xue
and Leetmaa, 2000), our CCA model provided skillful
results almost similarly comparable to the Markov model
of sea-level anomalies. This is because our CCA model
focuses on a particular region of the Pacific (USAPI); we
have identified the SSTs of the region that displays the

highest correlation with the sea-level variation for some
specific stations and, therefore a better skill is visible.

It may be mentioned here that, among the USAPIs,
the Marshall Islands are extremely sensitive to sea-level
variability and change. The 1997–98 droughts – when
the sea level in Majuro (Marshalls) was considerably
lower (i.e. 2 ∼ 12 inches) than the average – required
the installation of large desalination plants to meet
the drinking water needs of the densely packed urban
populace. We do not have a model-based study to
correlate drought and sea-level variations in Marshalls;
however, various published/unpublished reports indicate
that, in addition to deficient rainfall, this drought was
also caused by the sea-level variations (see Shea et al.,
2001 and references therein). The stakeholders therefore
demand accurate information on the height, time, and
duration of sea-level forecasts in specific climate sensitive
locations. On the basis of the regional climate dynamics,
the prime responsibility of PEAC is to prepare scenarios
for these sensitive locations about the probable impact of
the extreme event for the upcoming season.

In addition to these three islands, the CCA model has
also been tested with other islands (RPalau, CNMI, and
FSM). The skill level has been found to be similarly high
for these islands. Also, as part of our efforts to develop
an operationally seasonal sea-level forecasting scheme,
we have also tested our model with some other islands
located in the U.S Trust Territory (Wake, Johnston) and
some Hawaii stations (Hilo, Sand, Kahului, Mokuoloe,
and Nawiliwili ). The CCA cross-validated skills for these
islands were not found to be as good as those observed
in the USAPI (skill level lies between 0.3 and 0.5).
Therefore, a CCA model, based on the tropical Pacific
SST alone, may not be able to accurately capture the
sea-level fluctuations for these islands in the US Trust
and Hawaii. Perhaps a complete overhaul with a different
SST region (i.e. other than in the tropics) and with
additional oceanic/atmospheric variables (indices) would
be necessary to raise the predictive skill of sea-level
forecasts for these islands. Research related to this issue
is in progress and will be reported when available.

SUMMARY AND CONCLUSION

Following an overview of the annual cycle – which is
very strong in the north Pacific Islands and relatively
weak in the South Pacific Islands – and evaluating the
impact of ENSO on the seasonal sea-level variabil-
ity – which resembles El Niño for low sea level and La
Nina for high sea level – composite analyses for seasonal
variation, and the effects of SST on sea level have been
studied by linear correlation. The CCA and PCR methods
are employed to forecast sea level. Findings are summa-
rized as follows:

(1) There is a pronounced lead/lag correlation between
sea-level variability in JAS and the fluctuations of
the tropical SST. The correlation intensifies as the
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season advances from AMJ to JAS. For Guam and
the Marshalls, the correlation indicates a linkage that
is related to ENSO. But for American Samoa, this
correlation indicates only moderate to weak linkage.
Sea level variations at Guam and American Samoa
are positively correlated with in situ SST, indicating
positive sea-level anomalies with more heat content
and vice versa. Such a relationship, however, is not
found at Marshall Islands.

(2) The CCA model provides useful skill in predicting
sea level in the Pacific Islands. When all stations
are considered, overall sea-level forecasts for all
the 12-moving seasons displayed a mean skill of
0.635, 0.693, and 0.612 (with 0-season lead) for
Guam, Marshalls, and American Samoa respectively.
Overall, sea-level forecasts for Guam, Marshalls, and
American Samoa are well predicted with a strong
and average skill level of 0.6 to 0.7 at zero to one
season lead time. At two seasons lead, the average
skill level slightly drops to between 0.5 and 0.6.
At three seasons lead time, this skill level drops to
between 0.4 and 0.5. In every case, the observed sea
level shows large enough seasonal variability and the
predicted (hindcast) sea level fits to a large degree
to such variability. Therefore, given the well-known
ENSO impact on USAPI rainfall, the Pacific SSTs
thus offer additional advantages in our predictions of
Pacific island sea-level variability.

(3) A problem with this CCA model is that some of
the ENSO events – like the years of 1951, 1958,
1972, 1982–83, 1987–89, and 1997–98 – have been
found to be underestimated in some of the locations.
Barnston et al. (1999) showed that this problem is
common among ENSO forecast models in the pre-
diction of the 1997–98 warm events. It has been
suggested that atmospheric high-frequency variabil-
ities, e.g. westerly wind bursts and Madden-Julian
Oscillations, played critical roles in the timing and
strength of the 1997–98 warm event (Yu and Rie-
necker, 1998). Xue and Leetmaa (2000) observed that
the warm events in 1982–83 and 1997–98 and the
cold event in 1988–89 are seriously underestimated
in their Markov model. They also suggested that
the atmospheric high-frequency variabilities played
important roles in the timing and strength of the
1982–83 warm and 1988–89 cold events. We have
not made any additional efforts to investigate this
matter further, but we also assume that similar causes,
as identified by other authors, are responsible for
underestimation in some of the major ENSO years
in this research too.

Pacific Island communities are most vulnerable to cli-
mate variability. Advance information on sea-level vari-
ability can contribute significantly to hazard preparedness
actions of the people of these islands. Based on this
operational forecasting technique by the CCA model, the
PEAC has already started publishing the real-time fore-
cast of sea-level deviations at the official web site of

PEAC (http://lumahai.soest.hawaii.edu/Enso/peu/update.
html) with the caption ‘Experimental Sea level Forecasts
(deviations w.r.t. climatology) for the USAPI. This infor-
mation has also been distributed through the printed issue
of Pacific ENSO Update newsletter. Significant efforts
are being made to add more new tide gauge stations from
the USAPI so that a better picture of sea-level variations
is available. The enhancement of current forecasting and
warning capabilities with seasonal sea-level information
and forecasts offers the potential for greater latitude in
planning and decision options regarding hazard manage-
ment in the USAPI.
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