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ABSTRACT

Bayesian analysis is applied to detect change points in the time series of annual tropical cyclone counts over
the central North Pacific. Specifically, a hierarchical Bayesian approach involving three layers—data, parameter,
and hypothesis—is formulated to demonstrate the posterior probability of the shifts throughout the time from
1966 to 2002. For the data layer, a Poisson process with gamma distributed intensity is presumed. For the
hypothesis layer, a ‘‘no change in the intensity’’ hypothesis and a ‘‘single change in the intensity’’ hypothesis
are considered. Results indicate that there is a great likelihood of a change point on tropical cyclone rates around
1982, which is consistent with earlier work based on a simple log-linear regression model. A Bayesian approach
also provides a means for predicting decadal tropical cyclone variations. A higher number of tropical cyclones
is predicted in the next decade when the possibility of the change point in the early 1980s is taken into account.

1. Introduction

Analyzing temporal changes in a climate time series
is becoming increasingly important as we often need to
know when a major shift in climate systems occurs. This
information, if assessed appropriately, would aid re-
searchers and planners in their strategy for more com-
prehensive analyses of complex climate systems and in
sound decision-making processes. One such example is
the well-known changing phase of the Pacific decadal
oscillation (PDO) in the late 1970s. Studies have shown
that the negative phase of the PDO is instrumental for
the wintertime precipitation in the Pacific Northwest
while the positive phase of the PDO does just the op-
posite (Mantua et al. 1997). Therefore, knowing the
turning phase of a major climate system would be ben-
eficial for many sectors such as agriculture and hydro-
power operations.

Bayesian analysis is an efficient way to provide a
coherent and rational framework for distilling uncer-
tainties by incorporating diverse information sources
such as subjective beliefs, historical observations, mod-
el simulations, and new information. A comprehensive
textbook introducing the Bayesian paradigm and its ap-
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plications to atmospheric data is Epstein (1985). Solow
(1988) applied a Bayesian method for inferences about
climate change based on the two-phase regression mod-
el. Elsner and Bossak (2001) explicitly demonstrated
the use of Bayesian analysis to the U.S. hurricanes by
combining the less reliable historical accounts of hur-
ricanes in the nineteenth century with the more reliable
records from the twentieth century to yield a best es-
timate of the annual rates. Besides using a Bayesian
technique for making inferences, Bayes’ theorem can
be applied in a predictive mode for the probability of
future U.S. landfalling hurricanes (e.g., Epstein 1985;
Elsner and Bossak 2001). This feature is applicable for
disaster mitigation planning and insurance/reinsurance
industries because landfalling hurricanes cause enor-
mous property damage and their future occurrences are
unknown in relation to climate variability.

Using a step function as an independent variable and
taking a logarithmic transformation of the annual major
hurricane rates over the North Atlantic as a dependent
variable, Elsner et al. (2000) developed a model for
detecting change points in the Atlantic hurricane time
series. Chu (2002) used a similar log-linear regression
method to model the shifts in annual tropical cyclone
(TC) frequency over the central North Pacific (CNP)
for the period 1966–2000. It was found that two change
points are significant at a 5 0.05 level. A change-point
time may be defined as the last year of an old epoch or
the first year of a new epoch. Here the latter definition
was adopted. The first change point occurred in 1982
with a t ratio of 2.45, and the second shift occurred in
1995 with a marginally significant t ratio of 2.04. As a
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result, the entire 35-yr record is partitioned into three
epochs, 1966–81, 1982–94, and 1995–2000.

Though the approach taken by Chu (2002) provided
a simple and straightforward analysis as to when decadal
variations in TC frequency occurred, it does not take
into account the fact that the seasonal TC occurrence
may be better described by a discrete Poisson process.
Moreover, the log-linear model does not contain infor-
mation related to the posterior probability for the change
point, which is important for the prediction of future
outcomes of the process. Elsner and Schmertmann
(1993) and Wilson (1999) noted that the very low num-
ber of intense hurricanes over the North Atlantic and
the lack of serial dependence in intense hurricanes from
year to year justify the Poisson assumption. This may
also be the case for the CNP because the annual TC
events are rather few. For example, during the last 37
yr (1966–2002), 5 yr have no TC activity, 6 yr have
only one TC occurrence in each year, and 8 yr have two
TC occurrences in each year.

In view of the shortcoming of representing TC var-
iations by a linear model, this study attempts to model
the temporal changes of TC activity by a Poisson pro-
cess with the Poisson parameter being treated as a gam-
ma distribution. The resulting Bayesian analysis is then
used to forecast the future TC activity over CNP. The
essential issue of this study is that, rather than assuming
the statistical distribution of the TC rate is time invariant
throughout the observation period, we introduce a ‘‘sin-
gle change’’ hypothesis under which there is a major
shift on the TC activity rate. A few remarks justify the
application of Bayesian methods in this study. As will
be seen in section 4, the Bayesian approach is able to
include other sources of less reliable data as prior in-
formation in the analysis, a certain advantage over the
non-Bayesian method which often depends on more re-
liable but shorter portions of the historical records.
Moreover, inferences about temporal shifts are couched
in terms of probabilities, another desirable feature of
the Bayesian paradigm. In contrast, the classical non-
Bayesian method provides a deterministic estimate of
the change-point location, but not probability infor-
mation about the uncertainty of change points.

The structure of this paper is as follows. Section 2
describes the data source. The basic mathematical model
of TC activity is reviewed in section 3. Section 4 in-
troduces the three-level Bayesian analysis framework
pertinent to our specific problem. Main results are de-
scribed in section 5. A summary and discussion are
found in section 6.

2. Data

The tropical cyclone records over the CNP at 6-h
intervals come from the National Hurricane Center’s
(NHC) best tracks dataset, as described in Clark and
Chu (2002). Here, tropical cyclones refer to tropical
storms and hurricanes. In this study, tropical storms are

defined as the maximum sustained surface wind speeds
between 17.5 and 33 m s21, and hurricanes are defined
as wind speeds at least 33 m s21. Mayfield and Rap-
paport (1992) suggest that reliable TC statistics in the
CNP began in 1966, when satellite reconnaissance was
initiated in the region. A second dataset used is the
recent TC records compiled annually by the Central
Pacific Hurricane Center, an entity of the National
Weather Service Forecast Office in Honolulu, Hawaii.
By combining these two datasets, reliable TC records
extend from 1966 to 2002, which constitutes the main
dataset for this study.

For Bayesian analysis, prior information of TCs be-
fore 1966 is needed. Data prior to 1966 can be found
in Shaw (1981), who did the laudable task of compiling
historical TC records for the CNP from various sources,
including Mariners Weather Log, the Joint Typhoon
Warning Center’s annual typhoon reports, real-time cy-
clone tracks and advisories issued by the Central Pacific
Hurricane Center, published and unpublished papers by
emeritus Prof. James Sadler of the University of Hawaii,
and others. Although historical TC accounts are thought
to be less reliable, we are only concerned with the annual
counts of TC in this study, not with the attributes of TC
at 6-h intervals as detailed in the NHC’s best track da-
taset.

3. Mathematical model of TC activity

The distribution of the annual counts of TCs in the
vicinity of Hawaii is considered as a Poisson process
(Chu and Wang 1998). The Poisson process is governed
by a single parameter, l, the intensity. Poisson events
imply independence, meaning that the number of oc-
currences in a particular period of time is not affected
by the outcomes in other time periods. A check of the
sample annual TC counts over the CNP reveal very low
autocorrelations (i.e., near 0.1) from lags of 1–5 yr dur-
ing 1966–2002, suggesting small interannual correla-
tions. Given the intensity parameter l, the probability
of h TCs occurring in T years is

h(lT )
P(h | l, T ) 5 exp(2lT ) , (1)

h!

where

h 5 0, 1, 2, . . . and l . 0, T . 0.

The Poisson mean is simply the product of lT, so is its
variance.

To examine whether the annual TC rates in the CNP
follow a constant-rate Poisson process, we use a scheme
developed by Keim and Cruise (1998). Denote R as the
ratio of the sample variance and sample mean (i.e., R
5 s 2/ ). This ratio is then compared against a criticalx
R value (Rc), which is defined as [ /n 2 1)], where2x n21,a

n is the sample size for a one-sided test (Keim and
Cruise 1998; Elsner et al. 2000). The a is the specified
test level, chosen as 0.05 in this study. For the 1966–
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2002 TC record, the R is 1.81 and Rc is 1.42, guiding
us to reject a constant-rate Poisson process throughout
the entire time period (Elsner et al. 2000). Thus, it is
better not to treat l as a determinant single-value pa-
rameter but a random variable. The resulting hierarchi-
cal feature fits well with the Bayesian inference because
it is predicated on the assumption that the distribution
parameter is treated as a random quantity and inferences
are based on the probability distribution of the parameter
given the data. A functional choice of l is a gamma
distribution (Epstein 1985) as expressed in the following
form:

h9 h921T9 l
f (l | h9, T9) 5 exp(2lT9),

G(h9)

l . 0, h9 . 0, T9 . 0, (2)

where the gamma function is defined as G(x) 5 tx21
`

#0

e2t dt.
Given h TCs occurring in T yr, if the prior density

for l is gamma distributed with parameters h9 and T9,
the posterior density for l will also be gamma distrib-
uted with parameters h 1 h9 and T 1 T9. That is, the
gamma density is the conjugate prior for l. Referring
to (2), the conditional expectation with respect to l is
E[l | h9, T9] 5 h9/T9. In the later part of this paper, we
will discuss how to find the prior information h9 and
T9.

Under the statistical model introduced earlier, the
probability density function (PDF) of h TCs occurring
in T yr when knowledge of the intensity is codified as
a gamma density with prior parameters h9 and T9 is then
the negative binomial distribution (Epstein 1985; Elsner
and Bossak 2001; Gelman et al. 2004):

`

P(h | h9, T9, T ) 5 P(h | l, T ) f (l | h9, T9) dlE
0

h9 h
G(h 1 h9) T9 T

5 1 2 1 2G(h9)h! T 1 T9 T 1 T9

T9
5 P h | h9, , (3)nb1 2T 1 T9

where h 5 0, 1, . . . , h9 . 0, T 9 . 0, T . 0, and
Pnb ( · ) stands for the negative binomial distribution.

4. Bayesian approach for detection of shift in the
TC series

a. Hypothesis model

In this study, we will mainly focus on the case in
which the probability of more than one change point
within the desired period is negligible. This simplifies
the analysis to one of the two scenarios: a ‘‘no change-
point’’ hypothesis versus a ‘‘single change-point’’ hy-
pothesis. The following derivations are based on the
mathematical model described in section 3. The annual

tropical cyclone data, h1, h2, . . . , hn, are assumed to
be described as a series of independent random vari-
ables. Mathematically, the two hypotheses models are
postulated below.

1) Hypothesis H0: ‘‘no change point of the rate’’ of the
TC series:
hi ; Poisson (hi | l, T), i 5 1, 2, . . . , n, where T is
the unit observation time
l ; gamma (h9, T9),
where the prior knowledge of the parameters h9 and
T9 is given.

2) Hypothesis H1: ‘‘a single change point of the rate’’
of the TC series:
hi ; Poisson (hi | l1, T), when i 5 1, 2, . . . , t 2 1
hi ; Poisson (hi | l2, T), when i 5 t, . . . , n
t 5 2, 3, . . . , n, T is as defined in the hypothesis
H0, and
l1 ; gamma ( , )h9 T91 1

l2 ; gamma ( , ),h9 T92 2

where the prior knowledge of the parameters ,h91
, , is given.T9 h9 T91 2 2

Note that there are two epochs in this model and t
is known as the first year of the new epoch, or the change
point.

b. Hypothesis analysis

With the formula of Bayesian inference under hy-
pothesis H1 as described in the appendix, we will derive
the Bayesian method to analyze the posterior probability
of the hypothesis model H0 and H1 based on the given
observation data and statistical assumption described
previously. Basically, we need to determine the prior
distribution for the hypothesis model H0 and H1, which
can be of any discrete probability distribution function.
A proper noninformative choice is the uniform distri-
bution, that is, P(H0) 5 P(H1) 5 1/2 since there is no
prior information regarding which one of the hypotheses
is preferable.

Provided the prior model distribution, using the
Bayes’ rule, we obtain its posterior distribution:

P(h | H )P(H )i iP(H | h) 5 , i 5 0, 1, (4)i 1

P(h | H )P(H )O i i
i50

where P(h | H1) 5 P(h | t, H1)P(t | H1) and P(h | t,nSt52

H1) is given in (A2). P(h | H0) is expressed as

h9 hin G(h 1 h9) T9 1iP(h | H ) 5 . (5)P0 1 2 1 2G(h9)h ! 1 1 T9 1 1 T9i51 i

When the models H0 and H1 are compared, we use the
ratio of posterior probability of the model as defined in
the following:

P(H | h) P(h | H )P(H )1 1 15 . (6)
P(H | h) P(h | H )P(H )0 0 0
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TABLE 1. Raftery’s scale for interpreting the Bayes factors.

2lnB Evidence for Bayesian model

0–2
2–6
6–10

Not worth more than a bare mention
Positive
Strong

Rearranging terms in (6) leads to the definition of the
term ‘‘Bayes factor’’:

P(H | h) P(H ) P(h | H )1 1 1B 5 5 . (7)@[ ] [ ]P(H | h) P(H ) P(h | H )0 0 0

The Bayes factor B is a measure of whether the obser-
vation data h have increased or decreased the odds on
the hypothesis H1 relative to the hypothesis H0. It is
only the ratio of the likelihood for both hypotheses and
is independent of the hypothesis prior choice. In the
uniform prior case, if B . 1, it is more plausible to
select the hypothesis H1 rather than H0. However this
criterion may be too loose for many problems and Raf-
tery (1996) suggested a more conservative guideline to
interpret this factor (Table 1), which favorably mitigates
the effects of hypothesis prior bias.

c. Predictive distributions

Following the model selection procedure established
in the previous section, in the case that the hypothesis
H0 is more likely, the predictive distribution for the
number of TCs occurring in the future T̂ yr, say ĥ, with
the given prior knowledge h9, T9, and the data h ob-
served in a period of T yr (here T is equal to n), is a
straightforward negative binomial distribution:

ˆP(ĥ | h9, T9, T, H , h, T )0

G[ĥ 1 (h9 1 h )]sum5
G(h9 1 h )ĥ!sum

h91h ĥsum
T9 1 T T9 1 T

3 , (8)ˆ ˆ[ ] [ ]T 1 (T9 1 T ) T 1 (T9 1 T )

where hsum 5 hi, ĥ 5 0, 1, . . . and h9 . 0, T9 .TSi51

0, T . 0, T̂ . 0.
In the case that we are under the hypothesis H1, the

predictive PDF for ĥ TCs in future T̂ yr conditional on
the prior knowledge , , , as well as the ob-h9 T9 h9 T91 1 2 2

servation data h and observation length T will be

ˆP(ĥ | h9, T9, h9, T9, T, H , h, T )1 1 2 2 1

T T̃25 P ĥ | h̃ , P(t | h, H ), (9)O nb 2 1ˆ ˜1 2T 1 Tt52 2

where Pnb( · ) stands for the negative binomial distri-
bution, h̃2 and T̃2 are as defined in the formula (A5),
and P(t | h, H1) can be calculated by (A3).

Finally, with the assumption of only two hypotheses,

H0 and H1, a comprehensive formula of the predictive
distribution for the TC frequency in a given period T̂
yr, while suppressing the notation of the prior param-
eters and observation period length T, will be

ˆ ˆP(ĥ | h, T ) 5 P(ĥ | h, T, H )P(H | h)0 0

ˆ1 P(ĥ | h, T, H )P(H | h), (10)1 1

where P(ĥ | h, T̂, H0) and P(ĥ | h, T̂, H1) come from (8)
and (9), respectively, and P(H0 | h) and P(H1 | h) are ob-
tained from (4).

Formula (10) is at the heart of the Bayesian prediction
scheme; however, it also leads to considerable compu-
tational difficulty. For the sake of convenience, some-
times we may be able to just fix the hypothesis and the
change-point position (when the H1 hypothesis is sig-
nificantly more likely) to its maximum a posterior
(MAP) estimation, which is defined as the value with
the largest posterior probability for a random variable
when calculating the predictive PDF of the TC counts
in a desired period. If the H0 hypothesis is dominant,
we only need to use (8) and if the H1 hypothesis prevails,
with a fixed change point, formula (10) is reduced to

ˆP(ĥ | h9, T9, h9, T9, T, H , h, T, t̂)1 1 2 2 1

T T9 1 T 2 t̂ 1 1
5 P ĥ | h9 1 h , (11)Onb i ˆ[ ]T 1 (T9 1 T 2 t̂ 1 1)ˆi5t

where

t̂ 5 argmax [P(t | h, H ), t 5 2, 3, . . . , T ].1
t

This simplified equation (11) is obviously biased rel-
ative to (10). However, if the posterior probability of
the H1 hypothesis is much larger than that of the H0

hypothesis and the MAP estimation of the change point
is comparatively much higher than the probability of
other years, this bias should be within tolerance. As will
be shown later, this simplification does not much impact
the final prediction result.

d. Calculation of the prior parameters

So far, we have constructed the theoretical framework
for a three-level hierarchical Bayesian analysis, but we
have not mentioned how to obtain the prior knowledge
of the distribution, that is, the estimation of prior pa-
rameters h9and T9for H0 hypothesis and parameters ,h91

, , for H1 hypothesis. The prior parameters rep-T9 h9 T91 2 2

resent the degree of belief in the outcomes prior to a
particular data sample being observed. For estimating
prior parameters, data prior to 1966 are needed. We used
the records from Shaw’s report for the period of 1957–
65 as our prior knowledge to estimate the parameters
for the ‘‘before change’’ period. The mean of TCs during
this short time period is 2.2 TCs yr21. Data prior to
1957 are also available but tend to be rather unreliable.
For example, there is not a single TC reported for six
consecutive years from 1951 to 1956.
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FIG. 1. Time series of annual tropical cyclone counts over the
central North Pacific from 1966 to 2002. Broken lines denote the
means for the period 1966–81 and 1982–2002, respectively.

TABLE 2. Results of the Bayesian analysis on change-point of an-
nual TC counts over the CNP. Here, t stands for the change-point
year, B is the Bayes factor, l1 and l2 represent the TC rate before
and after the change point under H1 hypothesis, respectively, and
P(H1|h) is the posterior probability of hypothesis H1. The analysis
period is 1966–89.

Variable Value

t̂
P( |h, H1)t̂
l 1

l 2

1982
0.31
1.88
3.57

2 ln(B)
P(H1|h)

2.22
0.75

FIG. 2. Posterior probability distribution of the change point,
P(t | h, H1) of TC series over the CNP.

It is also necessary to have prior parameters for the
post change point (e.g., Tapsoba et al. 2004). In Chu
(2002), a significant shift in 1982 and a marginally sig-
nificant shift in 1995 were suggested. To make infer-
ences about the shift around 1982, it is reasonable to
choose the data before 1995 as the target period for the
‘‘after change’’ period under the H1 hypothesis. To max-
imize the available sample size for the modeling period,
we thus select the annual TC observations from 1990–
94 as the prior. As for the H0 hypothesis, we just com-
bine this set of data with the short, pre-1966 dataset to
form the prior knowledge.

For the two prior periods aforementioned, one needs
to estimate parameters h9 and T9. A straightforward
method to estimate the distribution parameters of the
negative binomial is to use the moment statistics (Carlin
and Louis 2000). It is sufficient to just use the first two
moments of the data to estimate h9 and T9, which can
be formulated as in the following:

mhT̂9 5 ,
2s 2 mh h

ˆĥ9 5 m T9, (12)h

where mh 5 1/n hi, 5 1/(n 2 1) (hi 2 mh)2n 2 nS S Si51 h i51

are the sample mean and sample variance for the given
data respectively. In most cases, the moment method
can give reasonable estimation of model parameters
when the sample size is large. However, when the sam-
ple mean is very close to the sample variance or when
the sample mean is larger than the sample variance, Eq.
(12) breaks down.

In this study, under H1, for the ‘‘before change-point’’
period, sample mean and sample variance are equal to
2.22 and 5.44, respectively. From (12), this leads to

5 1.53 and 5 0.69. For the ‘‘after change-point’’h9 T91 1

period, sample mean and sample variance are equal to

4.40 and 6.30, respectively, yielding 5 10.19 andh92
5 2.32. In contrast, under H0, sample mean andT92

sample variance are equal to 3.00 and 6.46; therefore,
the resulting prior h9 and T9 are equal to 2.60 and 0.87,
respectively.

5. Results

a. Results of shift in intensity of TCs

Figure 1 shows the time series of annual TC counts
over the CNP since 1966. The average rate prior to 1982
is about 1.9 TCs yr21 but it increases to almost 3.6 TCs
yr21 thereafter. The result of the Bayesian analysis on
the shift year of the annual TC counts in CNP is listed
in Table 2. From this table, we can see that the measure
of Bayes factor [2 ln(B)] for the annual TC counts during
the 1966–89 period is 2.22, which favors H1 over the
H0 hypothesis with a uniform prior for the hypothesis
layer. The posterior probability that a change has oc-
curred is rather high, reaching 0.75. Figure 2 shows the
posterior probability of the change point of TC activity,
plotted as a function of time. Larger probabilities on
year i imply a more likely change occurring with i being
the first year of a new epoch. The maximum probability
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FIG. 3. (a) Posterior density function of annual TC intensity before
the shift, P(l1 | h, H1), and after the shift, P(l2 | h, H1), with the
change-point year being set in 1982. (b) Posterior density of (l2 2
l1).

of 0.31 occurs in 1982. This suggests that the most likely
year of the new epoch is 1982 although other change-
point years such as 1981 and 1980 are plausible can-
didates.

The posterior PDFs of TC intensity before and after
the change point, l1 and l2, are plotted in Fig. 3a. The
posterior distribution represents a combination of the
prior distribution and the likelihood function. In this
plot, the change-point year is fixed in 1982. Recalling
from Table 2, the sample rate before 1982 is 1.88 and
after 1982 is 3.57. Figure 3a shows very little overlap-
ping in the tail areas between these two posterior dis-
tributions, implying a rate increasing for the ‘‘after the
shift’’ distribution beginning with 1982. Figure 3b dis-
plays the posterior density of (l2 2 l1). The p value
of this difference [P(l2 2 l1 , 0 | H1, h)] is very small

(,0.01), strongly supporting the contention of a shift
toward a higher rate of annual TC intensity since 1982.

From a log-linear regression analysis, Chu (2002)
noted that after a major shift in 1982, a second shift,
albeit weak, appears to occur in 1995. In order to test
whether the latter shift also can be identified from the
Bayesian framework, a similar analysis is performed for
the period 1985–2002. For the H1 hypothesis, two rather
short prior periods, 1984–88 and 1998–2002, are cho-
sen. For the H0 hypothesis, these two periods are com-
bined as the prior. Results indicate that 2 ln(B) 5 20.38,
which means the odd is in favor of H0 hypothesis (i.e.,
no change point) over H1 hypothesis for the post-1982
period.

b. Decadal tropical cyclone prediction

After having identified a change-point year in the TC
series, our next goal is to predict TC activity over the
CNP on a climate time scale. One way to calculate this
predictive distribution is to use formula (10); however,
this form may be computationally complicated. Based
on the Bayesian analysis results presented in Table 2
and Fig. 2, it is reasonable to choose the H1 hypothesis.
Thus, we opt to use the simplified formula (11) with
the fixed change point at 1982.

The final decadal predictive PDF and cumulative dis-
tribution function (CDF) of TC counts calculated from
both (10) and (11) over the CNP are plotted in Fig. 4a
and Fig. 4b, respectively. As a comparison, we also plot
the predictive PDF and CDF that do not involve the
hypothesis layer. In other words, only the traditional
approach involving the H0 hypothesis is assumed and
(8) is applied. In Fig. 4a, the PDF is narrower when
only H0 is assumed and becomes broader after consid-
ering H1 hypothesis. Thus, one may expect larger var-
iability in TC rates for the next decade when the H1 is
assumed. Moreover, there is an overlap between the two
predictive PDFs under H0 and H1, but a significant shift
toward the right is clearly seen when H1 is considered.
Figure 4b displays the CDFs of predicting no more than
a particular number of cyclones over the next decade.
For example, the probability of predicting no more than
40 TCs in the next 10 yr when we only consider the H1

hypothesis is 0.74 while predicting the same TC num-
bers under the H0 hypothesis is 0.98, an almost guar-
anteed probability of occurrence. Moreover, the differ-
ence between the predictive distribution calculated from
(10) and the simplified form from (11) is negligible,
implying the simplified formula (11) works well for our
problem.

6. Summary and discussion

In this study, a hierarchical Bayesian change-point
analysis of tropical cyclone counts is developed. Spe-
cifically, the annual tropical cyclone counts over the
central North Pacific are described by a Poisson process
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FIG. 4. (a) Predictive PDF and (b) predictive CDF of decadal TC
counts over the CNP, where the circle refers to the two-layer Bayesian
analysis, the triangle refers to the complete three-layer Bayesian anal-
ysis, and the asterisk refers to the simplified three-layer Bayesian
analysis by using Eq. (11).

FIG. 5. Hierarchical structure of the Bayesian analysis
methodology.

that is conditional on gamma distributions. The method
focuses on the scenario in which the probability of more
than one shift is negligible. Considering two equiprob-
able hypotheses, H0 and H1, we perform a hierarchical
Bayesian analysis of making inferences about shifts in
the tropical cyclone series. Inferences are based on the
posterior probabilities of the possible shifts. Results sug-
gest that there is a great likelihood of a change point
in TC intensity in 1982 over the CNP, which is consis-
tent with our earlier analysis based on a simple log-
linear regression method (Chu 2002). Bayesian analysis
is also used for predicting decadal tropical cyclone var-
iations, and higher TC frequency is predicted in the next
decade when the change point is taken into account. The
predicted TC frequency may serve as a benchmark to

gauge the future observed TC activity over the central
North Pacific.

In the fundamental Bayesian framework, only two
layers—a data layer and a parameter layer—are con-
sidered for deriving the posterior distribution P(u | h)
and obtaining the optimum predictive distribution
P(ĥ | h) 5 # P(ĥ | u)P(u | h) du. As illustrated in Fig. 5,
the data layer is embodied by a likelihood distribution
P(h | u) and a parameter layer is embodied by prior in-
formation P(u). In this framework, no change points are
assumed. Expanding from this two-layer thinking, we
introduce a new layer, called the hypothesis layer, which
is embodied by prior information P(H), where H rep-
resents hypothesis. In this three-layer paradigm (Fig. 5),
both the data layer and parameter layer are conditional
on hypothesis selection so they are described by P(h | u,
H) and P(u | H), respectively.

Following the same Bayes’ rule, we obtain the pos-
terior distribution for both hypotheses and parameters,
P(H | h) and P(u | H, h). The predictive distribution is
thus P(ĥ | h) 5 ## P(ĥ | u, H)P(u | H, h)P(H | h) du dH.
For the sake of computational simplicity, we also used
the simplified formula P(ĥ | , Ĥ) instead of the entireû
integration in the aforementioned predictive distribu-
tion, where and Ĥ are the MAP estimation of u andû
H, respectively. Apparently, the traditional two-layer
Bayesian thinking (e.g., Elsner and Bossak 2001) can
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be viewed as a special case of a three-layer framework.
Recently, Tapsoba et al. (2004) used a similar three-
layer Bayesian analysis to detect change points in the
western Africa rainfall time series. However, normal and
inverted gamma distributions were used in their anal-
ysis.

Also recently, Elsner et al. (2004) applied a Markov
chain Monte Carlo (MCMC) approach based on Gibbs
sampling algorithm to detect change points in the At-
lantic hurricane series. Gibbs sampling assumes that a
value for one element of a multidimensional parameter
can be generated when values for all other elements of
this parameter are given. With some initial prior values
of distribution parameters being prescribed, Gibbs sam-
pling produces sequences of the parameters such as the
hurricane rates before and after a change point. This
approach provides an alternative to the classical Bayes-
ian change-point analysis involving the prior, likelihood
function, and the posterior distribution as presented in
this study. While our study and Elsner et al. (2004) focus
on a single change-point scenario, more elaborate mul-
tiple hypothesis choices such as the ‘‘double change

points’’ hypothesis have been proposed by Lavielle and
Labarbier (2001). It is yet to be demonstrated how such
complicated modeling processes can be applied to de-
tecting more than one change point in the hurricane time
series.
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APPENDIX

Bayesian Inference for the Hypothesis H1

A Bayesian approach is considered as making infer-
ences under a single change in a time series. That is,
the hypothesis H1 is being considered here. Since the
annual TC counts are used, the unit observation period
is 1 yr; therefore, T 5 1. Following the formula shown
in (A3), the likelihood of the annual count of TCs under
the H1 hypothesis is as shown next (with the given
change-point t):

9 h h1 iG(h 1 h9) T9 1i 1 1 , i 5 1, 2, . . . , t 2 1 1 2 1 2G(h9)h ! 1 1 T9 1 1 T91 i 1 1P(h | h9, T9, h9, T9, t , H ) 5 (A1)i 1 1 2 2 1 9h h2 iG(h 1 h9) T9 1i 2 2 , i 5 t , . . . , n, 1 2 1 2G(h9)h ! 1 1 T9 1 1 T92 i 2 2

where t 5 2, 3, . . . , n.
Subject to the assumption that the number of occur-

rence of annual TCs over the CNP is independent from
year to year, and dropping the notations for parameters

, , , in (A1) for the sake of simplicity, theh9 T9 h9 T91 1 2 2

vector form of the likelihood function with a given
change point becomes

n

P(h | t , H ) 5 P(h | t , H ), (A2)P1 i 1
i51

where h 5 [h1, h2, . . . , hn]9 is the vector form of the
observation data.

Central to the Bayesian thinking is updating or re-
vising knowledge about subjective probability assess-
ments consistent with new information. This updating
of knowledge involves both the prior and likelihood
functions. When these two are combined, they yield a
posterior distribution that represents the best informa-
tion about the unknown parameter of interest conditional
on the observed data. As a result, the posterior distri-
bution function of the change-point t under the hy-
pothesis H1 will be

P(h | t , H )P(t | H )1 1P(t | h, H ) 51 n

P(h | t , H )P(t | H )O 1 1
t52

} P(h | t , H )P(t | H ), (A3)1 1

where the prior knowledge of t under H1 hypothesis,
P(t | H1), can be of any probability distribution function
for discrete variables or probability density function for
continuous variables. In the uninformative prior case, a
proper choice for P(t | H1) could be the uniform distri-
bution and (A3) is thus reduced to

P(h | t , H )1P(t | h, H ) 5 } P(h | t , H ). (A4)1 1n

P(h | t , H )O 1
t52

Note that the denominator in both (A3) and (A4) is just
a normalization factor.

Making use of (A2) and keeping in mind the conjugate
property of gamma distribution, the conditional posterior
distribution (with a given change-point t) of the intensity
before and after the change point, say l1 and l2, will
also be a gamma distribution and the formula is
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h̃ h̃ 21˜ 1 1T l1 1 ˜f (l | h9, T9, t , H , h) 5 exp(2l T ),1 1 1 1 1 1G(h̃ )1

h̃ h̃ 21˜ 2 2T l2 2 ˜f (l | h9, T9, t , H , h) 5 exp(2l T ), (A5)2 2 2 1 2 2G(h̃ )2

where
t21

˜h̃ 5 h9 1 h , T 5 T9 1 t 2 1,O1 1 i 1 1
i51

n

˜h̃ 5 h9 1 h , T 5 T9 1 (n 2 t 1 1),O2 2 i 2 2
i5t

t 5 2, 3, . . . , n.

Finally, the posterior PDF for intensity l1 and l2 under
H1 hypothesis is

f (l | h9, T9, H , h)i i i 1

n

5 f (l | h9, T9, t , H , h)P(t | h, H ),O i i i 1 1
t52

i 5 1, 2. (A6)
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