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Abstract 

 A Poisson generalized linear regression model cast in the Bayesian framework is 

applied to forecast the seasonal tropical cyclone (TC) counts in the vicinity of Taiwan.  

The TC season is June through November and the data period used for model 

development is 1979-2007. A stepwise regression procedure is applied for predictor 

selection. Three large-scale climate variables, namely, relative vorticity at 850 hPa 

(Vor850), vertical wind shear and sea level pressure over the western and central North 

Pacific from the antecedent May are selected as predictors. The leave-one-out cross 

validation is performed and forecast skill is thoroughly evaluated.  The skill level of the 

Bayesian regression model is better than what can be achieved by climatology and 

persistence methods.  Most importantly, the Bayesian probabilistic inference can 

provide an uncertainty expression in the parameter estimation.  Among the three 

predictors, Vor850 is found to be the most important because it reflects the variation of 

the ridge position of the westward extension of the western Pacific subtropical high. The 

model shows negative bias during the years with successive TCs, which are generated by 

easterly waves before approaching Taiwan.  Recommendations for real time operational 

forecast and future development are discussed. 
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1. Introduction 
 

A tropical cyclone (TC) is one of the most devastating weather systems because it can 

involve multiple hazards in one or two days. One striking example is cyclone Nargis in 

2008 that killed 138,366 people in Myanmar and ranks as the second deadliest disaster of 

the 2000 decade according to the Center for Research on Epidemiology of Disasters 

(Rodriguez et al. 2009).  In addition to high winds and heavy rain, tropical storms can 

result in life threatening floods and mudslides.  High quality seamless forecasts, from 

now-casting to seasonal forecasts are needed to mitigate human and property losses. 

Seasonal forecast of TC activity was pioneered by Nicholls (1979) and Gray (1984 a, 

b) in early 1980s for the Australian and North Atlantic regions, respectively.  For the 

Western North Pacific (WNP), issuing seasonal forecasts of the annual number of 

tropical cyclones and typhoons was first attempted by Johnny Chan and colleagues in 

1997 (Camargo et al. 2007a).  The large-scale atmospheric and oceanic conditions 

incorporated into their statistical forecast model (Chan et al. 1998, 2001) are El 

Niño-Southern Oscillation (ENSO), the extent of the Pacific subtropical ridge, the 

intensity of the Indian-Burma trough, polar vortex, and frequency of cold air intrusions in 

China. Different predictors are used for the Pacific and South China Sea (Liu and Chan 

2003).  Recently, various forecast models were developed for specific TC prone areas in 

East Asia such as Taiwan (Chu et al. 2007), Korea (Choi et al. 2009), and the East China 

Sea (Kim et al. 2010).  In the meantime, new approaches to predictor selection 

procedures (Lee et al. 2007, Kwon et al. 2007, Fan and Wang 2009) were proposed.  

Recent studies (Ho et al. 2009, Kim et al. 2010) showed that better forecast skill can be 
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achieved by Poisson regression than linear regression when the method was applied to 

forecast seasonal TC frequency over the East China Sea. 

The WNP TC activity is known to possess several kinds of variations that differ in 

their time scales. The interannual variations are related to ENSO (Chan 1985, 2000; Chan 

et al. 1998; Wang and Chan 2002), the biennial variations are related to stratospheric 

quasi-biennial oscillation (Chan 1985), and the interdecadal variations are related to 

Pacific Decadal Oscillation (Ho et al. 2004) and the Antarctic Oscillation (Ho et al. 2005).   

ENSO and TC relationships for various ocean basins are reviewed by Chu (2004). 

Intraseasonal variations have also been reported and related to the Madden-Julian 

Oscillation (hereafter referred to as MJO, Harr and Elsberry, 1995; Nakazawa, 2006; Kim 

et al., 2008; Hsu et al. 2008) and 10-30 day waves (Ko and Hsu 2006, 2009). 

The predictability of TC frequency in a limited area relies on factors that control TC 

trajectories. Over the WNP region, influential large-scale features in the low-level 

include the western Pacific subtropical anticyclone and monsoonal flow (Harr and 

Elsberry 1995; Kuo et al. 2001; Liu and Chan 2002), and in the upper-level tropical 

upper-tropospheric troughs (TUTTs) (Sadler 1978; Montgomery and Farrell 1993). 

Camargo et al. (2007b, c) found that WNP TC trajectories can be grouped into seven 

clusters.  The clusters are sensitive to both genesis location and trajectory patterns. 

Three of the clusters are ENSO related (Camargo et al. 2007c). During El Niño years, the 

preferable location of TC genesis shifted southeastward, while during La Nina years the 

preferable location shifted northwestward. The type of highly populated cluster, wherein 

more recurving trajectories are observed, tends to occur more often during La Nina years. 
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Taiwan is located in an area frequently visited by TCs. On average about 60% of the 

annual rainfall totals in Taiwan are associated with TC.  Thus, the seasonal forecast of 

TC activity in the vicinity of Taiwan is of extreme importance to drought mitigation and 

water resources management for the island.  Figure 1a shows the tracks of TCs affecting 

Taiwan from 1979 to 2007 and most of the storms are formed in the warm pool of the 

western Pacific and the Philippine Sea.  After formation, they either move 

northwestward and make landfall in Taiwan or South China, move northwestward then 

recurve near 25°N and approach eastern China, Korea, Japan, or move to the open ocean 

of the North Pacific.  The climatological distribution of the corresponding monthly TC 

frequency is presented in Fig. 1b.  A seasonal contrast is evident, with no activity from 

January to March, an extended active season from June through December, and a peak in 

August. 

The seasonal outlook for typhoons affecting Taiwan is an important forecast item 

routinely issued by the Central Weather Bureau (CWB) since 2006.  The forecast is 

based on information generated by a least absolute deviation (LAD) multivariate linear 

regression model (Chu et al. 2007) where the median of the residual term is minimized.  

In the LAD model, the predictand is the regional count of total tropical cyclones entering 

into an area encompassing Taiwan and its vicinity during the five-month period from 

June through October.  Five antecedent environmental parameters, namely, sea surface 

temperature, sea level pressure, precipitable water, low-level relative vorticity, and 

vertical wind shear in key locations of the tropical WNP are identified as predictors.  

Results from cross-validation suggest that the statistical model is skillful in predicting 

regional TC activity.  When the sea surface temperatures over the Philippine Sea are 
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warm and anomalous low-level cyclonic circulation coupled with low-latitude westerly 

winds across the South China Sea and the Philippine Sea appear in the antecedent May, 

the TC activity near Taiwan tends to be more active in the following typhoon season. 

Although the LAD model can produce skillful forecasts, it does not provide 

information on the likelihood of the range of tropical cyclone counts that may be realized.  

This specification of likelihood is needed for risk management in estimating a range of 

potential disaster loss or vulnerability before the commencement of the typhoon season.  

Another drawback in the LAD approach is that the predictand used is seasonal TC counts, 

which would be properly represented by a discrete distribution such as a Poisson process 

because the occurrences of typhoons in a small region are rare and discrete events. 

Chu and Zhao (2007) used the Bayesian probabilistic forecast models to predict the 

seasonal tropical cyclone activity in the Central North Pacific.  The Bayesian 

probabilistic models have also been used to predict the tropical cyclone activity in the 

North Atlantic (Elsner and Jagger, 2004, 2006).  Given the advantage of the 

probabilistic approach, we will adopt the Bayesian regression method for predicting the 

seasonal TC activity near Taiwan.  As the objective of the present study is to develop a 

forecast procedure for operational centers, the data and computation environment need to 

be available in real time.  The forecast skill of the forecasting system also needs to be 

evaluated thoroughly.  From the long-term risk management and general public interest 

point of view, it is desirable to have the forecast information of annual total TC counts 

before the beginning of a year, preferably by January of the target year.  However, at 

present it would be very difficult to obtain a skillful forecast for the Taiwan area based on 

predictors prior to May, probably due to the chaotic monsoon influences on TC activity. 
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The interannual variability in the air-sea coupled climate system over the tropical Pacific 

and Asian monsoon region shows a strong quasi-biennial nature with the changes of signs 

during northern spring (Yasunari 1991).  Instead of using the period from June to 

October, an alternative approach for operational forecasts at present is to modify the 

predictand period from June 20 to November 30 and issue the forecast on June 15th.  

The difference of the predictands with and without the TC counts before June 20 and a 

real time forecast example will be discussed in the last section. 

 The structure of this paper is as follows. The data and data pre-processing are 

described in section 2. The Bayesian regression model of the TC counts is presented in 

section 3. Correlation of large-scale variables and TC activity is presented in section 4.  

The predictor selection procedure and prediction results are presented in section 5, and 

discussion and conclusion in section 6. 

 

2. Data and data processing 

The tropical cyclone series in the vicinity of Taiwan from 1979 to 2007 are taken 

from the RSMC Best Track Data prepared by the Japan Meteorological Agency 

(http://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/trackarchives.html).  

This series covers an area between 21°N-26°N and 119°E-125°E, a fairly limited 

geographical domain of five degrees latitude and six degrees longitude.  

Monthly mean sea level pressure, wind data at 850- and 200-hPa levels, relative 

vorticity data at the 850 hPa level, and total precipitable water over the western North 

Pacific (0°-30°N) are derived from the NCEP/DOE Reanalysis-2 dataset available at 
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http://www.cpc.noaa.gov/products/wesley/reanalysis2/index.html (Kanamitsu et al. 2002). 

These variables are the same as those used in Chu et al. (2007).  

The horizontal resolution of the reanalysis dataset is 2.5° latitude-longitude.  

Tropospheric vertical wind shear is computed as the square root of the sum of the square 

of the difference in the zonal wind component between 850- and 200-hPa levels and the 

square of the difference in meridional wind component between 850- and 200-hPa levels 

(Clark and Chu, 2002).  The monthly mean sea surface temperatures, at 2° horizontal 

resolution, are taken from the Extended Reconstructed Sea Surface Temperatures 

(ERSST) dataset prepared by the National Climate Data Center (NCDC) and downloaded 

from the website of the NOAA Physical System Division of the Earth System Research 

Laboratory in Boulder (http://www.cdc.noaa.gov/).  After examining the correlation 

between large-scale environmental parameters and TC counts, only the parameters for the 

month of May are derived as predictors. 

 

3. The Bayesian regression model for TC counts 

 A Poisson process describes the probability distribution for the seasonal count of TC. 

Given the Poisson intensity parameter λ (i.e., the mean seasonal TC rates), the probability 

mass function (PMF) of h TCs occurring in a unit of observation time (e.g., one season) 

is 

 ( ) ( ) ( )
h!
λ-λh|λP

h

exp= , where h = 0, 1, 2, … and   λ > 0 (1) 

The Poisson mean is simply λ, thus, so is its variance. 
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 The relationship between the target response variable, seasonal TC counts, and 

selected predictors can be established using a Poisson linear regression model. The 

Poisson rate λ, is usually treated as a random variable that is conditional on the predictors. 

We assume that there are N observations and for each observation there are K relative 

predictors. We define a latent random N-vector Z, such that for each observation hi, i = 1, 

2, . . . , N, Zi = logλi, where λi is the relative Poisson intensity for the ith observation. Here 

N denotes the sample size, which in this study is 29 (1979–2007). The link function 

between this latent variable and its associated predictors is expressed as Zi =Xiβ+εi, 

where β=[β0, β1, β2, . . . , βK]' is a random vector; noise εi is assumed to be identical and 

independent distributed (IID) and normally distributed with zero mean and σ2 variance; 

Xi = [1, Xi1, Xi2, . . . , XiK] denotes the predictor vector. In vector form, the general 

Poisson linear regression model can be formulated as below: 

 

 

 

 

where, specifically X'=[X'1, X'2, . . . , X'N], IN is the N (N identity matrix, and Xi =[1, Xi1, 

Xi2, . . . , XiK] is the predictor vector for hi, i = 1, 2, . . . , N 

 

 β = [β0, β1, β2, ...βK]' (2) 

 

Here, Normal and Poisson stand for the normal distribution and Poisson distribution, 

respectively. In Eq.(2), β0 is referred to as the intercept. 

 It is worth noting that the Poisson rate λ is a real value while the TC count h is only 

an integer. Accordingly λ contains more information relative to h.  Furthermore, h is 

( ) ( )ii

N

i
ZhPP Π

=

=
1

Zh  , where ( )iZ
iii ehZh Poisson~  

 
( )NIXβZXβZ 22 ,Normal~,, σσ  
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conditional on λ, which is subject to smaller variance than h.  Taken together, for 

decision making purposes λ should be used as the forecast quantity of the TC activity 

rather than h.  We also note the fact that this hierarchical structure essentially fits well 

for Bayesian inference. For the details of Bayesian analysis procedure readers are 

referred to section 4 of Chu and Zhao (2007). The Bayesian inference requires posterior 

distribution, which involves a complex integration of high-dimensional functions. We use 

a Gibbs sampler in Matlab to solve the integration.  The Gibbs sampler is a widely used 

Markov Chain Monte Carlo (MCMC) method that solves complex integrals by 

expressing them as expectations for some distribution and then estimating this 

expectation by drawing samples from that distribution.  An explanation of a Gibbs 

sampler and how one uses it to generate the samples of the coefficient parameters βi and 

evaluate the quality of the generated samples are detailed in Chu and Zhao (2007). 

 The development procedure of the forecast model is summarized in Fig. 2. The first 

step is to identify the predictors, which will be described in next section. Then data from 

29-years (1979-2007) of TC counts in the area of Taiwan and its vicinity are used to build 

the Bayesian regression model using the Gibbs sampler.  The forecast skill is evaluated 

using a cross validation procedure. 

 

4. Correlation of large-scale variables and TC activity 

Chu et al. (2007) found that the seasonal tropical cyclone activity in Taiwan and the 

vicinity area is modulated by large-scale conditions in May represented by five 

environmental variables. The same variables are chosen as predictor candidates in the 

present study. In this section we will describe the geographic locations of the predictor 
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candidates determined by correlation analysis. Predictor selection procedure will be 

discussed in next section. 

The variables of predictor candidates are sea surface temperature (SST), sea level 

pressure (SLP), precipitable water (PWAT), 850-hPa relative vorticity (Vor850), and 

vertical wind shear (VWS).  The present paper used NCEP/DOE Reanalysis-2 during 

the period of 1979-2007, while Chu et al. (2007) used NCEP/NCAR Reanalysis (Kalnay 

et al., 1996) during a longer period of 1970-2006. The predictors are formed by the five 

variables averaged at the grid points that the variable and tropical cyclone activity are 

correlated at the 95% confidence level. Correlation analysis between the seasonal TC 

occurrences and the environmental parameters in the preceding May over the tropical 

WNP is used to identify their physical relationships.  If correlations over a particular 

area of the WNP are found to be statistically significant, the parameter over this critical 

region is identified as a predictor candidate.  For a sample size of 29, this critical value 

is 0.37 when a two-tailed t-test is applied. A similar analysis was also applied to other 

months earlier than the preceding May, but very few grid points show significant 

correlation. Therefore, the predictors are limited to the variables in the preceding May 

only. 

a. SST 

 The contour plot for the correlation between TC counts and SST is shown in Fig. 3a 

where a large area with significant positive correlations is found in the Philippine Sea and 

the tropical western Pacific warm pool marked by filled circles. The average of the SST 

series over the critical regions is chosen as a predictor. Significant correlations are also 

noted near Taiwan. For the sake of simplicity this area is not included in the predictor. 
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b. Vor850 

 Figure 3b displays the correlation between the seasonal TC counts and the 

antecedent low-level relative vorticity at 850hPa (Vor850).  Critical regions with 

significantly high positive correlations are found in a southwest to northeast oriented belt 

extending from the southern Philippines to the western Pacific.  Accordingly, greater 

cyclonic vorticity anomalies in the preceding May over the critical regions were 

instrumental for more TC activity in Taiwan.  

c. PWAT 

 Figure 3c displays the correlation between the seasonal TC count and the 

precipitable water in which the critical regions are found mainly over the Philippine Sea.  

Note that the critical regions in Figs. 3c and 3b approximately coincide well to each other 

and are located to the north of the positive correlations of the SSTs in Fig. 3a. The 

approximately coincident critical region revealed in Figs. 3a-c suggests the possibility 

that enhanced (suppressed) low-level vortex and convective activity are driven by the 

warm (cold) SST anomalies over the Philippine Sea and the western Pacific warm pool.  

As a result, these circulation features tend to contribute to greater (less) TC frequency 

near Taiwan in the following season. 

d. SLP 

 The contour plot for the correlation between the seasonal TC frequency in the 

vicinity of Taiwan and the May SLP is shown in Fig. 3d.  A large area with significant 

negative correlations is found in the Philippine Sea and the warm pool. The negative 

correlation area coincides well with the positive correlation area of SST in Fig. 3a. It is 
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noted that the center of the critical region in Fig. 3d is near the equator while the center of 

the critical region in Fig. 3a is to the north of the equator. This suggests the possibility 

that the negative SLP might reflect the Rossby wave response to the warm SST anomaly. 

e. VWS 

 The contour plot for the correlation between the seasonal TC frequency in the 

vicinity of Taiwan and the May VWS is shown in Fig. 3e. Significant positive 

correlations are observed over the Indonesia maritime continent covering the area of the 

West Caroline Basin, Sulawesi, and the Java Sea. The coincident relationship between 

the positive correlation of VWS, negative correlation of SLP over the western Pacific, 

and positive correlation of Vor850 over the Philippine Sea suggest that if the convection 

over the low-latitude Philippine Sea is strong in May, then seasonal TC activity near and 

around Taiwan tends to be more active during the following months. 

 

5. Predictor selection and prediction results 

a. Predictor Selection 

 The screening procedure of the five candidate predictors is similar to stepwise 

regression used for multivariate linear regression models (e.g. Kim et al. 2010).  For 

multivariate regression models, the importance of a predictor is mainly judged by the 

Pearson correlation coefficient between the observed and predicted variable and the sum 

of their absolute errors.  For the Bayesian multivariate regression method, however, in 

addition to the correlation coefficient, the importance of a predictor is judged by the 

parameters of mean, standard deviation and ratio of the number of samples that lie to the 

left (right) of zero to the total number of iterations if the predictor is expected to have a 
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positively (negatively) oriented impact on the forecast variable (e.g., SST).  The ratio is 

termed as the Bayesian p-value.  In the regression model a predictor with a smaller 

p-value is more important. The posterior probability density functions (PDFs) for the 

model parameter set are solved using a Gibbs sampler.  For simplicity, for all the 

simulations in this study, we take the first 2,000 samples as burn-in and use the following 

10,000 samples as the output of the Gibbs sampler. We have the PDFs of all predictors 

besides the intercept term. 

The correlation coefficient is calculated based on the forecasts obtained from 

leave-one-out cross validation (LOOCV). The cross validation (CV) test is a general way 

to verify the effectiveness of a regression method. LOOCV is a forecast procedure in 

which a target year is chosen and a model is developed using the remaining 28-yr data as 

the training set.  The observations from the selected predictors for the target year are 

then used as inputs to forecast the missing year. This process is repeated successively 

until all 29 forecasts are made.  

The relative importance of the predictor candidates determined by the stepwise 

predictor screening procedure is summarized in Table 1. For each step there are three 

rows listed under each variable.  For each variable an identification number is given. 

Vor850 is variable (1), VWS (2), SLP (3), SST (4) and PWAT (5). The first row is the 

correlation between the observed and the median value of the predicted probability 

distribution, indicated as “50%-r” in Table 1.  Higher correlation reflects better 

prediction. The Bayesian p-value, mean and standard deviation of the predicted 

probability distribution are presented in the third row under columns p, m and s, 

respectively.  As shown in Table 1, we first use the forecast model, which has only one 
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predictor, to perform the prediction.  It turns out that the Vor850 has the highest 

correlation (0.65) with TC counts in Taiwan, a perfect p-value (0) and small standard 

deviation (s) (0.1). Therefore, Vor850 is identified as the primary predictor.  In the 

second step, we repeat the prediction with two predictors at a time while keeping the 

Vor850.  From the correlation values we cannot discern improvement by the second 

predictors when comparing the correlations of the second step with that of the first step 

Vor850.  However, VWS shows small a p-value for both VWS and Vor850, and 

therefore, is the best second predictor. In the third step, we use three predictors while 

retaining the Vor850 and VWS.  The prediction is improved slightly by including SLP.  

It is interesting to see the drop in correlation and increase of p and s when SST is 

included.  Therefore, Vor850, VWS and SLP are finally selected to formulate the 

Bayesian regression forecast model. 

The predicted maximum and average probabilities of the TC counts through a 

LOOCV are plotted together with the actual observation for each year in Figs. 4a and 4b, 

respectively.  The Pearson correlation between the maximum probability of predictive 

TC counts and independent observations is 0.672.  The correlation between the average 

predictive TC counts and observations is also 0.672.  The average TC predictive counts 

are computed as the sum of the TC count weighted by its probability density. The median, 

upper, and lower quartiles (the upper 75% and lower 25%) of the predicted TC counts are 

plotted in Fig. 5. The distance between the upper and lower quartile locates the central 

50% of the predicted TC variations. The correlation between the median of the predictive 

rate and independent observations is 0.673.  The skill of deterministic forecast of the 

current model is comparable to that of the LAD model (0.673 vs. 0.69). Out of a total of 



 16

29 years, there are only three years (2004, 2005, 2007) in which the actual TC counts lie 

outside the predictive central 50% boundaries.  Possible reasons for prediction failure 

will be discussed in the last section. 

The reason parameters p, m, s in Table 1 can be used to select predictors can be 

understood by showing the posterior PDFs of the predictors in Fig. 6. The kernel 

estimated marginal PDF for the parameter set, β and σ, is calculated for all the samples 

by convolving the resulting frequency of the target samples with a smoothing filter. 

Figure 6 shows the posterior PDF of Vor850 has the largest mean value m (0.21) and the 

smallest Bayesian p-value (0.02) which measures the ratio of the number of samples that 

lie to the left of zero to the total number of iterations. Both Vor850 and VWS show clear 

positive correlation, while SLP shows clear negative correlation with the TC counts. SLP 

has the largest p-value (0.16). 

b. Forecast Skill Assessment 

 The accuracy of a probabilistic forecast method can be measured by its reliability, 

sharpness, and resolution. Reliability measures the agreement between forecast 

probability and mean observed frequency. Sharpness measures the skill of forecasting 

probabilities near 0 or 1. Resolution measures the ability of the forecast to resolve the set 

of sample events into subsets with characteristically different outcomes. Only resolution 

can be evaluated in the present study due to the nature of small sample size of the 

observed seasonal TC counts.  We use the Relative Operating Characteristic (ROC) 

diagram to evaluate resolution. 

 It is important to know the characteristics of TC counts in terms of probability 

distribution before evaluating probabilistic forecast skill. The relationship between the 
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TC counts and forecast probabilities is illustrated by the histogram of the 29-yr TC counts 

and its cumulative probability diagram presented in Figs. 7a and 7b, respectively.  The 

thin dashed line in Fig. 7b is used as a threshold for distinguishing groups in categorical 

forecasts.  Figure 7a shows that the TC count varies from one to eight in the data from 

1979-2007.  The cumulative probability diagram in Fig. 7b shows that three counts are 

slightly above the 30% cumulative probability and five counts are slightly above the 70%.  

In order to have near even members in each category as tercile classification implies, we 

set below normal category as when the TC count is less or equal to three, and above 

normal as when the count is larger or equal to six.  The normal category has a very 

narrow band that only includes counts of four and five. 

In order to construct the ROC diagram, the range of forecast probabilities is divided 

into 10 bins (0-10%, 11%-20%, 21-30%, etc.).  The ROC diagram is constructed by 

plotting the hit rate (HR) and false alarm rate (FAR) by the accumulated probability at 10 

bins jointly as in Fig. 8.  The curve connected by the ten dots in Fig. 8 is called the ROC 

curve, which measures the ability of the forecast model to discriminate between hit and 

miss in terms of the occurrence probability. The ROC area is defined as the ratio of the 

area below the ROC curve with respect to the entire plotting area. If the ROC area is less 

than 0.5, it means that the forecast model cannot discriminate between high and low 

occurrence probability. The ROC area presented in Fig. 8 is 0.6, suggesting that the 

Bayesian regression forecast model is moderately skillful in discriminating high and low 

occurrence probability.  

 A biased forecast may still have good resolution. The ROC curve is not sensitive to 

forecast bias and therefore cannot provide a reliable representation.  A good ROC curve 
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suggests that it may be possible to improve the forecast through calibration. Therefore, 

the ROC can be considered as a measure of potential usefulness.  The model bias and a 

need for calibration can be seen in Table 2, which shows the forecasted TC counts of 

maximum probability tabulated against the observed results.  A negative bias of the 

forecast model is clearly presented in Table 2, which means that the forecasted TC counts 

tend to be lower than the actual occurrences.  The bias inherent with the assumed 

Poisson distribution of TC counts, which will be discussed in the last section implies that 

the probabilistic forecast results need to be calibrated and transformed to a categorical 

forecast. The forecast skills associated with categorical forecasts are easier to understand 

for most users. 

 A common practice in forecasting the seasonal outlook of TC counts is to categorize 

typhoon activity as above normal, normal, or below normal.  In principle, the empirical 

cumulative distribution function (ECDF) corresponding to the 33% and 67% in Fig. 7b 

should be used as the reference values for categorizing the forecast results when the 

outcome is expressed in a tercile.  In the present study, the TC counts that are closest to 

ECDF=33% are three or less (Fig. 7b) and this is classified as below normal (BN).  For 

the ECDF=67%, the corresponding counts are equal to five or larger, which is termed as 

above normal (AN).  In order to have near even samples in the tercile categories the 

normal category (N) should have TC counts of four and five, however, a count of six 

actually corresponds to ECDF=87%.  The uneven probability portion in AN and BN 

implies that the occurrence probability of AN is naturally less than BN when the 

observed TC counts are simulated by the Poisson distribution. The inconsistency between 
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the actual occurrence rate and the assumed Poisson probability can be adjusted by a 

simple calibration procedure as follows. 

The calibration is done on the basis of the cumulative probability of the predictive 

categories based on the 29-yr. LOOCV forecasts. The cumulative probability of 

predictive counts is presented in Fig. 9. The cumulative probability of the predictive BN 

(≤ 3) and AN ( ≥ 6) categories is represented by solid and long-dashed lines, respectively, 

and the normal category N(4, 5) is represented by a short-dashed line. Figure 9 suggests 

that based on the predictive probability derived from 29 LOOCV forecast experiments, 

the lowest probability of BN is 0.11 (11%) and the highest probability of BN is 0.83 

(83%), which refers to the points at which ECDF=0 and ECDF=1, respectively, in Fig. 9.  

For the BN category the cumulative probability is 0.3151 when ECDF=33% and 0.5721 

when ECDF=67%.  Similarly, for category N the ECDF=33% cumulative probability is 

0.2622 and ECDF=67% cumulative probability is 0.3042.  For AN, the ECDF=33% 

cumulative probability is 0.1402 and ECDF=67% cumulative probability is 0.3536.  The 

cumulative probability of ECDF=33% and ECDF=67% are used as reference values for 

determining the predictive likelihood of a specific category. If the cumulative probability 

of a specific category is lower than the ECDF=33% reference value it means that it is 

unlikely that such category will occur. In contrast, a category is likely to occur when the 

predictive cumulative probability of the category is higher than its ECDF=67% reference 

value. 

To further explain the calibration procedure, we present the predictive PDFs of each 

year during 1979-2007 in Fig. 10. The climatological PDF as presented in Fig. 7a is 

shown in the background of Fig. 10 in gray.  The observed TC count in each year is 
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marked by a filled bar.  Each year the predictive cumulative probability of AN, N, and 

BN categories can be directly calculated based on the PDF.  Using the categorical 

reference values at ECDF=33% and ECDF=67%, we can determine which category is 

most likely to occur. Thus the probabilistic forecast result (the predictive PDF) can be 

converted to a categorical forecast result (categories AN, N, or BN).  The contingency 

table for the category forecast after calibration adjustment is presented in Table 3.  The 

zero number of false forecasts for the opposite category clearly reflects the capability of 

the Bayesian regression forecast for capturing the categorical forecasts correctly.   

The advantage of presenting forecast results in categories is that we can apply the 

standard procedure recommended by Wilks (2006) and WMO (WMO 2002) to evaluate 

forecast skill.  The scores computed in this study include accuracy (ACC), Heidke Skill 

Score (HSS), and Hanssen-Kuipers discriminant (HK). ACC reflects correspondence 

between pairs of forecasts and the events they are meant to predict. HSS measures the 

proportion of correct predictions; in a perfect forecast the HSS=1. The HK is also known 

as the Peirce Skill Score, Kuiper’s performance index, or the true skill statistic. HK is 

formulated similarly to the HSS except that the reference hit rate is for random forecasts 

that are constrained to be unbiased. The computation formula of the scores is presented 

by the Australian Bureau of Meteorology at 

http://www.bom.gov.au/bmrc/wefor/staff/eee/verif/verif_web_page.html#Methods_for_

multi-category_forecasts. 
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The computed forecast skill scores for the Bayesian forecast model are ACC=0.52, 

HK=0.27, HSS=0.27.  The skill can be assessed in reference to climatology and 

persistence forecasts.  Here climatology means using the average TC counts in 29 years 

as the predictive result and persistence means using TC counts from previous year as the 

predictive result.  For climatology, the scores are ACC=0.45, HK=0, and HSS=0. For 

persistence, the scores are ACC=0.39, HK=0.06, and HSS=0.06. Clearly, the Bayesian 

regression forecast model presented in this study can produce skillful forecast results.  

 

6.  Discussion 
 
 Seasonal forecasts of tropical cyclone activity were pioneered by Nicholls (1979) 

and Gray (1984a and b).  For the western North Pacific, Chan et al. (1998) have 

performed seasonal forecasts of tropical cyclone activity.  Skillful forecasts are noted 

for some basin-wide predictands such as the annual number of typhoons.  In the past, 

while progress was made to forecast basin-wide seasonal or annual typhoon activity, little 

attention was paid in forecasting regional activity.  The lack of regional information for 

particular typhoon-threatened, sub-basin regions poses problems for adequate long-term 
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planning of regional emergency management and hazard mitigation.  In particular, 

prediction of the landfall frequency on specific coastal areas is sorely needed as many 

regions in east Asia are vulnerable to typhoons.  In this paper, we present a probabilistic 

model that has been proven to be skillful in predicting seasonal TC numbers for a region.  

The categorical forecast skill from the Bayesian regression model is better than that 

achieved by climatology and persistence methods. 

a. Physical interpretation of the predictability 

Three climate variables (Vor850, VWS, SLP) are used in the prediction model. The 

predictor screening procedure shows that the most important variable is Vor850.  The 

reason Vor850 stands out is probably because it captures the variations of the ridge 

position of the westward extension of the western Pacific subtropical high (WPSH) in 

May, which can be a precursor signaling how WPSH will evolve in the following months. 

The speculation is supported by the correlation maps of the lag-correlation of Vor850 in 

May and the low-level wind fields over the Philippine Sea and western Pacific in the 

following months (figures not shown).  Note that the correlation is higher in June, July 

and August, but lower in later months.  

Variations of WPSH were found to be influenced by SST and convective activity 

over the tropical Indian Ocean-western Pacific in the decadal time scale (Hu 1997, Gong 

and Ho 2002, Zhou et al. 2009). For interannual variations, convection and SST over the 

Philippine Sea are major influential factors (Lu 2001, Lu and Dong 2001). ENSO is not a 

major factor causing systematic interannual variations of WPSH.  The outstanding 

correlation between Vor850 and TCs affecting Taiwan found in the present study 

suggests that the remote SST variations such as ENSO cannot describe sufficient variance 
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of the track anomalies that are important to Taiwan. The potential SST predictor 

presented in Fig. 3a is less important compared with Vor850, VWS and SLP.  It 

suggests that SST is a secondary factor influencing the seasonal tendency of TC tracks. 

However, SST can have an indirect influence through affecting convection then 

modulating the westward extension of WPSH (Tu et al., 2009). Such a process can be 

captured by the selected predictors of the present prediction model. In summary, WPSH 

is the key that modulates TC tracks over the Philippine Sea and the west end of WNP. 

Convection and SST over the Philippine Sea near the equator captured by the VWS and 

SLP can significantly influence WPSH, which influences the TC tracks affecting Taiwan.  

b. 2008 and 2009 Prediction Results 

The forecast model developed in this paper was applied to 2008 and 2009 as an 

operational test. The data of these two years was not used in the model development and 

evaluation. The forecast results are presented in Fig. 11a and 11b. For 2008, prediction 

shows below normal TC activity with the maximum probability of only one TC affecting 

Taiwan (Fig. 11a). However, verification shows normal TC activity with four TCs 

affecting Taiwan.  For 2009, prediction shows normal TC activity with the maximum 

probability of four TCs and verification also shows normal TC activity with four TCs 

affecting Taiwan; therefore, the prediction in 2009 is perfect.  

Although Taiwan was affected by 4 TCs in both 2008 and 2009, the temporal pattern 

of occurrence is very different in these two years. In 2008, one TC occurred in July and 

three in September. The September cluster resulted from a strong easterly wave 

associated with strong easterly trade winds. In 2009, the four TCs occurred evenly in 

June, July, August and October, respectively. There is no obvious clustering phenomenon. 
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The contrast between these two years strongly suggests that the Bayesian regression 

model is good at capturing the temporally even distribution condition. We note in Fig. 5 

that the model performed poorly after 2000, particularly in 2004, 2005 and 2007. In 2004 

there was strong MJO modulation on TC activity (Nakazawa, 2006; Hsu et al., 2008). In 

2005 and 2007, Taiwan saw successive TCs, which were influenced by strong easterly 

waves, approach within one month. The results are consistent with what we found for 

2008. 

Li and Fu (2006) pointed out that the Rossby wave train in the wakes of pre-existing 

TCs creates a favorable condition for successive TCs to occur. In this case the successive 

TCs formed in the Pacific easterly and Asian monsoon westerly confluent region (Lau 

and Lau, 1990; Chang et al. 1996) cannot be considered independent. This means such 

phenomenon is against the assumption of Poisson distribution of the TC counts (i.e., the 

occurrence of TCs in a particular time period is independent of previous occurrences) in 

the Bayesian regression model which may cause prediction failure. 

c. Recommendation for real time operational forecast 

In the practice of real time operational forecast, because the monthly mean 

reanalysis data of May cannot be available before June, the presented model cannot meet 

the strict requirement for operational forecast. Therefore, for operational practices we 

recommend issuing the forecast around June 10 for predicting the total TC counts during 

the period June 20 – November 30. We repeated the same model development procedure 

described in this paper and examined the forecast skill. The recommended procedure can 

produce slightly better forecasts for the years with TCs affecting Taiwan before June 20.  
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At the Central Weather Bureau of Taiwan, May and June are considered as the 

Mei-Yu season. The Mei-Yu front is usually associated with the northern rim of the 

WPSH. Concurrent with the seasonal development of the South Asian monsoon, the ridge 

of the western edges of the WPSH starts to move northward, from the Philippine Sea 

(135°E, 20°N) on pentad 31 (May 31-June 4) to the latitudes of Taiwan (129°E, 23°N) on 

pentad 35 (June 20-24) (Nagata and Mikami 2010).  In other words, Taiwan is less 

influenced by the tropical disturbances from western Pacific before mid-June. Therefore, 

the recommendation we proposed for operational forecast can fit the large-scale climate 

condition very well.  Note that additional deterministic prediction information can be 

generated by a multivariate linear regression model proved skillful by the standard 

verification procedure (Chu et al. 2007). 

For future development, in addition to exploring more potential predictors such as 

Arctic sea ice and North Pacific indices (Fan 2007, Wang et al. 2007), we plan to expand 

the statistical forecast model to a hybrid dynamical-statistical configuration similar to 

what is done for the seasonal forecast of Atlantic hurricane activity using NCEP 

dynamical seasonal forecast (Wang et al. 2009). Because the WPSH is the most 

influential large-scale system that affects the interannual variations of the TC activity 

near Taiwan, the dynamical forecast system needs to produce reliable forecast 

information about the WPSH. This is a challenging demand because the variability of 

WPSH is strongly modulated by the SST and convective activity in the region of the 

tropical Indian Ocean, Philippine Sea and western Pacific (Hu 1997, Lu 2001, Lu and 

Dong 2001, Gong and Ho 2002, Zhou et al. 2009). The negative bias associated with 

successive TCs suggests that accumulated cyclone energy (ACE) might be a better 
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predictor than TC frequency.  Research in this direction is beyond the scope of the 

current study. 

 While typhoons have brought strong winds, storm surges, and huge waves, they also 

result in beneficial rainfall to Taiwan as a majority of annual rainfall comes from 

typhoons.  If the land-falling typhoons are lower than expected in a typhoon season, the 

likelihood of drought in the following year would be high.  Many other tropical coastal 

areas or islands have similar problems as Taiwan, namely, natural variability in tropical 

cyclone activity from year to year and increasing demand for fresh water resulting from 

typhoons as populations have soared.  It is hoped that the method demonstrated here 

would also be of value to other areas in east Asia (Philippines, China) and southeast Asia 

(e.g., Vietnam) in better predicting regional typhoon activity.  This would in turn be 

vital to various government agencies when doing long lead disaster mitigation planning 

and water resources management.  
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TABLE CAPTIONS LIST 

 

Table 1.  Correlation coefficient (50%-r) of the median probability and the Bayesian 

p-value (p), mean (m) and standard deviation of the predicted probability distribution of 

the predictors in each stage of predictor screening. 

 

Table 2.  Contingency table of the observed and forecasted TC counts from 0 to 10. The 

forecasted counts presented here are the counts that have the maximum probability in the 

forecasted probability distribution. 

 

Table 3.  Contingency table for the tercile category forecasted by the Bayesian model 

after calibration using the 29-yr. LOOCV forecast results. 
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Table 1.  Correlation coefficient (50%-r) of the median probability and the Bayesian p-value (p), mean (m) and standard 

deviation of the predicted probability distribution of the predictors in each stage of predictor screening. 

 Vor850 (1) VWS (2) SLP (3) SST (4) PWAT (5) 

50%-r 0.65 50%-r 0.48 50%-r 0.39 50%-r 0.37 50%-r 0.53 

 p m s  p m s  p m s  p m s  p m s 1st step 

(1) 0.00 0.30 0.10 (2) 0.01 0.24 0.10 (3) 0.03 -0.19 0.10 (4) 0.01 0.25 0.11 (5) 0.00 0.29 0.10

  50%-r 0.65 50%-r 0.62 50%-r 0.65 50%-r 0.65 

     p m s  p m s  p m s  p m s 

    (2) 0.05 0.16 0.10 (3) 0.16 -0.10 0.10 (4) 0.08 0.16 0.12 (5) 0.07 0.17 0.11

2nd step 
(Vor850) 

    (1) 0.01 0.25 010 (1) 0.01 0.27 0.11 (1) 0.01 0.25 0.11 (1) 0.03 0.23 0.12

    50%-r 0.67 50%-r 0.64 50%-r 0.65 

         p m s  p m s  p m s 

        (3) 0.16 -0.10 0.10 (4) 0.21 0.09 0.13 (5) 0.33 0.08 0.16

        (1) 0.02 0.21 0.11 (1) 0.01 0.25 0.10 (1) 0.03 0.22 0.12

3rd step 
(Vor850, 

VWS) 

        (2) 0.05 0.16 0.10 (2) 0.16 0.12 0.12 (2) 0.19 0.12 0.14

      50%-r 0.62 50%-r 0.66 

             p m s  p m s 

            (4) 0.33 0.06 0.13 (5) 0.46 0.02 0.17

            (1) 0.04 0.20 0.11 (1) 0.05 0.20 0.12

            (2) 0.13 0.14 0.12 (2) 0.15 0.14 0.14

4rd step 
(Vor850, 

VWS, 
SLP) 

            (3) 0.20 -0.10 0.11 (3) 0.17 -0.10 0.11
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Table 2.  Contingency table of the observed and forecasted TC counts from 0 to 10. The 

forecasted counts presented here are the counts that have the maximum probability in the 

forecasted probability distribution. 

Prediction 
 

0 1 2 3 4 5 6 7 8 9 10 Total 

0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 2 0 0 0 0 0 0 0 0 2 

2 0 1 1 2 0 0 0 0 0 0 0 4 

3 0 0 0 1 2 0 0 0 0 0 0 3 

4 0 0 2 1 1 2 0 0 0 0 0 6 

5 0 0 2 2 3 0 0 0 0 0 0 7 

6 0 0 0 0 2 0 1 0 0 0 0 3 

7 0 0 0 0 0 1 2 0 0 0 0 3 

8 0 0 0 0 0 1 0 0 0 0 0 1 

9 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 

observation 

Total 0 1 7 6 8 4 3 0 0 0 0 29 
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Table 3.  Contingency table for the tercile category forecasted by the Bayesian model 

after calibration using the 29-yr. LOOCV forecast results. 

  Prediction 

  BN N AN Total 

BN 5 4 0 9 

N 4 5 4 13 

AN 0 2 5 7 

O
bservation Total 9 11 9 29 
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FIGURE CAPTIONS LIST 

 

Figure 1. (a) The tracks and (b) the monthly distribution of all TCs affecting Taiwan 

based on data during the period of 1979-2007. The box (21°N-26°N and 119

°E-125°E) in (b) delineates the area used to define TCs affecting Taiwan. 

 

Figure 2. The schematic development procedure of the Bayesian regression forecast 

model. 

 

Figure 3.   Correlation map between seasonal (JJASON) tropical cyclone count series in 

the vicinity of Taiwan and large-scale variables in the preceding May over 

the tropical western North Pacific. The large-scale variables are (a) sea 

surface temperatures, (b) 850-hPa vorticity, (c) precipitable water, (d) sea 

level pressures, and (e) vertical wind shear. Solid contours (dashed) denote 

positive (negative) correlations. Contour interval is 0.1. The points with 

correlations significantly different from zero at the 95% level (> 0.37) are 

marked by dots. 

  

Figure 4. Time series of the observed and leave-one-out cross-validated forecasts of the 

predicted (a) maximum and (b) average probabilities of the tropical cyclone 

counts. 
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Figure 5.  Same as in Fig. 4 but for the median (thick dashed line marked by open 

circles) and upper 75% and lower 25% (thin dashed lines) of the predicted 

TC counts. 

 

Figure 6. Estimated marginal posterior PDFs for model parameter set and its 

corresponding Bayesian p-value, given the TC counts (JJASON) in the 

vicinity of Taiwan and the selected large-scale variables during 1979–2007. 

The large-scale variables are 850-hPa vorticity, sea level pressure and 

vertical wind shear.   

 

Figure 7. (a) The histogram of the JJASON TC counts based on the 29-year data of 

1979–2007, and the probability distribution function approximated by the 

Poisson distribution. The thin dashed lines mark the boundaries between the 

categories of below normal, normal, and above normal. The corresponding 

cumulative histogram and distribution function are presented in (b), where 

the thin dashed lines are the 30% and 70% probability of the cumulative 

histogram and the thick dashed lines are the 30% and 70% probability of the 

cumulative probability of Poisson distribution. 
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Figure 8.  The Relative Operating Characteristic (ROC) diagram based on the forecasted 

and observed probabilities of TC counts divided in ten probability bins. The 

x-axis is the false alarm or missing rate, and the y-axis is the hit rate. 

 

Figure 9.  The empirical cumulative distribution function (ECDF) based on the 29-yr. 

LOOCV forecasted probability of the TC counts converted to tercile 

categories. The below normal (BN) and above normal (AN) categories are 

represented by solid and long-dashed lines, respectively, and the normal 

category N (4, 5) is represented by the short-dashed line. 

 

 

Figure 10.  The forecasted probability distribution of the TC counts of the 29-yr. 

LOOCV. The gray distribution in the background is the histogram of the TC 

counts as in Fig. 7a. The thin dashed lines mark the boundaries between the 

categories of below normal, normal, and above normal. The observed TC 

count in each year is represented by the filled bar. 

 

Figure 11.  The same as Fig. 10 but for (a) 2008 and (b) 2009.  
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Figure 1. (a) The tracks and (b) the monthly distribution of all TCs affecting Taiwan 

based on data during the period of 1979-2007. The box (21°N-26°N and 119

°E-125°E) in (b) delineates the area used to define TCs affecting Taiwan. 
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Figure 2. The schematic development procedure of the Bayesian regression forecast 

model.
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Figure 3. Correlation map between seasonal (JJASON) tropical cyclone count series in 

the vicinity of Taiwan and large-scale variables in the preceding May over 

the tropical western North Pacific. The large-scale variables are (a) sea 

surface temperatures, (b) 850-hPa vorticity, (c) precipitable water, (d) sea 

level pressures, and (e) vertical wind shear. Solid contours (dashed) denote 

positive (negative) correlations. Contour interval is 0.1. The points with 

correlations significantly different from zero at the 95% level (> 0.37) are 

marked by dots. 
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Figure 4. Time series of the observed and leave-one-out cross-validated forecasts of the 

predicted (a) maximum and (b) average probabilities of the tropical cyclone 

counts. 
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Figure 5.  Same as in Fig. 4 but for the median (thick dashed line marked by open 

circles) and upper 75% and lower 25% (thin dashed lines) of the predicted 

TC counts. 
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Figure 6. Estimated marginal posterior PDFs for model parameter set and its 

corresponding Bayesian p-value, given the TC counts (JJASON) in the 

vicinity of Taiwan and the selected large-scale variables during 1979–2007. 

The large-scale variables are 850-hPa vorticity, sea level pressure and 

vertical wind shear. 
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Figure 7. (a) The histogram of the JJASON TC counts based on the 29-year data of 

1979–2007, and the probability distribution function approximated by the 

Poisson distribution. The thin dashed lines mark the boundaries between the 

categories of below normal, normal, and above normal. The corresponding 

cumulative histogram and distribution function are presented in (b), where 

the thin dashed lines are the 30% and 70% probability of the cumulative 

histogram and the thick dashed lines are the 30% and 70% probability of the 

cumulative probability of Poisson distribution. 
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Figure 8.  The Relative Operating Characteristic (ROC) diagram based on the forecasted 

and observed probabilities of TC counts divided in ten probability bins. The 

x-axis is the false alarm or missing rate, and the y-axis is the hit rate. 
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Figure 9.  The empirical cumulative distribution function (ECDF) based on the 29-yr. 

LOOCV forecasted probability of the TC counts converted to tercile 

categories. The below normal (BN) and above normal (AN) categories are 

represented by solid and long-dashed lines, respectively, and the normal 

category N (4, 5) is represented by the short-dashed line. 
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Figure 10.  The forecasted probability distribution of the TC counts of the 29-yr. 

LOOCV. The gray distribution in the background is the histogram of the TC 

counts as in Fig. 7a. The thin dashed lines mark the boundaries between the 

categories of below normal, normal, and above normal.  The observed TC 

count in each year is represented by the filled bar. 
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Figure 11.  The same as Fig. 10 but for (a) 2008 and (b) 2009.  
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