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ABSTRACT

A stochastically forced nonlinear dynamic model for El Niño–Southern Oscillation is advanced to explore
the nature of the highly irregular ENSO cycle. The model physics includes nonlinear dynamics of the coupled
ocean–atmosphere system, high-frequency stochastic forcing, and the annual forcing of a prescribed climato-
logical basic state.

The model irregular ENSO-like oscillation arises from three different origins: stochastic resonance, coupled
nonlinear instability, and stochastic transition. When the basic state is stable, the stochastic forcing excites
irregular oscillations by stochastic resonance. When the system is unstable and the coupled dynamics sustains
a nonlinear oscillation (stable limit cycle), the stochastic forcing perturbs the deterministic trajectory of the limit
cycle in the phase space, generating irregularities and modifying the oscillation period. When the system possesses
multiequilibrium states, the stochastic forcing may render the system oscillatory by randomly switching the
system between a warm and a cold stable steady state.

The stochastic response depends not only on the nonlinear dynamic regimes of the ENSO system but also on
the temporal structure (spectrum) and strength of the stochastic forcing. White and red noises are shown to be
much more effective than band-limited white noises in stochastic resonance and in altering the characteristics
of the nonlinear oscillation. The intraseasonal noise can alter the dominant period of intrinsic nonlinear oscillation,
favoring biennial oscillation, especially when the intraseasonal forcing is modulated by the monsoon (annual)
cycle. Stronger forcing yields an enhanced resonant oscillation with a prolonged period. A sufficiently strong
white noise forcing, however, can destroy the nonlinear or resonant oscillation, leading to a Markovian process.
The basic-state annual variation tends to enhance the resonant oscillation but reduces the oscillation period
considerably in the marginally stable regime.

The model results suggest that ENSO may arise from multimechanisms. The different mechanisms may be
at work in various phases of the ENSO evolution, depending on the basic state and the nonlinear dynamics of
the system. The monsoon may affect ENSO through modulation of intraseasonal stochastic forcing, enhancing
the biennial component of ENSO.

1. Introduction

The evolution of ENSO exhibits conspicuous irreg-
ularities from one cycle to another. Understanding the
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cause of the irregularities associated with this oscillatory
behavior is critical for ENSO prediction.

Recent studies with intermediate coupled models
have revealed that the coupled system may display de-
terministic chaos due to the presence of the annual vari-
ations of the basic state upon which ENSO evolves. In
models with specified seasonally varying basic states,
as the dynamic coupling increases, the coupled system
becomes unstable and undergoes a quasiperiodicity
route to chaos due to the overlapping of the frequency-
locking resonance (Tziperman et al. 1994; Jin et al.
1994). By allowing the annual cycle to interact with the
ENSO cycle, Chang et al. (1994) demonstrate that as
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the external annual heat flux forcing strengthens, the
coupled system experiences a number of transitions be-
tween periodic and chaotic oscillations. The system fi-
nally gives up its intrinsic ENSO oscillation and ac-
quires the oscillation period of the external annual forc-
ing. The deterministic chaos found in these intermediate
coupled models is characteristic of low-order dynamic
systems (Tziperman et al. 1995; Chang et al. 1995).

However, the irregular interannual oscillation simu-
lated by coupled general circulation models (CGCMs)
(Philander et al. 1992) does not appear to be of the low-
order chaos. The nonlinear time series analysis per-
formed by Chang et al. (1996) suggests that stochastic
processes, rather than chaotic dynamics, are likely to be
a major source of ENSO irregularity in CGCMs and in
nature. This implies that high-frequency processes may
play a critical role in the ENSO evolution (e.g., Graham
and White 1988; Kleeman and Power 1994). It has been
suggested that ENSO is a manifestation of a stochas-
tically driven oscillation (e.g., Lau 1985; Penland and
Matrosova 1994; Penland and Sardeshmukh 1995; Pen-
land 1996; Eckert and Latif 1997; Blanke et al. 1997).
The causes of the irregular ENSO cycles remain incon-
clusive. The roles of the nonlinear chaotic dynamics and
of the stochastic forcing in the ENSO evolution and in
limiting the ENSO predictability invite further inves-
tigations.

The tropical ocean–atmosphere climate system may
be considered as a nonlinear coupled system influenced
by high-frequency (synoptic to intraseasonal) forcing
and exhibits low-frequency (interannual) variations. The
high-frequency forcing has much shorter characteristic
timescales compared to ENSO and may be treated as
stochastic. The coupled system also experiences a pre-
scribed annual forcing (via change of the mean state
upon which ENSO evolves). Our interests focus on the
roles of the stochastic forcing and the coupled nonlinear
dynamic regimes in generating and sustaining highly
irregular ENSO cycles. A number of critical questions
need to be addressed:

(i) How does the response of the ENSO system to
stochastic forcing (hereafter the stochastic response) re-
late to the nonlinear dynamics of the coupled system?
The answer to this question will help clarify the relative
roles played by the nonlinear dynamics and the sto-
chastic forcing in the ENSO evolution.

(ii) How does the stochastic response depend on the
temporal structure and intensity of the stochastic forc-
ing? In general, the stochastic response depends on both
the spatial and temporal characteristics of the stochastic
forcing. Recent studies have focused on searching for
spatial patterns of the stochastic forcing (stochastic op-
timal) that enhance low-frequency variability of the cou-
pled system (e.g., Kleeman and Moore 1997), whereas
far less attention has been given to the investigation of
the impacts of the temporal structure of the stochastic

forcing on the low-frequency variability of the coupled
system.

(iii) What roles does the basic-state annual cycle play
in the stochastic dynamics of the ENSO system? What
are the differences between linear and nonlinear sto-
chastic responses?

To address these questions, we adopt the nonlinear
dynamics system model for ENSO advanced by Wang
and Fang (1996, hereafter WF96) and extend the model
to include stochastic forcing. Section 2 and appendix A
describe the model physics and its formulation. Section
3 discusses the deterministic dynamics of the ENSO
model without stochastic forcing. Although highly ide-
alized, it will be shown that the model contains the
essential dynamics relevant to capture the observed
ENSO evolution and the interannual oscillations found
in intermediate coupled models and CGCMs. This then
is one of the reasons for choosing this theoretical model.
In addition, because of its computational efficiency, this
model enables us to carry out a large number of nu-
merical experiments, which would be prohibitive in cou-
pled GCMs. The results derived from this simple model
are expected to provide physical insight to help interpret
the results obtained from more complex coupled models.
In sections 4, 5, and 6, we address the three questions
raised in the previous paragraph. The last section pre-
sents a summary of this work.

2. The stochastic dynamics model for ENSO:
Formulation

With a number of simplifications, WF96 distilled Ze-
biak and Cane’s (1987) intermediate coupled ocean–
atmosphere model to a theoretical model, which is re-
ferred to as the ENSO system hereafter. The ENSO sys-
tem consists of only two prognostic equations: one de-
scribing the oceanic mixed layer thermodynamics and
the other depicting the upper-ocean dynamics [see ap-
pendix A, Eqs. (A1), (A2)]. The atmosphere serves as
a medium through which SST anomalies affect ocean
dynamics [Eq. (A3)].

To the lowest-order approximation, the spatial struc-
ture of ENSO is characterized by an equatorial sym-
metric, east–west standing oscillation. Such a seesaw
oscillation is obvious in SST and sea level pressure
fields (e.g., Trenberth and Shea 1987). The thermocline
variation, which ‘‘memorizes’’ the aftermath of the SST
on the surface winds and conveys wind feedback to the
SST, also features a basinwide seesaw oscillation: The
thermocline displacements represented by the depth of
the 208C isotherm and averaged over the western
(1208E–1608W) and eastern (1608–808W) basins be-
tween 158S and 158N and between 258S and 258N are
all nearly 1808 out of phase (Fig. 1). This east–west
seesaw structure is consistent with the theory of Cane
and Moore (1981), who showed that the thermocline
adjustment in a zonally bounded basin results in a low-
frequency standing basin mode. In the coupled model
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FIG. 1. Monthly mean anomalies of the 208C isotherm depth av-
eraged over the western (west of 1608W) and the eastern (east of
1608W) Pacific basin (a) between 258S and 258N, and (b) between
158S and 158N. The anomalies are 11-month running means. The
original data are derived from the Ocean Data Assimilation System
at the National Centers for Environmental Prediction (Ji et al. 1995).

TABLE 1. List of the model parameters.

L
H
H1

d
1 5 raCD/r0 H

Zonal width of the ocean basin
Mean depth of the thermocline
Depth of the mixed layer
Nondimensional atmospheric boundary layer depth
Wind stress coefficient

1.7 3 107 m
150 m
50 m
0.2
1028 m21

as

rs

ra

C0

L0

Newtonian cooling coefficient for SST anomaly
Rayleigh friction coefficient in the oceanic mixed layer
Rayleigh friction coefficient in atmospheric boundary layer
Oceanic Kelvin wave speed
Oceanic Rossby radius of deformation

(125 day)21

(1.5 day)21

3.6 3 1026 s21

2.0 m s21

300 km
Ls 5 rs/b

DTx 5 T e 2 T W

DT z 5 T 2 T e

Ekman spreading length
scale

Mean temperature difference between the east and west
Mean vertical temperature difference at mixed layer base

338 km

23.58C
3.08C

of Zebiak and Cane (1987), Wakata and Sarachik (1991)
showed that the unstable coupled basin anomaly mode
in a spatially varying basic state exhibits a similar struc-
ture: The thermocline fluctuation in the western and
eastern section of the basin tends to be out of phase,
while sharp phase changes concentrate in the central
equatorial Pacific.

The equatorial symmetric, east–west seesaw structure
of the coupled mode provides a physical basis for further
simplification of the ENSO system by use of Lorenz’s
(1963) spectral truncation approach (appendix A). Then,
the temporal structure of the standing ENSO mode may
be described by a second-order nonlinear dynamic sys-
tem with periodic coefficients describing the annual
variation of the basic state (WF96).

Appendix A extends the WF96 model by incorpo-
rating high-frequency, unresolved physical processes,
which we treat as stochastic forcing. The justification
for such a treatment may be found in, say, Penland and
Sardeshmukh (1995). The resultant nondimensional

governing equations for the anomalous SST, T, and ther-
mocline depth, h, averaged over the equatorial eastern
Pacific and projected onto the lowest meridional struc-
ture mode are [Eqs. (A7) and (A8)]

dT
5 a T 1 a h 1 a T(T 2 mh)1 2 3dt

32 2T 1 SF , (2.1a)1

dh
35 b(2h 2 T ) 2 2h 1 SF , (2.1b)2dt

where

a 5 DT 9 1 DT 9 2 a9, (2.2a)1 z x s

a 5 2mDT 9, (2.2b)2 x

2
a 5 , (2.2c)3 !3

2a
b 5 , (2.2d)

2p(1 2 3a )
sSF 5 DT 9u , (2.2e)1 z

sSF 5 23bu . (2.2f)2

The coefficients a1 and a2 involve nondimensional ba-
sic-state parameters (D and D ) and whose mean-T9 T9 a9z x s

ing and corresponding dimensional values are given in
Table 1. The coefficient m measures the effect of the
thermocline displacement on SST. The nondimensional
parameter b is a function of the air–sea coupling co-
efficient a, and the model parameters p 5 (1 2 H1/
H)(L0/ (symbols contained in the expression for p2L )s

are defined in Table 1). The parameter b represents the
collective effects of the equatorial Kelvin and Rossby
waves in adjusting the thermocline (WF96). Typical val-
ues for the model nondimensional coefficients and pa-
rameters are presented in Table 2.

The air–sea coupling coefficient,

2L0a 5 , (2.2g)1 2Ly



8 VOLUME 56J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

TABLE 2. Typical values of the model nondimensional coefficients
and parameters in the ENSO system (2.1).

a1 a2 m a b

20.97 22.84 1.7 0.14 0.58

is the square of the ratio of the oceanic Rossby radius
of deformation, L0, to the characteristic meridional
length scale of the coupled ENSO mode, Ly. WF96
showed that a also measures the strength of the equa-
torial current response to a given wind stress, and thus
measures the degree of the air–sea coupling. The Pacific
Ocean basin geometry provides a natural zonal scale
for ENSO. The dynamical effect of the equator, that is,
the change of sign in the Coriolis parameter, determines
the meridionally trapped scale at the equator, the Rossby
radius of deformation. It is about 300 km for the ocean
and 1500 km for the atmosphere (for the lowest internal
vertical mode). For the coupled ENSO mode, the me-
ridional scale must be in between these two values, but
it may vary. We treat the meridional scale of the ENSO
mode as a free parameter and use it to measure the
degree of the air–sea coupling. When the meridional
length scale of the coupled ENSO mode varies from
1000 km to 500 km, the corresponding air–sea coupling
coefficient a increases from 0.09 to 0.36 and the cor-
responding parameter b increases from 0.35 to 2.2.

The terms SF1 and SF2 represent model stochastic
forcing due to atmospheric high-frequency surface zonal
wind variability. The effects of stochastic variations in
surface heat flux and the high-frequency oceanic pro-
cesses are neglected. Over the Pacific, especially over
the warm pool region, there is a large variance on syn-
optic to intraseasonal timescales. Although the behavior
of intraseasonal oscillations is affected by ENSO, for
simplicity, we consider that this intraseasonal ‘‘noise’’
is not directly coupled with the SST variation on the
ENSO timescale, but may have a potential influence on
ENSO by exciting low-frequency perturbations in the
coupled system. Note also that the terms SF1 and SF2

represent the projection of the ‘‘real’’ stochastic forcing
onto the spatial structure of the standing ENSO mode
in the present highly truncated dynamic system model.

For convenience, we hereafter simply refer to Eqs.
(2.1a,b) as the ENSO system. This system describes the
temporal evolution of the equatorial eastern Pacific SST
and thermocline depth anomalies associated with the
basinwide standing mode. The first equation, (2.1a), de-
picts mixed layer thermodynamics that governs the SST
variation in the equatorial eastern Pacific. These pro-
cesses include the vertical advection of heat by mean
upwelling acting on anomalous vertical temperature gra-
dients and by anomalous upwelling acting on the mean
vertical temperature gradients, the horizontal advection
of heat by mean zonal currents, and thermal damping
representing all processes that relax SST back to its
climatology. The second equation, (2.1b), depicts the

upper-ocean dynamics associated with the basinwide
standing mode. The local thermocline displacement is
determined by the equatorial zonal wind stress and is
adjusted by the remotely forced equatorial Kelvin and
Rossby waves. The collective effects of these equatorial
waves result in a basinwide thermocline adjustment and
provide eventually a delayed change of the thermocline
depth in the equatorial eastern Pacific. For detailed mod-
el physics the readers are referred to WF96 and appendix
A. Two cubic damping terms have been added to the
SST and thermocline equations of WF96 to mimic, re-
spectively, the missing nonlinear effects in the upper-
ocean dynamics (Münnich et al. 1991) and the nonlinear
influence of the thermocline displacement on SST vari-
ation (Battisti and Hirst 1989). In the absence of the
stochastic forcing, numerical experiments show that the
nonlinear oscillation (limit cycle) of the ENSO system
is not qualitatively affected by adding these terms, but
the parameter domain within which the limit cycle exists
is substantially enlarged by the addition of these cubic
nonlinear terms, which stabilize the nonlinear system.
The effects of the increased degree of nonlinearity will
be discussed in detail in section 7.

3. Deterministic coupled dynamics of the ENSO
system

In the absence of stochastic forcing, the existence of
the model interannual oscillation does not depend on
whether there is a basic-state annual cycle. For sim-
plicity, we assume that the basic state is the time-in-
dependent climatological mean state. A dynamic-regime
diagram for the ENSO system in the parameter plane
of the air–sea coupling coefficient a and the thermocline
effect coefficient m is shown in Fig. 2. The regimes are
obtained by examining equilibrium solutions that iden-
tify the region of multiequilibria and by studying the
stability of the single equilibrium state—the climato-
logical mean state, which distinguishes the damped and
limit-cycle regimes. In the a–m plane we will use a as
the bifurcation parameter while fixed m 5 1.7 (in di-
mensional value this means that when thermocline rises
10 m the subsurface temperature Te decreases by 0.78C).

In the stable regime, where the coupling coefficient
a is smaller than a critical value a0 and the thermocline
effect coefficient m is sufficiently large (greater than m0

5 1.3), the system has only one stable steady state: the
climatological mean state. Any perturbation undergoes
a decaying oscillation and finally approaches this cli-
matological mean state. No sustained oscillation is pos-
sible.

When the air–sea coupling coefficient a exceeds the
bifurcation point a0, the climatological mean state be-
comes unstable and the coupled system evolves into a
limit cycle regime. Perturbations away from the cli-
matological mean state experience a growing oscillation
and finally approach a finite-amplitude interannual os-
cillation (Fig. 3a). This steady nonlinear oscillation is
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FIG. 2. Nonlinear dynamic regime diagram for the ENSO system (2.1a,b) with an annual
mean basic state. The selected points A, B, and C represent, respectively, the stable, the limit
cycle, and the multiequilibrium regime. a0 denotes the bifurcation value at which the coupled
system changes from the stable to limit cycle regime.

represented by a unique limit cycle solution in the phase
plane, which acts as an attractor. As shown in WF96,
the limit cycle oscillation is characterized by a moderate
lead of the thermocline displacement to the SST vari-
ation, similar to the observed ENSO cycle and to the
interannual variations simulated by CGCMs (e.g., Phi-
lander et al. 1992) and coupled intermediate models
(e.g., Zebiak and Cane 1987).

As the bifurcation parameter a further increases, the
coupled system enters a new multiequilibrium regime.
There exist two stable nodes (one representing a warm
state and the other representing a cold state) and two
unstable saddle points in addition to the unstable cli-
matological mean state (unstable center). In this regime,
deviations away from the climatological mean state will
be attracted to one of the two stable equilibrium states;
no sustained oscillation is possible.

The intrinsic oscillation in the limit cycle regime re-
sults from the interaction between the surface winds and
SST via nonlinear temperature advection associated
with the equatorial upwelling and thermocline variation.
As illustrated in Fig. 4, this nonlinear interaction in-
volves both a positive and a negative feedback. The
positive feedback arises from the chain reaction among
the SST gradient, the Walker circulation, and the equa-
torial upwelling. Assume that a positive SST anomaly
occurs in the equatorial eastern Pacific. This will reduce
the zonal SST gradient along the equator and weaken
the climatological mean easterlies to the west of the
SST anomaly. The weakening of the easterlies reduces
equatorward Ekman convergence in the surface layer
and suppresses the mean equatorial upwelling, leading
to further warming in the eastern Pacific. This positive

feedback was first visualized by Bjerknes (1969) and
demonstrated by previous coupled stability analyses
(e.g., Philander et al. 1984; Hirst 1986; Neelin 1991).
This instability is a major cause of the rapid warming.
It depends on the mean upwelling and the large mean
vertical temperature difference between the mixed layer
and entrained water, D , in the eastern Pacific.T9z

The negative feedback involves two processes: the
vertical advection of heat by mean upwelling and the
vertical displacement of thermocline due to ocean wave
adjustment. When the warming in the eastern Pacific is
sufficiently strong, the above two processes act against
the warming. First, the warming increases anomalous
vertical temperature difference across the mixed layer
base, T 2 Te 5 T 2 mh (where Te denotes the entrained
water temperature from beneath the mixed layer). When
T 2 Te is greater than normal, the vertical advection
induced by the mean upwelling would suppress the
warming. Second, when the warming is sufficiently
strong so that T . 2h (nondimensional), the thermocline
depth in the equatorial eastern Pacific will decrease if
b is positive [see Eq. (2.1b)]. The rising thermocline
would lower the temperature of the water upwelled into
the mixed layer and suppress warming. The rising of
the thermocline in the eastern Pacific results from bas-
inwide thermocline adjustment due to the collective ef-
fects of the equatorial Kelvin and Rossby waves. A
positive b means that the off-equatorial Rossby waves
play a dominant role in the basinwide thermocline ad-
justment (WF 96). Therefore, the rise of the thermocline
in the eastern Pacific acts together with the mean up-
welling effect to provide a negative feedback mecha-
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FIG. 3. Anomalous SST time series corresponding to (a) a limit
cycle solution in the presence of annual-mean basic state and (b) a
chaotic oscillation in the presence of annually varying basic state.
No stochastic forcing is involved.

FIG. 4. Schematic diagram showing the oscillation mechanism of
the ENSO system described by Eqs. (2.1a) and (2.1b).

nism against the warming and to reverse the system to
a cooling stage.

The notion of the basinwide thermocline adjustment
includes the collective effects of the Kelvin and Rossby
waves, which are key players in the delayed oscillator
idea put forth by McCreary (1983), Suarez and Schopf
(1988), Battisti and Hirst (1989), and Cane et al. (1990).
However, the present theory differs from the delayed
action oscillator theory in the following aspects: (i) The
nonlinear vertical temperature advection is essential
(without this nonlinearity, the limit cycle does not exist),
whereas the delayed oscillation can be reproduced with-
out considering detailed thermodynamics (Cane et al.
1990); (ii) the basinwide thermocline adjustment is not
only attributed to the equatorial waves but also to the
local wind-induced Ekman pumping, the latter being a
coupled process; and (iii) the timescale of the oscillation
is not directly related to the timescales for the equatorial
Kelvin wave and the equatorially trapped Rossby waves
across the basin. The oscillation period in the present
model is determined by the basinwide thermocline ad-
justment (within the meridional scale of the coupled
mode) and a time interval needed for the upwelling to

affect SST; thus it depends on the thermocline effect
coefficient m. The basinwide thermocline adjustment in
the tropical Pacific is a slow process, normally taking
more than a year, depending on the meridional scale of
the coupled mode. When the meridional scale increases,
more Rossby waves with less trapped meridional struc-
ture contribute to the basinwide thermocline adjustment.
Because these less trapped meridional modes propagate
slower, the adjustment time becomes longer and so does
the oscillation period. This model result is consistent
with the results derived from a coupled numerical model
by Kirtman (1996).

Although the model intrinsic oscillation does not de-
pend on the basic-state annual cycle, the latter has a
fundamental impact on the ENSO cycle. On one hand,
it makes the ENSO cycle phase-lock to the annual cycle;
on the other hand, it transforms the limit cycle to a
strange attractor and makes the oscillation chaotic (Fig.
3b). The latter behavior is very similar to and consistent
with the results obtained from coupled intermediate
models (Tziperman et al. 1994; Jin et al. 1994; Chang
et al. 1994).

4. Dependence of the stochastic response on the
coupled dynamics

In the presence of stochastic forcing, the response of
the ENSO system depends critically on the dynamic
regimes of the system. To demonstrate how the sto-
chastic response of the ENSO system depends on the
nonlinear dynamics of the coupled system and to avoid
complication, we assume that (i) the basic state is time
independent (the climatological mean state) and (ii) the
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stochastic wind forcing is a white noise with a moderate
amplitude (standard deviation is 1.17 m s21). The effects
of changes in the characteristics of the stochastic forcing
and the impacts of the annual variation of the basic state
will be discussed in the next two sections, respectively.
The representative parameter values (a and m) for dif-
ferent dynamic regimes are illustrated in Fig. 2 by points
A, B, and C.

Even if one fixes the type of stochastic forcing (such
as a white noise), an infinite number of possible reali-
zations of the white noise process may exist. The re-
sponse time series would differ in the details for dif-
ferent individual realizations of the stochastic forcing.
However, our numerical experiments have shown that
the resultant response spectra (i.e., the spectrum derived
from the response time series) do not exhibit statistically
significant differences. One can, therefore, faithfully de-
scribe the stochastic response of the ENSO system using
its response spectrum.

a. Stochastic resonance in the stable regime

When a 5 0.11 and m 5 1.7 (point A in Fig. 2), the
climatological mean state is a stable steady state. There
is no sustained intrinsic oscillation without stochastic
forcing. However, when a white noise is introduced into
such a stable ENSO system, the system displays sus-
tained irregular oscillations as shown in Fig. 5a. The
spectrum of the corresponding time series shows a broad
peak centered around 3 yr (the thick solid line in Fig.
5d). The concentration of energy on the interannual
timescale indicates that the white noise excites and sus-
tains a low-frequency irregular oscillation. The domi-
nant period is that of the intrinsic damped oscillation
of the system. This provides an example of a resonant
response of a dynamic system to an external stochastic
forcing, which does not depend on the internal dynamic
instability of the coupled system.

We assume that the dynamics near the stable attractor,
which represents the mean climate state, is linear. This
implies that the stochastic excursions away from the
climatic state are not too large. In this case, the linear
dynamics amounts to that of a linear damped and sto-
chastically forced pendulum. The evolution equation for
that system is described by an Ornstein–Uhlenbeck pro-
cess (Gardiner 1983):

dx(t) 5 B dt 1 D dW(t), (4.1)

where the x(t) 5 (T, h)T denotes a state vector whose
components are anomalous temperature and thermocline
depth. The constant matrix B is expressed in terms of the
constant coefficients of the ENSO system [see (2.1)] as

a a1 2B 5 . (4.2)1 22b 2b

In the damped oscillatory region the eigenvalues of B,

b1,2, have a negative real part g 5 (2b 1 a1)/2 and are
given as

b1,2 5 2g 6 g2 2 b(2a1 2 a2).Ï (4.3)

At point A in Fig. 2, the numerical values of these
eigenvalues are b1,2 [ 2g 6 iv 0 5 20.073 1 i0.609,
showing that the ratio of the damping term to the
frequency term is about one-tenth. In the last term in
(4.1), dW(t) can be thought of as being the product j
dt where j represents a white noise; the constant ma-
trix D is associated with the amplitudes of the sto-
chastic forcing in the (T, h)-differential equations and
may be denoted as

1 0
D 5 C , (4.4)11 20 d

where C1 and dC1 are amplitudes of the stochastic forc-
ing. Focusing on the stationary solution, xs(t), of (4.1)
(Gardiner 1983), we find

t

x (t) 5 exp[B(t 2 t9)]D dW(t9). (4.5)s E
0

The amplitude of the stochastic forcing, represented by
D, must affect the amplitude of the motion, which can
be represented by the covariance matrix

s 5 ^xs(t), (t)&.Txs (4.6)

In the above expressions, ^ , & denotes expectation values
and ( )T denotes the transpose of a vector. For a sta-
tionary process, the fluctuation–dissipation relation

Bs 1 sBT 1 DDT 5 0, (4.7)

ties the amplitude of the dynamics to that of the sto-
chastic forcing (Gardiner 1983; Farrell and Ioannou
1996; Penland 1996). The matrix B is intimately con-
nected to the propagator or Green’s function, Gs(t) since

Gs(t) 5 exp[Bt], (4.8)

and the state vector at time t relates to the state vector
at time zero as

x(t) 5 exp[Bt]x(0), (4.9)

a relation used by Penland and collaborators (Penland
and Matrosova 1994; Penland 1996; Penland and Sar-
deshmukh 1995) to obtain ENSO forecast once B is
obtained from SST data.

Finally, following Gardiner (1983), we can construct
the spectrum matrix as

1
21 T T 21S(v) 5 (B 1 IvI ) DD (B 2 IvI ) , (4.10)

2p

where I is the unit matrix. The (1, 1) element of S(v)
provides the spectral power of the SST anomalies as a
function of v, the frequency, and is given as
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FIG. 5. The anomalous SST time series derived from the stochastic response of the ENSO
system (2.1) to a white noise forcing in (a) the stable regime (point A in Fig. 2), (b) the limit
cycle regime (point B in Fig. 2), and (c) the multiequilibrium regime (point C in Fig. 2). The
corresponding response spectra for (a), (b), and (c) are shown in (d) by thick solid, dashed, and
thin solid lines, respectively. No basic-state annual cycle is considered. The standard deviation
of the white noise forcing is 1.17 m s21.

2 2 2 2C (d 1 4dg 1 4g 1 v )1S 5 ,1,1 2 2 2 2 2 2 42p[(v 2 v ) 1 2g (v 1 v ) 1 g ]0 0

(4.11)

where v0 is the intrinsic frequency of the damped os-
cillation. A plot of S1,1/ (not shown) shows that there2C1

is a stochastic resonance at

2 2v 2 d02 2 2 2 2v ù v 1 g 5 v 1 O(g ), (4.12)0 02 21 2v 1 d0

that is, not very far from .2v0

b. Stochastic nonlinear oscillation in the limit cycle
regime

When a 5 0.17 and m 5 1.7 (the point B in Fig. 2),
the climatological mean state is unstable and the ENSO
system possesses a unique limit cycle solution—a per-
petual regular oscillation. When stochastic forcing is
included, the nonlinear oscillation becomes irregular as
shown in Fig. 5b. The original spectrum peak located
at about 3 yr is smeared. The corresponding energy
spreads over adjacent frequencies (the dashed line in
Fig. 5d). Meanwhile the energy level at all frequencies
is raised. The irregularity of the oscillation is not due



1 JANUARY 1999 13W A N G E T A L .

FIG. 6. The phase orbit of the limit cycle without stochastic forcing
(solid curve) and the phase-scattering diagram showing the stochastic
response of the ENSO system in the same limit cycle regime (point
B in Fig. 2).

to low-order deterministic chaos because the mechanism
responsible for the chaos, the annual cycle of the basic
state, is absent. In this case, the oscillation originates
from the nonlinear dynamics of the ENSO system, but
the white noise forcing makes it irregular. The presence
of a white noise forcing disperses energy from the in-
trinsic oscillation period to shorter and longer time-
scales.

In the phase plane, the stochastic forcing perturbs the
phase trajectory representing the regular limit cycle
(Fig. 6). The resultant trajectory tends to spread around
the limit cycle and, in particular, to densely populate in
the neighborhood where the tendencies of the deter-
ministic solutions are small. The latter feature corre-
sponds to the presence of occasionally prolonged warm-
ing or cooling episodes in the response time series
shown in Fig. 5b. The stochastic perturbation is also
responsible for the dispersion of the major spectral peak
in the response spectrum shown in Fig. 5d.

For small stochastic forcing, we may write (4.1) in a
vector form as

dx 5 F(x) dt 1 eD dW(t),

where x is a two-dimensional state vector, F(x) is a
vector consisting of the deterministic nonlinear dynam-
ics on the right-hand side of (2.1), and eD is a constant
2 3 2 matrix characterizing the nondimensional am-
plitude of the stochastic forcing. Figure 6 shows a pro-
nounced clustering of points when the deterministic so-
lution is nearly stationary. Therefore, assuming e K 1,
we write

x 5 x 1 ex (t) 1 · · · ,0 1

]F
F(x) 5 F(x ) 1 e x 1 · · · ,0 11 2]x

0

where (]F/]x)0 is the Jacobian derivative

]F ]F 1 1

]T ]h 
 
]F ]F2 2 
]T ]h 

evaluated at x0, which we will assume stationary. Then
the O(e) dynamics is described by an Ornstein–Uhl-
enbeck process (Gardiner 1983) governed by

]F
dx 5 x dt 1 DdW(t), (4.13)1 11 2]x

0

whose solution is

t ]F
x (t) 5 exp (t 2 t9) D dW(t9), (4.14)1 E 1 2[ ]]x0 0

where we have taken x1(0) 5 0. Then, in some ap-
proximate sense, the two neighborhoods of the turning
points of the deterministic solution behave as quasi-
stationary points as can be seen by comparing (4.14)
with (4.5).

c. Stochastic transition in the multiequilibrium
regime

When a 5 0.23 and m 5 1.7 (point C in Fig. 2), the
ENSO system possesses two stable equilibrium states
(Fig. 7): a warm state (WS) and a cold state (CS), which
may represent El Niño and La Niña, respectively. In
addition, three unstable steady states exist: the clima-
tological mean state (the center CM) and two saddles
U1 and U2. The spiral line across the three unstable states
divides the entire plane into two attraction basins. The
above equilibrium states and the attraction domains are
obtained by searching for steady solutions of (2.1) and
by studying the stability of each equilibrium state an-
alytically and by means of numerical integration. In the
absence of stochastic forcing, any initial perturbation
located in the lower attraction basin (the cold attraction
basin) will approach CS, whereas those located in the
upper attraction basin (the warm attraction basin) will
be attracted to WS.

The presence of a white noise forcing constantly per-
turbs the ENSO system away from the two stable equi-
librium states. Although the warm equilibrium state is
located within the warm attraction basin, under certain
conditions, the stochastic perturbation can be sufficient-
ly strong to push the system into the cold attraction
basin where the system will be attracted to the opposite
equilibrium state.

The deterministic nonlinear dynamics establishes the
basins of attraction as well as the distance between ad-
jacent pairs of saddle nodes. This distance in phase
space establishes the depth of the ‘‘potential wells’’ as-
sociated with the warm/cold steady states. The sto-
chastic forcing must then produce motions of sufficient
intensity so that the representative points in the phase
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FIG. 7. Steady states of the ENSO system (2.1) in the multiequilibrium regime (point C in Fig.
2). The open circles CM, U1, and U2 represent, respectively, the unstable climatological mean state
(CM) and two unstable saddle points (U1 and U2). The solid circles WS and CS denote the warm
and cold stable equilibrium states (two stable nodes), respectively. The shading (blank) area rep-
resents the attraction domain of the cold (warm) steady state.

space be repelled by the saddles from one attractor basin
to the other.

This leads to an oscillatory switching between the
two stable states (Fig. 5c). The period of the ‘‘switch’’
oscillation is dictated by the frequency of the transition,
which depends on a number of factors, mainly the in-
tensity of the stochastic forcing, the basic-state, and
coupling parameters, which control the relative loca-
tions of the steady states in their corresponding attrac-
tion basins. The stronger the stochastic forcing and the
closer the steady state is to the boundary of the attraction
basin, the easier for the transition to occur. This switch-
ing oscillation can occur on interannual timescales (fig-
ure not shown).

5. Dependence of the stochastic response on the
properties of the forcing

In addition to the coupled dynamics, the character-
istics of the stochastic forcing strongly affect the sto-
chastic response of the ENSO system. In this section,
we assess the roles of stochastic forcing in the absence
of deterministic chaos, that is, by using a climatological
annual mean basic state.

a. Dependence on noise levels

Figure 8 illustrates how the ENSO system responds
to the intensity (or level) of a white noise forcing. The

intensity of the noise is estimated by the sample standard
deviation of the noisy surface zonal wind speed (m s21).
In the stable regime (Fig. 8a), a stronger white noise
results in a larger amplitude of the resonant oscillation.
This is evidenced by the increased energy at the major
spectral peak in spite of the fact that peak becomes less
sharp. Furthermore, the primary oscillation period in-
creases slightly with increasing noise level. When the
noise level is sufficiently high, the evolution tends to
approach a red response spectrum.

In the limit cycle regime (Fig. 8b), an increase in the
noise level leads to (i) a weakening of the intrinsic os-
cillation as evidenced by the decrease of the primary
spectral peak, (ii) an increase in irregularity as implied
by the broadening of the primary spectral peak, and (iii)
an increase in the oscillation period. For sufficiently
strong white noise forcing, the stochastic response tends
to be similar, irrespective of the dynamic regimes of the
coupled system. In that case, either the stochastic non-
linear oscillation in the limit cycle regime or the reso-
nant oscillation in the stable regime attains a similar
degree of irregularity and possesses a spectrum similar
to that of a Markovian process.

b. Dependence on noise spectra

Atmospheric disturbances tend to occur on preferred
timescales. The atmospheric stochastic forcing may,
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FIG. 8. Dependence of the response spectrum on the strength of a white noise forcing: (a) in
the stable regime (point A in Fig. 2) and (b) in the limit cycle regime (point B in Fig. 2). The
strength of the white noise is measured by its standard deviation S0 5 1.17 m s21. The dashed
curve in (b) is the spectrum of nonlinear oscillation without stochastic forcing.

therefore, display specific temporal structure or spectral
characteristics. These are colored noises. One way to
distinguish the types of noise is based on their spectral
characteristics. Our numerical experiments have dem-
onstrated that, regardless of the differences in the in-
dividual realizations of a type of stochastic forcing, as
long as the spectrum of the forcing is the same (or very
close), the resultant response spectrum of the ENSO
system is practically the same. This lays a foundation
for an objective classification of different stochastic
forcing.

Four types of stochastic forcing were designed to
mimic the statistical features of the tropical atmospheric

disturbances: red, white, intraseasonal noise, and syn-
optic noise. The method of constructing these noises is
described in appendix B. The types of colored noise are
essentially band-limited white noise. The spectra for
each type of forcing are plotted in Fig. 9a. The total
energy level of noise can be measured by the standard
deviation of the noise time series. The red and white
noises in Fig. 9a have the same standard deviation (0.59
m s21), whereas the intraseasonal and synoptic noises
have a much larger standard deviation of about 4 m s21.
As will be seen shortly, even with a much higher energy
level, the colored noises are less effective in exciting
low-frequency oscillation of the coupled system.
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FIG. 9. (a) Characteristic spectra of four types of stochastic forcing: white, red, intraseasonal,
and synoptic noises. The standard deviations of stochastic forcing are 0.59 m s21 for white noise
and red noise, 3.8 m s21 for intraseasonal noise, and 4.1 m s21 for synoptic noise, respectively.
(b) Response spectrum of the ENSO system (2.1) to the four types of stochastic forcing in the
stable regime (point A in Fig. 2). (c) The same as in (b) except for the limit cycle regime (point
B in Fig. 2). The dashed curve shows the spectrum of the limit cycle oscillation without stochastic
forcing.

Figures 9b and 9c compare stochastic responses of
the same ENSO system to different types of stochastic
forcing. In the stable regime (Fig. 9b), the red noise is
most effective in exciting stochastic resonance and rais-
ing energy levels at all frequencies, whereas the synoptic
noise is least effective. The resonant frequency, how-
ever, does not sensitively depend on the type of the
forcing. Major spectral peaks (or binding of the spec-
trum) occur around 3 yr. In the unstable limit cycle
regime (Fig. 9c), the stochastic response also sensitively

depends on the types of forcing. The synoptic noise
hardly changes the intrinsic nonlinear oscillation. The
intraseasonal noise, however, alters intrinsic oscillation
by shifting the dominant period from about 3 yr to 2 yr
and by broadening the spectral peak thereby increasing
irregularities. Again, the red noise is most effective in
changing the overall characteristics of the intrinsic non-
linear oscillation.

The change of intrinsic oscillation period by intra-
seasonal noise is an interesting finding. Because the
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intensity of the Madden–Julian oscillation (Madden and
Julian 1972) varies seasonally—being strong in northern
winter and weak in northern summer (Madden 1986,
Wang and Rui 1990), we constructed an annually mod-
ulated intraseasonal noise that simulates the monsoon
modulation of the intraseasonal oscillation. The results
revealed that the monsoon’s modulation to intraseasonal
oscillation favors a stronger interannual oscillation
when the system is unstable.

6. Effects of the basic-state variation and the
nonlinearity of the ENSO system

a. Effects of the annual variation of the basic state

As mentioned in section 3, the annual variation of the
basic state plays a critical role in ENSO evolution. On
the one hand, it tends to lock the evolution of ENSO
to the annual cycle. On the other hand, it is a source of
deterministic chaos. In this section we examine the role
of the basic-state annual cycle in the stochastic re-
sponses of the ENSO system. The parameters describing
the basic-state annual cycle are the same as used in
WF96.

Figure 10 compares the stochastic response spectra
of the ENSO system in the absence of versus in the
presence of a basic-state annual cycle for three different
values of the air–sea coupling coefficient a. The forcing
used is an intraseasonal noise. The differences in the
response spectra for the cases with and without a basic-
state annual cycle are insignificant when the system is
in a highly stable or highly unstable regime, that is, a
is sufficiently far away from the bifurcation value a0

for the annual mean state (Figs. 10a,c). However, when
a 5 a0, the annual variation of the basic state renders
the stochastic response a considerably stronger and less
irregular oscillation than that without the annual cycle
(Fig. 10b). The oscillation period is also reduced to
about 2 yr. In general, the stochastic oscillation in the
presence of basic-state annual cycle resembles a short-
ened limit cycle oscillation. This implies that an intra-
seasonal noise forcing working together with the basic-
state annual variation may effectively excite a finite-
amplitude interannual oscillation in a marginally stable
regime. In addition, the response shows a sharp peak at
the annual timescale, reflecting the impact of the basic-
state annual variation on the interannual oscillation of
the coupled system.

The phase locking of the model’s ENSO to the annual
cycle in the presence of the stochastic forcing is not
necessarily weaker than that without stochastic forcing.
The degree of phase locking to the annual cycle appears
to depend on how the stochastic forcing alters the in-
trinsic oscillation period. When the stochastic forcing
shortens the oscillation period, the degree of ENSO
phase locking to the annual cycle increases.

b. Effects of the nonlinearity of the ENSO system

To explore the sensitivity of the stochastic response
to the degree of nonlinearity in the ENSO system, we
designed a hierarchy of stochastic dynamic models with
a progressively reduced degree of nonlinearity: (i) a full
nonlinear model, (2.1); (ii) a quadratic nonlinear model
obtained by removing all cubic nonlinear damping
terms; and (iii) a linear model. In order to facilitate
comparison, the stochastic forcing is kept the same (a
white noise) and the basic-state annual cycle is exclud-
ed.

In the stable regime, the linear model exhibits the
strongest stochastic resonance and shortest primary os-
cillation period (Fig. 11a). With an increasing degree of
nonlinearity the amplitude of the stochastic resonant
oscillation decreases and the oscillation period increas-
es.

In the limit cycle regime, only nonlinear models can
produce finite-amplitude irregular oscillations. Com-
pared to the nonstochastic model, the white noise forc-
ing tends to shorten the period of limit cycle oscillation
(Fig. 11b). The reduction of oscillation period occurs
primarily in the system with the quadratic nonlinearity,
whereas the cubic nonlinearity has little effect on the
oscillation period. However, the cubic nonlinearity re-
sults in a considerable reduction of the energy peak on
the ENSO timescale as expected from its damping ef-
fects.

7. Summary and discussion

Observed interannual variations in SST, the surface
winds, and sea level pressure, and the thermocline dis-
placement in the tropical Pacific show that, to a good
lowest-order approximation, the dominant mode of
ENSO represents a basinwide east–west standing os-
cillation. The temporal evolution of the standing ENSO
mode can be described by a stochastically forced non-
linear dynamic system, Eq. (2.1). This system consists
of a pair of a second-order stochastic differential equa-
tions with periodic coefficients representing the basic-
state annual cycle.

The physics of the stochastic dynamic model for
ENSO (the ENSO system) is highlighted by the sche-
matic diagram shown in Fig. 12. Its essential compo-
nents include the deterministic dynamics of the coupled
ocean–atmosphere system, the external stochastic forc-
ing due primarily to atmospheric high-frequency wind
fluctuations, and the impact of the annual variation of
the basic state. The deterministic dynamics of the ENSO
system exhibits three dynamical regimes (the stable, the
limit cycle, and the multiequilibrium), depending on the
basic state, the air–sea coupling coefficient a, and the
thermocline effect parameter m. For a fixed m . m0,
the air–sea coupling coefficient a may be viewed as a
bifurcation parameter controlling the dynamical regimes
of the system (Fig. 2).
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FIG. 10. Comparison of the response spectrum of the ENSO system (2.1) to an intraseasonal
stochastic forcing with and without the basic-state annual cycle for the air–sea coupling coefficient
a 5 0.05 (highly stable) (a), a 5 a0 (marginally stable) (b), and a 5 0.23 (highly unstable) (c).
The thermocline effect parameter m 5 1.8.

The model-simulated interannual oscillations (such as
those shown in Figs. 5a,b) capture qualitatively some
rudimentary features of observed ENSO, which include
(i) a broad spectral peak on the interannual timescale
(about 2–7 yr); (ii) a phase locking to the annual cycle;
and (iii) irregularities in the oscillation, which appear
to consist of both a low-order chaos and high-dimen-
sional randomness, although the detailed forms of evo-
lution in each cycle appear to differ from those of the
observed realizations. In this sense, the temporal struc-
ture of the model ENSO is realistic.

The nature of the model irregular interannual oscil-
lation critically depends on the nonlinear dynamic re-

gimes of the ENSO system. In the stable regime, the
coupled deterministic dynamics cannot sustain oscilla-
tions. However, the stochastic forcing can excite and
sustain irregular oscillations by stimulating a resonant
response of the system (Fig. 5a). The resonant oscil-
lation has a periodicity close to that of the intrinsic
decaying oscillation found in the absence of stochastic
forcing.

In the limit cycle regime, the unforced deterministic
dynamics sustains the intrinsic nonlinear oscillation
(stable limit cycle) (Fig. 3a). The stochastic forcing
makes the phase orbits scatter around the deterministic
limit cycle trajectory in a phase space. In particular, the
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FIG. 11. Comparison of the response spectrum among a linear and a hierarchy of nonlinear
systems to a white noise forcing in (a) the stable regime (point A in Fig. 2) and (b) the limit
cycle regime.

state of the coupled system tends to densely populate
around two preferred extreme states where the tendency
of the nonlinear dynamics is weakest (Fig. 6). The re-
sulting stochastic oscillation exhibits high-dimension ir-
regularities, and occasionally prolonged warm or cold
episodes (Fig. 5b).

In the multiequilibrium regime, the ENSO system
possesses two stable equilibrium states—a warm and
a cold state and two unstable saddles in addition to the
unstable climatological basic state (Fig. 7). The deter-
ministic dynamics establishes the two basins of at-
traction for the warm and cold steady states and the
depth of the ‘‘potential wells’’ associated with the two
attractors. Any perturbation away from the climato-

logical basic state would lead to one of the equilibrium
states, depending in which attraction basin the initial
perturbation lies. The stochastic forcing may produce
motions of sufficient intensity so that the phase of the
system may escape from one attraction basin to the
other. As a result, the coupled system switches ran-
domly between the two equilibrium states, resulting in
an irregular oscillation on interannual or longer times-
cales. The period of the oscillation depends on the
strength of the forcing and the parameters governing
the deterministic dynamics.

The stochastic response of the nonlinear ENSO sys-
tem also depends critically on the properties of the sto-
chastic forcing. For the resonant oscillation, an increase
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FIG. 12. Schematic diagram showing the essential components and
the response of the stochastically forced ENSO dynamic system.

in the intensity of the white noise forcing yields an
increased amplitude and prolonged period (Fig. 8a). For
the nonlinear oscillation, increasing white noise inten-
sity tends to reduce the amplitude and increases the
period and irregularity of the oscillation (Fig. 8b). A
sufficiently strong stochastic forcing, however, can de-
stroy the intrinsic nonlinear oscillation or the resonant
oscillation, leading to a Markovain process (Fig. 8). The
red noise is most effective whereas the synoptic (3–7
days) noise is least effective in exciting resonance and
in altering the characteristics of the intrinsic oscillation.
Intraseasonal noise can substantially modify the intrin-
sic nonlinear oscillation by reducing the oscillation pe-
riod, favoring biennial oscillation (Fig. 9c), especially
when the intraseasonal forcing is modulated by mon-
soons (annual cycle).

The basic-state annual cycle makes the intrinsic de-
terministic nonlinear oscillation chaotic (Fig. 3b). In the
presence of stochastic forcing, the annual variation of
the basic state does not alter the stochastic response
significantly if the ENSO system is far away from the
marginally stable regime. However, in the marginally
stable regime, the annual cycle of the basic state tends
to enhance the resonant oscillation and to reduce the
oscillation period considerably (Fig. 10b).

Increasing the nonlinearity of the ENSO system tends
to weaken the resonant response. In other words, a linear
ENSO system exhibits the strongest stochastic reso-
nance and may most effectively shorten the oscillation
period (Fig. 11a). The stochastic resonance of the lin-
earized ENSO system then is the counterpart in this
model of the statistical ENSO models derived from ob-
servations (Penland and Matrosova 1994; Penland and
Sardeshmukh 1995; Penland 1996).

The model results suggest that the observed irregular
ENSO cycles may arise from different origins. The cou-
pled instability and nonlinear dynamics of the coupled
ocean–atmosphere system may be a dominant cause in

the intermediate coupled models such as Zebiak and
Cane (1987). The stochastic forcing in this case would
further modify the system’s intrinsic oscillation by al-
tering the dominant oscillation period and adding high-
dimension irregularities. The stochastic resonance is an-
other possible cause, in particular in the coupled GCMs
(Chang et al. 1996). In this case, the climatological mean
state is stable and the stochastic forcing sustains irreg-
ular ENSO cycles through the stochastic resonance. The
last possibility is associated with stochastic transition
or switching between a warm and a cold stable equi-
librium state. The data analysis by Penland and Sar-
deshmukh (1995) does not appear to support this bi-
modal behavior, although Wyrtki (1982) strongly em-
phasized the bimodal nature of the ENSO. We speculate
that in reality and in the coupled ocean–atmospheric
models, the interannual oscillations of the tropical cli-
mate system may involve multimechanisms and that dif-
ferent mechanisms may be at work at different phases
of the oscillations. This hypothesis may explain why
the ENSO episodes evolve with great varieties and why
the models with considerably different dynamics are all
capable of making meaningful predictions at various
phases of ENSO cycles, but often with a large discrep-
ancy in the forecasts at the same phases of ENSO.

The stochastic forcing in this model has been pro-
jected to the spatial structure of the standing ENSO
mode. The intraseasonal noise could have larger am-
plitude than other types of noise because the large-scale
spatial structure of the atmospheric intraseasonal oscil-
lation in the tropical Pacific bears similarities to that of
ENSO (e.g., Madden and Julian 1972; Lau and Chan
1988). The intraseasonal noise is shown to be much
more effective than synoptic noise in stimulating sto-
chastic resonance, in altering the characteristics of self-
sustained oscillations, and especially in reducing the
oscillation period, favoring biennial oscillation. These
effects are significantly enhanced when the intraseasonal
forcing is modulated by monsoons and in the presence
of the annual variation of the basic state. These results
imply that the atmospheric intraseasonal oscillation may
play a much more active role than synoptic disturbances
in ENSO evolution, and the monsoons may affect ENSO
through modulation of the intraseasonal forcing, en-
hancing the biennial component of ENSO.

The stochastic dynamic model considered here treats
the coupled ENSO mode as an east–west standing os-
cillation. Although this crucial approximation describes
the most important empirical orthogonal function (EOF)
of ENSO and leads to advantageous theoretical simpli-
fication, it does not describe features of the ENSO mode
in the transitional phases, for example, the second EOF.
The flaws associated with this simplification were dis-
cussed in some detail in WF96. The majority of these
deficiencies can be eliminated by increasing the degree
of freedom of the system at the price of the loss of
analytical clarity. In view of the model’s limitation, the
conclusions drawn here need to be further examined
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using more realistic coupled models. In those models
the spatial structure of the stochastic forcing is an in-
herent component of the stochastic dynamics. In the
present work, we have primarily focused on the dynam-
ics for which the climatological mean state was used as
a basic state. In the presence of the time-dependent basic
state, especially the annual cycle of the basic state, com-
plexity arises from the competition between the coupled
instability of the center (the mean state) and that due
to parametric forcing via basic-state variation. This issue
is currently under investigation.
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APPENDIX A

Derivation of the Stochastic Dynamic Model for
ENSO

To focus on interannual variations, Zebiak and Cane
(1987) treated ENSO as a low-frequency departure from
its climatological mean (annual cycle) and established
an anomaly coupled model. The model consists of an
active upper ocean with a mean depth H that overlays
an inert deep ocean with the thermocline as their inter-
face. To describe the SST variations, a frictional mixed
layer with constant depth (H1) is embedded in the active
upper ocean.

The SST variation in the equatorial eastern Pacific is
primarily associated with the upwelling process. We as-
sume that an anomalous downwelling (upwelling) sup-
presses (enhances) the mean upwelling and induces
anomalous warming (cooling). The mixed layer tem-
perature or SST is therefore governed by the following
vertically integrated thermodynamic equation:

]T w w
1 [T 2 T 1 T 2 T ] 1 (T 2 T ) 5 2a T,e e e s]t H H1 1

(A1a)

where overbars denote basic-state quantities, whereas
the variables without an overbar represent anomalies;
as is a Newtonian cooling coefficient that represents all
processes that relax the SST back to its climatology
(Neelin et al. 1994); Te denotes the temperature of sub-
surface water that upwells into the mixed layer. Follow-
ing Battisti and Hirst (1989), a simple parameterization
of Te in terms of thermocline depth anomaly h follows:

Te 5 m*h, (A1b)

where the coefficient m* measures the influence of ther-
mocline fluctuations on the SST. The upwelling w is
generated primarily by the Ekman divergence in the
mixed layer, which can be determined by the momentum
balance among wind stress, Coriolis, and frictional forc-
es. Assume the Ekman flow to be confined to the mixed
layer. It can be shown that the equatorial upwelling is
approximately given by (WF96)

lbUaw ø 2H u , (A1c)2 a2rs

where H2 5 H 2 H1, b is the meridional gradient of
Coriolis parameter, ua denotes surface zonal wind, Ua

is a characteristic scale for surface wind speed, l 5
raCD/(r0H) is a wind stress coefficient, where ra and
ro are the densities of the surface air and seawater, re-
spectively, CD is the drag coefficient, and rs is the Ray-
leigh friction coefficient in the oceanic mixed layer.
Equation (A1c) implies that an equatorial anomalous
westerly induces anomalous convergence and down-
welling.

The governing equation for the thermocline depth
anomaly may be written as

2]h g9H ] 2 ]h ] h g9H ]h
2y 1 2 2

2 21 2]t b ]t y ]y ]y b ]x

lU H ]ua a5 y 2 u , (A2)a1 2b ]y

which describes the upper active ocean dynamics forced
by zonal wind stress and its associated curl. This equa-
tion was derived from a linear, reduced gravity model
on the equatorial b plane for the upper ocean with the
long-wave approximation (WF96). In the absence of the
wind forcing, Eq. (A2) describes free equatorial Kelvin
waves and a family of long Rossby waves.

To obtain the surface winds, a simplified Lindzen–
Nigam (1987) model is used in which the boundary
layer winds are taken to be nondivergent. The distortion
of zonal winds arising from the nondivergent approxi-
mation is small over the equatorial wave guide where
the ocean dynamics matters. The resultant surface zonal
wind near the equator is given by the following diag-
nostic equation (WF96):

dR ]T ]T
su 5 r 1 by 1 u , (A3)a a a2 2 21 2r 1 b y ]x ]ya

where ra is the Rayleigh frictional coefficient, d a non-
dimensional depth of the atmospheric boundary layer,
R the gas constant, and the zonal stochastic windsua

forcing. Near the equator, the principal zonal wind forc-
ing is simply proportional to the zonal SST gradient.

The coupled tropical ocean and atmosphere system
is thus governed by two prognostic equations: one for
SST, Eq. (A1), and the other for thermocline depth
anomalies, Eq. (A2). The two equations form a closed
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system with the diagnostic relations for zonal wind (A3).
The simple system of governing equations, (A1)–(A3),
is referred to as the ENSO system. It can be extended
to a more general formulation by including horizontal
temperature advection process (WF96).

The present model involves a number of geophysical
and geometrical parameters, listed in Table 1. To non-
dimensionalize the ENSO system, one may use Lx, Ly,
t , u, and H1 to scale x, y, t, T, and h, respectively, where
Lx 5 L/2, t 5 LH/(2bH2 ), and u 5 (raC0/dR)(L/2 2r Cs 0

2l). Here L is the ocean basin width, C0 is the oceanic
Kelvin wave speed. The above scaling leads to the fol-
lowing nondimensional SST and thermocline-depth
equations:

]T9 ]T9
5 (DT 9 1 T9 2 m9h9)z]t9 ]x9

1 T 9(T9 2 m9h9) 2 a9T9x s

s91 u (DT 9 1 T 2 m9h9), (A4)a z

2] 2 ]h9 ] h9 ]h9
2d y9 h9 1 e 2 2

21 2[ ]]t y9 ]y9 ]y9 ]x9

s9]T9 ]ua s95 2 1 y 2 u , (A5)a]x9 ]y

where prime denotes nondimensional quantities, the ba-
sic-state parameters 5 (T 2 T e)/u, 5 (L/2u)]T /DT9 T9z x

]x, 5 ast , 5 (2t /L), and nondimensionals sa9 u 9 us a a

parameters are

m H1*m 5 , (A6a)
u

4L0e 5 , (A6b)1 2Ly

2LH y2d 5 , (A6c)1 2H Lrs

where Lo is the oceanic Rossby radius of deformation
and 5 rs/b is a meridional scale over which EkmanLrs

transport spreads SST anomalies on the ENSO devel-
opment timescale.

The observed SST and the 208C isotherm depth
anomalies exhibit a spatial pattern that is nearly sym-
metrical and trapped at the equator and resembles, to
the lowest order approximation, an east–west seesaw
oscillation (Fig. 1). By considering only the largest scale
standing basin mode and by using Lorenz’s (1963) ap-
proach, this characteristic spatial structure allows us to
introduce a crucial spatial truncation. Assume that the
coupled basin mode solution of the ENSO system and
the zonal stochastic wind forcing, , have the form T̃(x9,sua

t9) [or h̃(x9, t9)] and (x9, t9) times the lowest-ordersũa

parabolic cylindrical function D0(y9) 5 e2192/2 and that
the mean state is invariant in the meridional direction.
Substituting the assumed solutions into Eqs. (A4) and

(A5) and projecting the resultant equations onto the low-
est meridional mode yield a set of partial differential
equations in x and t, for which the simplest spatial finite
difference form may be obtained by considering two
equal-sized boxes (Battisti and Hirst 1989) representing
the eastern and western Pacific, respectively. Since the
SST variation in the western Pacific is much smaller
than that in the eastern Pacific, we neglect the SST
anomalies in the western box. Assuming that thermo-
cline depth anomaly is precisely out of phase between
the two boxes and taking the node point of the standing
oscillation at the center of the basin as the origin, one
finally ends up with the following ENSO system:

dT
5 (DT 9 1 DT 9 2 a9)T 2 mT 9hz x s xdt

2
s1 T(T 2 mh) 1 DT 9u , (A7)z!3

dh
s5 b(2h 2 T ) 2 3bu , (A8a)

dt

where T and h denote, respectively, anomalous SST and
thermocline depth averaged over the equatorial eastern
Pacific, us represents stochastic zonal wind forcing, and

2
b 5 . (A8b)

d(1 2 3e)

Introducing an air–sea coupling coefficient

a 5 (L0/Ly)2, (A9a)

one can rewrite

2a
b 5 , (A9b)

2p(1 2 3a )

where p 5 (H2/H)(L0/ )2 is a basic-state parameter.Lrs

APPENDIX B

Construction of Stochastic Wind Forcing

Three types of stochastic zonal wind forcing—that is,
white noise, red noise, and band-limited white (intra-
seasonal or synoptic) noise, are used in the present
study. The white noise is generated by choice of random
numbers with a uniform distribution in [2a, a]. It can
be shown that the standard deviation of the generated
white noise, s 5 a/ 3. The red noise is generated usingÏ
the first order autoregression [AR(1)] model. The band-
limited white noise is generated using

N

su 5 A cos(v t 1 f ), (B1)O i i i
i51

where Ai, vi, and f i are all chosen randomly with a
uniform distribution over (0, A), [va, vb], and [0, 2p],
respectively. In this paper, N 5 400 is used to ensure
that the spectrum of any realization of the colored noise
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is nearly the same. Sensitivity tests indicate that 400
harmonics produce a spectrum that is sufficiently close
to those obtained using more than 400 harmonics. For
an intraseasonal noise, va 5 (2p/30) (1 day)21, and vb

5 (2p/60) (1 day)21. For a 3–7-day synoptic noise, va

5 (2p/3) (1 day)21, and vb 5 (2p/7) (1 day)21.
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