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ABSTRACT

Based on first principles, a theoretical model for El Nifio~Southern Oscillation (ENSO) is derived that consists
of prognostic equations for sea surface temperature (SST) and for thermocline variation. Considering only the
largest-scule, equatorially symmetric, standing basin mode yields a minimum dynamic system that highlights
the cyclic, chaotic, and season-dependent evolution of ENSO.

For a steady annual mean basic state, the dynamic system exhibits a unique limit cycle solution for a fairly
restricted range of air—sea coupling. The limit ¢ycle is a stable attractor and represents an intrinsic interannual
oscillation of the coupled system. The deepening (rising) of the thermocline in the eastern (western) Pacific
leads eastern Pacific warming by a small fraction of the cycle, which agrees well with observation and plays a
critical role in sustaining the oscillation. When the nonlinear growth of SST anomalies reaches a critical ampli-
tude, the delayed response of thermocline adjustment provides a negative feedback, wring over warming to
cooling or vice versa,

When the basic statc varies annually, the limit cycle develops a strange attractor and the interannual oscillation
displays inherent deterministic chaos. On the other hand, the transition phase of the oscillation tends to frequently
occur in boreal spring when the basic state is most unstable. The strongest boreal spring instability is due to the
weakest mean upwelling and largest vertical temperature difference across the mixed layer base. The former
minimizes the negative feedback of mean upwelling, whereas the latter maximizes the positive feedback of
anomalous upwelling effects on SST; both favor spring instability. It is argued that the season-dependent coupled
instability may be responsible for the tendencies of ENSO phase locking with season and period-locking to
integer multiples of the annual period, which, in turn, create irregularities in oscillation period and amplitude.

1. Introduction

The Southern Oscillation implies an interannual
mass exchange between the Eastern ( Asian— Australian
monsoon region) and Western (Pacific trade wind re-
gion ) Hemispheres. Its physical cause had been a mys-
tcry for more than a half century until Bjerknes (1966,
1969) visualized a close association between atmo-
spheric Walker circulation and SST contrast fluctuation
in the equatorial Pacific Ocean. The equatorial SST
contrast is primarily determined by the warming (El
Nifio) or cooling (La Nifia) of the eastern Pacific cold
tongue. The Southern Oscillation and the El Nifio cy-
cle, therefore, describe a unified interannual climate
variation simply referred to as ENSO.

The complexity and nonlinearity of the ocean—at-
mosphere interaction pose great difficulties for theo-
reticians to explain ENSO using simple models. Con-
sequently, numerical modeling became a popular ap-
proach. Successes have been achieved during the last
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decade in numerical simulation of ENSO with coupled
intermediate models (e.g., McCreary and Anderson
1984; Cane and Zebiak 1985; Anderson and McCreary
1985; Zebiak and Cane 1987; Schopf and Saurez
1988), general circulation models (GCMs) (e.g., Phi-
lander et al. 1989; Latif et al. 1993), and hybrid models
(Neelin 1989, 1990). The understanding gained from
numerical experiments has considerably advanced our
knowledge of ENSO physics.

At the same time, theoretical studies of the properties
of the coupled ocean and atmosphere system have been
extensively pursued, following Bjerknes’ (1969) hy-
pothesis. Neelin et al. (1994) provided a comprehen-
sive review in this regard. Early theoretical analyses
adopted prototype coupled models (McWilliams and
Gent 1978; Lau 1981; McCreary 1983). Philander et
al. (1984) presented the first rigorous stability analysis
of a coupled shallow water system on an equatorial beta
plane. Additional mechanisms and extensions were
proposed in subsequent studies (e.g., Gill 1985; Ya-
magata 1985; Hirst 1986; Battisti and Hirst 1989; Xie
et al. 1989; Neelin 1991; Wakata and Sarachik 1991;
Jin and Neelin 1993a,b; Neelin and Jin 1993; Wang
and Weisburg 1994). The development of a warm ep-
isode is now understood as resulting from a coupled
instability of the atmosphere and ocean. Theoretical
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models developed thus far, however, are primarily con-
fined to a linear dynamic framework and have made
little progress in delineating nonlinear evolution of the
coupled system.

Theoretical explanation of the temporal structure of
the Southern Oscillation remains an outstanding chal-
lenge. A central question raised in Bjerknes’ (1969)
pioneering work was how the turnabout from a cold to
a warm state takes place. Zebiak and Cane (1987) first
attempted to address Bjerknes’ puzzle by examining
the cause of the oscillation in their numerical model.
They found an increase of equatorial heat content prior
to warm events and a sharp decrease during the events.
The variability in the upper-ocean heat content was
identified as a critical element of the model oscillation.

Primarily based on the perceptions gained from nu-
merical experiments, Saurez and Schopf (1988) and
Battisti and Hirst (1989) put forward a delay oscillator
model for ENSO. Their semiempirical analog models
highlighted how the coupled instability happens in the
eastern Pacific and how the reflected equatorial waves
at the western boundary provide a delayed, negative
feedback to ‘‘shut down’’ the original growth. The de-
lay that plays a central role in the above argument re-
sults from ocean wave dynamics as shown by Cane et
al. (1990) and Schopf and Saurez (1990). The delay
oscillator model demonstrates a certain degree of con-
sistency with observed thermocline variability (Kessler
1991) and simulated large-scale baroclinic waves tra-
versing an ocean basin in some ocean GCMs (Schnei-
der et al. 1995) or coupled GCMs (Latif et al. 1993).
However, the process involving reflection of Rossby
waves at the western boundary is a matter of debate
(Graham and White 1988; Battisti 1989; Chao and Phi-
lander 1993; Li and Clarke 1994; Mantua and Battisti
1994; Schneider et al. 1995). The basin-wide thermo-
cline adjustment involves continuously forced, both lo-
cally and remotely, equatorial and off-equatorial waves
propagating in the interior basin and reflected at merid-
ional boundaries. Identification of precursors associ-
ated with reflected Rossby waves is extremely difficult.

In addition to the cyclic nature, ENSO exhibits at
least two other prominent characteristics: irregularities
in amplitude and frequency (Gu and Philander 1995;
Wang and Wang 1996) and phase locking with annual
cycles (Wyrtki 1975). Mature phases of warm epi-
sodes tend to occur in boreal winter (Rasmusson and
Carpenter 1982). So do mature phases of cold epi-
sodes. The persistence of the Southern Oscillation
breaks down during boreal spring (Trenberth and Shea
1987; Webster and Yang 1992). It has been suggested
that ENSO irregularities might be the result of high-
frequency stochastic forcing (e.g., Graham and White
1988; Mantua and Battisti 1995) or due to an inherent
nonlinearity of the ENSO system (Vallis 1988; Mun-
nich et al. 1991). Recent coupled intermediate numer-
ical model experiments have demonstrated that the
ENSO irregularities are essentially a low-order chaotic
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behavior driven by the annual cycle (Jin et al. 1994;
Tziperman et al. 1994; Chang et al. 1994). The tran-
sition to chaos is featured by a tendency of frequency
locking to 1/Q (year), where Q is an integer (Tzip-
erman et al. 1995; Chang et al. 1995). The physical
causes of the tendency for frequency-locking and the
phase-locking to annual cycles, however, remain un-
clear.

Theoretical understanding of the essential physics of
ENSO requires an analytical model. Any convincing
theory that demonstrates new ideas must be derived
from the first principles and based on adequate simpli-
fications supported by observations. The theoretical
model is also expected to be able to reproduce essential
aspects of ENSO evolution: cyclic, chaotic, and phase-
locking with annual cycles. Fundamental questions
need to be addressed include

o Why does the climate of the coupled tropical
ocean—atmosphere system oscillate in a highly irreg-
ular manner? Is the system inherent chaotic?

© Why does ENSO evolve with a tendency of phase-
locking with annual cycle? In particular, why does
warming often start and the persistence of the Southern
Oscillation often break down in boreal spring?

The present study aims to address the above ques-
tions using a simple nonlinear ENSO model. We will,
in section 2, derive a theoretical model from first prin-
ciples. A number of simplifications are involved but
none of them distorts essential physics of the coupled
system. The spatial structure of ENSO allows for a cru-
cial reduction of the three-dimensional model to a sim-
ple nonlinear dynamic system, which is capable of re-
producing an irregular interannual oscillation that re-
sembles ENSO. The model is instrumental for
understanding the nature of the coupled mode, the
mechanisms of the irregular oscillation, and the sea-
sonal dependence of ENSO evolution.

2. Theoretical model for coupled tropical ocean—
atmosphere

a. Governing equations

The ocean component of the coupled model is a sim-
plified version of Zebiak and Cane (1987). The model
consists of an active upper ocean with a mean depth H
overlying an inert deep ocean. To better describe SST
variation, the upper ocean above the thermocline is fur-
ther divided into a well-mixed, frictional surface layer
of constant depth (H,) (hereafter referred to as mixed
layer) and a subsurface layer (Cane 1979). To focus
on ENSO physics, the model treats ENSO as a low-
frequency departure from its climatological annual cy-
cle. In the mixed-layer thermodynamic equation, me-
ridional temperature advection will be neglected be-
cause 1) it plays a minor role and 2) its effect can be
partially surrogated by vertical advection: convergence
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of meridional currents tends to warm equatorial cold
water, which is akin to an effect of anomalous down-
welling. In the equatorial eastern Pacific where up-
welling prevails nearly all the time, anomalous up-
welling (or downwelling ) could enhance (or suppress)
mean upwelling and induce anomalous cooling (or
warming ). Further assume that all isotherms beneath
the mixed layer move in harmony with the vertical ther-
mocline displacement. A rise (deepening) of thermo-
cline induces a decrease (increase) of the temperature
of subsurface water upwelled into the mixed layer, 7,.
A simple parameterization of T, follows: T,(h)
= 4 (h)h (Battisti and Hirst 1989), where the coef-
ficient ., measures the degree of influence of ther-
mocline fluctuation # on 7,. With the above consider-
ations, the mixed-layer thermodynamic equation can be
written as

QZ+_6_T+ £(T+T—
o “ax Moy )

== D (T=T.+T— pgh)
= H, e M

w

where T, u;, and w denote anomalies of mixed layer
temperature (hereafter refer to as SST), zonal currents,
and the upwelling at the mixed layer base, respectively;
overbars represent mean state quantities; «; is a coef-
ficient of Newtonian cooling that represents all pro-
cesses that bring SST toward its climatology (Neelin
et al. 1994).

Assume the motion is semigeostrophic (long-wave
approximation). Further neglect the meridional wind
stress in view of its minor role compared to zonal wind
stress in the equatorial ocean. The equation governing
thermocline displacement is (appendix A)

,0h g'HO (20n 8°h g'H Oh
_.___+__ ——— e — e e —
ot B* or\ydy 0Oy* B Ox
IUH ou
=22y = —_ul. 22
B (yay u) (2:2)

In the absence of wind forcing, Eq. (2.2) yields free
equatorial Kelvin and long Rossby waves. These waves
may be expressed in terms of generalized Laguerre
functions (appendix B), which can be transformed to
parabolic cylindrical functions used by Gill (1980) or
Hermit polynomials used by Matsuno (1966). The
equatorial mixed-layer zonal currents and the upwell-
ing at the mixed layer base are, respectively, given by
the following diagnostic equations [appendix A: (A.6)
and (A.5)]:

8 oh

_ H; U
By Oy

Uy,
Hl rg

(2.3)

u, =
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H, oh 1,8
w= - —--— 2

- U,
H Ot r:

(2.4)

The second term in the rhs of (2.4) indicates that an
equatorial anomalous westerly induces anomalous con-
vergence and downwelling.

Surface winds are forced by SST gradients. A sim-
plified Lindzen—Nigam (1987) model is adopted in
which boundary layer winds are taken to be nondiver-
gent [appendix A: (A.8a,b)]. This assumption is ac-
ceptable because the rotational zonal wind dominates
its divergent counterpart even in the deep Tropics (Mu-
rakami and Wang 1993). The distortion of zonal winds
owing to the above assumption is small over the equa-
torial wave guide where the ocean cares. With this sim-
plification, it is easy to show that the zonal wind and
the forcing in the rhs of (2.2) are

dR or orT

=5 s =ty — ), (2

i (R e g) e
ou, —dRr, OT

—U, | = 55—+ (T, y), (2.5b
<yay u) g e AT, (@sb)
where r, is the Rayleigh frictional coefficient, d the
atmospheric boundary layer depth normalized by the

atmospheric density scale height, and R the gas con-
stant, and

_ dRy o*T 0°T
ﬁ(T’y)=r§+,6'2y2[ra8x6y+ﬂy3y2
282y oT

oT
_—r§+52y2<raa+ yay)]. (2.5¢)

Note that, f, (T, 0) = 0. Therefore, near the equator the
principal wind forcing is simply proportional to zonal
SST gradient.

The governing equations for the coupled ocean—at-
mosphere system have been reduced to two coupled
prognostic equations: one for SST anomaly, Eq. (2.1),
and the other for thermocline depth anomaly, Eq. (2.2).
The SST and thermocline equations consist of a closed
system with the diagnostic equation for mixed-layer
zonal currents (2.3), upwelling (2.4), and zonal winds
(2.5a,b). The essence of this theoretical model is the
nonlinear coupling between mixed-layer thermody-
namics and upper-ocean dynamics through wind stress
and upwelling. The thermocline displacement plays a
critical role, which not only ‘‘memorizes’’ effects of
SST variation on winds but also conveys atmospheric
feedback to SST in a nonlinear fashion via vertical tem-
perature advection. The set of prognostic equations
(2.1) and (2.2) will be referred to as the ENSO system.

b. Scale analysis

The model involves a number of basic parameters
(listed in Table 1). Based on observations, we take



1 OcToBER 1996

WANG AND FANG

2789

TasLE 1. List of the model parameters.

Geometrical parameters

L Zonal width of the ocean basin 1.7 X 10" m
H Mean depth of the thermocline 150 m

H, Depth of the mixed layer 50 m

d Nondimensional atmospheric boundary layer depth 0.2

Geophysical parameters

Equatorial planetary vorticity gradient

228 X 107" m's7!

g Reduced gravity 28x102ms™!

1 = p.CplpH Wind stress coefficient 10 m™!
Friction/damping parameters

a;, Newtonian cooling coefficient for SST anomaly (125 day)™

e Rayleigh friction coefficient in the oceanic mixed layer (1.5 day)™!

Ta Rayleigh friction coefficient in the atmospheric boundary layer 3.6 X 107¢57!
Other inherent parameters

G Oceanic Kelvin wave speed 20ms™!

L, Oceanic Rossby radius of deformation 300 km

L,=rl/B Ekman spreading length scale 338 km

one-half basin width L/2 and H, as characteristic zonal
distance L, and vertical thermocline displacement, re-
spectively.

The characteristic scale for surface zonal wind
speed, U,, can be deduced from a primary balance be-
tween wind stress and pressure gradient force—the
equatorial Sverdrup balance (Sverdrup 1947) {Eq.

(A2b)]. Thus,
U, = <g—’H1>”2.

IL,
Anomalous upwelling is primarily induced by Ek-
man pumping. Its characteristic scale can be estimated
by the divergence of Ekman flows [Eq. (2.4)]. Thus,

"H,H.
W=ﬂg el

riL,

(2.6a)

(2.6b)

The characteristic anomalous SST scale may be de-
termined from the equatorial zonal momentum balance
in the atmospheric boundary layer [Eq. (A.8a)]:

7 Lx g ’ Hl 1/2
iR ( ] ) . (2.6c)

The timescale relevant to ENSO development de-
pends on the principal process that changes SST. The
interannual variation of SST in the eastern Pacific re-
sults primarily from cooling (warming ) associated with
the anomalous upwelling (downwelling). This yields
the ENSO development timescale:

_ nL

Bg'H,’
7 depends on r; or the time interval required for oceanic
Ekman flows to be fully adjusted to imposed wind forc-
ing (1/7,). If we take r, equal to the intrinsic frequency

scale (8Co)'? = 0(107°s7!), then 7 = HL./C,H,,
which represents a timescale for a Kelvin wave

T

(2.6d)

crossing the ocean basin. The ENSO development
timescale, therefore, is the same order of magnitude as
that for equatorial wave adjustment.

If the meridional scale of SST anomalies is set by
meridional temperature advection associated with Ek-
man drift, one may estimate the SST meridional scale
based on Ekman dynamics, which yields L, = r,/f8
representing a meridional distance over which Ekman
transport spreads SST anomalies on the ENSO devel-
opment timescale. Again, if we take r; equal to the in-
trinsic frequency scale (8C,)'* = 0(1073s7!), the
meridional SST scale is the oceanic Rossby radius de-
formation. Generally speaking, the characteristic me-
ridional length scale for the coupled ENSO mode, L,,
should not be the oceanic Rossby radius of deformation
because atmospheric wind response has a broader me-
ridional scale, which results in a broader meridional
scale for thermocline variation (this will in turn affect
the time needed for thermocline adjustment). Without
loss of generality, we treat L, as a parameter that de-
pends on the air—sea coupling coefficient. The reason-
ing is as follows: First, L, is related to the characteristic
zonal current scale U, as can be inferred from the semi-
geostrophic balance [Eq. (A.2c)]. Furthermore, when
the westward acceleration produced by zonal wind
stress is balanced by internal friction or entrainment
across thermocline, the speed of the steady state zonal
current is only a tiny fraction of the surface zonal wind
speed due to the immense density difference between
air and water. Assume the scale of zonal currents

UO = aUa9 (263)
where a is an empirical air—sea coupling coefficient
that measures the strength of ocean currents feedback
per unit wind speed anomaly. Using (2.6e) and (A.2¢)
one can show that

_ H 1/4
b o)),

(2.7)
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where L, is the oceanic Rossby radius of deformation.
The meridional length scale, therefore, depends on the
air—sea coupling coefficient. )

Using the parameter values listed in Table 1, we have
U,=4ms™', W= 055mday™', § = 2.1°C, and 7
= 3.05 months. These characteristic scales agree rea-
sonably well with observations.

It can be readily shown from (2.3) that the mixed-
layer zonal currents associated with Ekman flows are
substantially weaker than the vertical mean zonal cur-
rents because

(Hz u, )
o\ — U,
H] rs HZ LZ

(%g@ﬂ THLL,
By Oy

Here, we have assumed that O(L,)) = O(L,) and L,
< L,. It can also be shown, from (2.4), that the up-

welling at the mixed-layer base is predominantly driven
by Ekman divergence because

ov-V)

H, -
O(H, \Y Ve>

The expressions for w and u,, (2.3) and (2.4), there-
fore, reduce to

< 1.

H,
o

811
u = 2.8
' [J’y ay’ (28)
H.
w= — ZrBdROT. (2.9)
rir, Ox

Note that retaining the first term in (2.4) does not
change the results qualitatively. Substituting (2.8) and
(2.9) into (2.1) and using L., L,, 7, 8, and H, to scale
x,y,t, T, and h, respectively, one may obtain the fol-
lowing nondimensional SST and thermocline depth

equations:
or' _ar’ 1 on'
ATy — @+ T' — p'h' + 6, — =—
o ox ( o 'y )
+ T;(T' ph' + 6 i,gi) —a!T' (2.10a)
0 2 0n'  O%h’ oh' or’
5____ 12y 7 + — - ——= -
atr [y h €<yr ayl 6y12>:l 5x' 8x'
(2.10b)

where the prime denotes a nondimensional quantity,
oy = a7, and the fi(T, y) in (2.5¢) has been omitted
as we focus on the oceanic wave guide in which f, (T,
y) nearly vanishes. Inclusion of fi(7T, y) requires te-
dious manipulation but does not alter the results qual-
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itatively. The nondimensional basic state parameters in
(2.10a,b) are

ATy =(T - T,/

(2.11a)
il = /L, (2.11b)
_ L 8T

e el 11
Te=0 o (2.11¢)

where T. symbolizes zonal SST gradient or the
strength of the mean upwelling [Eq. (2.9)]. The non-
dimensional numbers/ in (2.10a,b) are

g¢H LO 4
= == 12
©T AL <L> (=1
H, f°LY _ M,
b=—4 - H(L,) (2.13)
Hl Lr : Hl -1
=—|— — . 2.14
1 H2<Ly> 7 (& (2.14)

All three nondimensional parameters depend on cou-
pled meridional scale L, or the air—sea coupling coef-
ficient @. Parameter 6 measures the importance of the
non-Sverdrup balance, §, represents the contribution of
the horizontal temperature advection by anomalous
zonal currents to local SST variation, and € measures
the relative importance of the equatorial wave motion
to slow divergent motion associated with off-equatorial
Rossby waves. Setting e = 0 corresponds to the neglect
of local time change of zonal currents in Eq. (A.2b).
That eliminates equatorially trapped waves.

There are two nondimensional coupling coefficients.
One is the air—sea coupling coefficient a« [Eq. (2.6e)]
and the other is

r_ psH,
9 b
which measures the degree of coupling between ther-

mocline and SST. For convenience, it will be referred
to as the thermocline effect coefficient.

(2.15)

3. Dynamic system governing ENSO evolution

To focus on temporal behavior of the ENSO system,
we apply the Lorenz (1963) method. In a zonally
bounded yet meridionally infinite equatorial ocean ba-
sin, Cane and Moore (1981) showed, with the long-
wave approximation, the existence of a free low-fre-
quency standing wave mode that consists of long Kel-
vin and Rossby waves. Using a linearized version of
the Zebiak and Cane (1987) model, Wakata and Sar-
achik (1991) demonstrated that the unstable coupled
basin anomaly mode in a spatially varying basic state
exhibits a similar structure. The thermocline variation
in the western basin tends to be in an opposite phase
with that in the eastern basin. These theoretical results
are supported by observations. Wang (1996, manu-
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script submitted to Dyn. Atmos. Oceans) has shown
that the thermocline anomalies averaged over the west-
ern and over the eastern half of the Pacific basin be-
tween 15°N and 15°S (or between 25°N and 25°S) are
nearly 180° out of phase. To the lowest approximation,
the coupled basin mode may be treated as an equato-
rially trapped and symmetric east—west ‘‘seesaw’’.

The nondimensional meridional structure may thus
be represented approximately by the lowest-order par-
abolic cylindrical function

Do(y') = e, (3.1)

Assume that the basic state is meridionally invariant
(note that consideration of idealized meridional varia-
tion is solvable but involves complicated derivation).
The solutions of the Egs. (2.10a,b) can be approxi-
mately expressed by

il

Ty =T(x', 1")Do(y"),
h' = h(x',t")YDo(y").

Substituting (3.2a,b) into (2.10a,b) and projecting the
resultant equations onto Dy(y") yields

(3.2a)
(3.2b)

or , . 0T
W = (ATO —ui) O’
+(TL—a)T— (w + 6)TLh
20T . , .
350 [T—(u +6)h], (3.3a)
oh oh T
o - ”(a‘ axr) (3.3b)
where
2
h=—" :
§(1 = 3¢) (3:4)

is a nondimensional number that depends on the air—
sea coupling coefficient (or L,) and represents collec-
tive effects of all waves on slow thermocline adjust-
ment. To the lowest order, we treat ENSO as a basin
standing mode with one pole in the eastern Pacific
(xz = 0.5 representing 120°W) and the other in the
western Pacific (xjy = —0.5 denoting 160°E). Consis-
tent with observations and for simplicity, we assume
that the SST anomaly vanishes at xy, and its amplitude
increases eastward linearly, so that 37/0x’ = Ty, where
T denotes SST anomaly at xz. Assume the node point
of the standing thermocline oscillation is located at the
middle of the basin, x; = 0. The thermocline displace-
ment in the eastern basin can be solved with a boundary
condition A’ (xy) = 0. The anomalous SST and ther-
mocline depth at the eastern Pacific, Ty and hg, are
therefore governed by

WANG AND FANG

2791

% =a, T — axhg + \/g Te(Tg — ashg) (3.5a)
% = b(2hs — Tg), (3.5b)
where
a = (AT{—u} + T, —al)l, (3.6a)
a = (p+ 6)T;l, (3.6b)
a; = (p + 6y), (3.6¢)
and p = p' |y

The dynamic system (3.5a,b) describes the interan-
nual variation of the coupled system in the core region
of ENSO: SST and thermocline variations in the Nifio-
3 region and wind anomaly over the central Pacific. The
evolution of ENSQ is governed by a nonlinear dynamic
system that is second order in time with time-dependent
coefficients, differing from the delay oscillator model.

4. Solutions

a. Equilibrium states, coupled instability, and linear
behavior

The ENSO dynamic system, (3.5a,b), possesses two
steady solutions:

Ty =hy’ =0, (4.1a)

2a, — a,

TP =2 = (4.1b)

2(13 — a4
The first steady solution is the origin in the phase
space and represents the climatological mean equilib-
rium state or an ENSO ‘‘transitional’’ state in which
both SST and 4 are normal. The model’s climatological
mean states (annual cycles) are illustrated in Fig. 1.
They were obtained by running an intermediate tropical
Pacific Ocean model (Wang et al. 1995) using ob-
served climatological monthly mean solar radiation,
surface wind stress, and cloudiness forcing.
The climatological equilibrium state becomes unsta-
ble when g, + 2b > 0 (the primary bifurcation). The
corresponding perturbation growth rate

1 _
7=§(AT6—LTI+T§"OI§)IXE+ (4.2)

2
6(1 — 3e)
depends on climatological mean state and the air—sea
coupling coefficient «, but not the thermocline effect
coefficient u. For a given mean state, the growth rate
increases exponentially with increasing coupling co-
efficient « or decreasing meridional scale of the cou-
pled mode (Fig. 2a). For a given a, the growth rate
varies with season. The largest (smallest) growth oc-
curs for a boreal spring (fall) mean state. Additional
computations reveal that the annual change of the cou-
pled stability is mainly caused by annual variation of
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FiG. 1. Climatological mean annual cycles used in the model: (a)
SST difference between equatorial eastern (Ty) and western (Ty,) Pa-
cific; (b) the temperature difference between the mixed-layer and
subsurface-layer water, T — Tp; and (c) the mean equatorial zonal
currents ir; averaged over Nifio-3 region.

zonal SST gradients or mean upwelling and the tem-
perature difference across the mixed layer base.

Perturbations in the vicinity of the climatological
equilibrium state may approach (or depart from) it ei-
ther asymptotically or oscillatorilly. It is readily shown
that the presence of a linear oscillatory solution (grow-
ing or damping oscillation) requires

a, — a

0<
2

1
-5 (a3 — 2a1a,)'"* < b

. a, ; a +%(a% _ 2661612)”2 (4.3)

and

2 _
;.c>—61+$(AT6—zﬂ+T§—a§).

X

(4.4)

The oscillatory behavior occurs only when b, and
therefore «, takes restrictive positive values and p ex-
ceeds a threshold. The linear oscillation period is

T* = dnr[d4b(a; — ay, — b) — ail "%, (4.5)
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which depends on basic climatic state, «, u, and mod-
el’s geophysical parameters. For given parameters
listed in Table 1, the oscillation period 7* is an order
of magnitude longer than the ENSO development time-
scale 7. It decreases with increasing p but depends on
a in a subtle manner: The longest oscillation period
occurs for an intermediate air—sea coupling strength
(Fig. 2b). When the vertical temperature gradient
(ATy) decreases, oscillation requires a considerably
larger p; meanwhile, the oscillation period lengthens
(Fig. 3a). The oscillatory behavior also sensitively de-
pends on the mixed-layer friction, r, (Fig. 3b). De-
creasing r, markedly raises the threshold p and in-
creases the oscillation period.

The second equilibrium state, (4.1b), is located on
the straight line 7z — 2h; = 0 and represents an unsta-
ble saddle point in the phase space. It is physically triv-
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FIG. 2. Linear behavior of the ENSO dynamic system: (a) the
growth rate as a function of « for the annual mean (thick solid line),
January (long dashed line), April (short dashed line), July (dotted
line), and October (thin solid line) basic state; and (b) the oscillation
period (month) as a function of a and y for annual mean basic state.
The light shading represents the nonoscillatory domain; the dark
shading outlines the domain of nonlinear oscillation (limit cycle).
Also given in (a) is the meridional length scale L, as a function of a.
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al phO(uir sea coupling coefficient)

MU (thermociine effect parameter)
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FiG. 3. The convention is the same as in Fig. 2b except that (a)
shows the influence of AT, (temperature difference between the
mixed-layer and subsurface-layer water), which was changed from
3.0°t0 2.5°C, and (b) shows the effect of Rayleigh friction coefficient
in the mixed layer r,, which was changed from 1.5 to 1.0 day™".

ial. For typical mean state parameters this steady so-
lution is also unrealistic.

b. Limit cycle solution for the annual mean basic
state

For the ENSO dynamic system (3.5a,b), we are
more interested in finding out whether finite-amplitude,
periodic solutions (or limit cycles) exist. We first ex-
amine the case in which the basic state is time inde-
pendent (the annual mean state shown in Fig. 1). In
this case, the dynamic system is a second-order auton-
omous system with one focus and one saddle point
when g > . Such a system can have at most one limit
cycle solution. Furthermore, if a limit cycle exists it
must encircle only the focal point (the climatological
mean state ). Since the ENSO dynamic system contains
two coupling coefficients as parameters, it is important
to find the parameter domain in which the limit cycle
solution may exist.
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Appendix C shows that for a given steady basic state
the ENSO dynamic system possesses one and only one
limit cycle solution if conditions (C.6) and (C.7) are
satisfied. Figure 4 illustrates the parameter domains in
which the condition (C.6) is valid and the values of d
defined by (C.7) are sufficiently small, providing a
guidance for numerical search for limit cycle solutions
in the parameter space. The actual parameter domain
in which limit cycle exists (shown by the dark shading
area in Fig. 4) was determined by numerical integration
of (3.5a,b). The numerical results suggest that (C.6)
and (C.7) are necessary conditions for the existence of
a limit cycle.

The limit cycle territory is imbedded in a spacious
domain of linear oscillation (Fig. 2b), indicating it ex-
ists only in a restricted range of the air—sea coupling
coefficient. This implies that search for oscillation in
coupled numerical models is often a challenging task.
Note also that the limit cycle occurs at the primary
bifurcation point, indicating the first bifurcation is a
Hopf bifurcation. This agrees with Neelin’s (1990) as-
sertion.

In the phase plane, the limit cycle is an elliptic en-
circling the climatological equilibrium state (Fig. 5a).
The second equilibrium state, being a saddle point, is
necessarily located outside the limit cycle. Numerical
experiments further demonstrate that the limit cycle is
a stable attractor. Any perturbed initial state starting
from inside the limit cycle or from outside but within
a realistic distance (restricted by the location of the
unstable saddle point) will eventually be attracted to
the limit cycle.

In the physical space, the limit cycle represents a
perpetual, finite-amplitude oscillation as shown in Fig.
5b. Note that the thermocline displacement slightly
leads SST variation. The cycle is asymmetric: warming
takes much longer than cooling. Further studies indi-

w
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MU (thermocline effect parameter)

0.04 0.06

0.08
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FiG. 4. Search for the domain of existence for the limit cycle in
parameter space. The contour shows values of d (C.7) in the area
where condition (C.6) meets. The dark shading indicates the domain
of existence for the limit cycle determined by numerical integrations.
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FIG. 5. The limit cycle solution for annual mean basic state and u
= 1.315, « = 0.0184. (a) The phase orbit. When a > a, the pertur-
bation initially located near the origin (the annual mean state) grows
and oscillates, approaching the limit cycle. (b) Time series of anom-
alous SST (solid line) and thermocline depth (dashed line) from
model integration year 145 to year 150.

cate that the degree of asymmetry varies with the
strength of the nonlinearity. .

The period and amplitude of the model’s nonlinear
oscillation depend on the climatological mean state and
the coupling coefficients. Figure 6a displays the period
as a function of i and « for the given annual mean state
shown in Fig. 1. For typical parameter values listed in
Table 1, the oscillation period ranges from 18 to 60
months. Note that the oscillation period is primarily
determined by the parameter u, suggesting the impor-
tance of the effect of thermocline displacement on SST
in setting up the oscillation timescale. Note also that
the period calculated for linear oscillation near the cli-
matological equilibrium state provides a good estimate
for the nonlinear oscillation (Figs. 2 and 6a), suggest-
ing the usefulness of the linear analysis (Figs. 3a,b for
instance). The amplitude of nonlinear oscillation is
also in a reasonable range for the given annual mean
basic state (Fig. 6b). As u and a increase, amplitude
increases at a comparable rate.

c. Strange attractor in the presence of the basic-state
annual cycle

With a time-independent basic state, the ENSO dy-
namic system can have only regular nonlinear oscilla-
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tion: chaos does not exist in a second-order autono-
mous system. When the basic state includes an annual
cycle, however, the ENSO system becomes nonauton-
omous and increases its degrees of freedom, thereby
possibly entering a chaotic regime when the amplitude
of the basic-state annual cycle exceeds a threshold
value. This is indeed the case when the annual cycles
shown in Fig. 1 are taken as a basic state.

Figure 7a shows the phase orbit of the irregular os-
cillation of the dynamic system with the annual cycle
basic state. The parameters used in Fig. 7a are identical
to those used in Fig. 5a except for the basic state. The
chaotic phase orbits in Fig. 7a are trapped in the vicinity
of the limit cycle shown in Fig. Sa, indicating that the
limit cycle becomes a strange attractor when the basic
state varies annually.

The corresponding power spectra for the above reg-
ular and chaotic oscillations are compared in Fig. 7b.
For the regular oscillation (the limit cycle), the primary
energy peak appears on an oscillation period of about

MU (thermocl ine effect parameter)

0.02 "0.021

al phO(air gea coupling coefficient)

MU (thermoctine effect parameter)

0.02

0.021
a | th(uir sea coupling coefficient)
Fi1G. 6. Dependence of (a) the period (month) and (b) the amplitude

(°C) of SST anomaly of the limit cycle on a and y for the annual
mean basic state.
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FiG. 7. The chaotic oscillation for the annual cycle basic state and
p = 1315, a = 0.0184. (a) Phase portraits of the strange attraction
to the limit cycle. (b) Log spectrum density of SST anomaly (solid).
In (b) the dashed curve is derived for the limit cycle solution shown
in Fig. 5.

34 months; the secondly subharmonic peaks result from
the asymmetric evolution of the limit cycle. The exis-
tence of chaos broadens and smears the primary energy
peak and shifts it to lower frequency. It is interesting
to notice the sharp peak on the annual timescale, which
manifests the influence of the annual variation of the
basic state on the ENSO mode. This resonant response
also means a possible rectification of the annual cycle
of basic state by the chaotic ENSO oscillation.

5. Relevance of the model oscillation to ENSO

The limit cycle describes model’s intrinsic oscilla-
tion. To demonstrate its relevance to ENSO, we show
an observed anomalous SST-% scattering diagram for
the period of July 1982 to November 1986, roughly
one cycle (Fig. 8a). The depth of the 20°C isotherm
was used as a surrogate for the thermocline depth. The
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theoretical limit cycle orbit shown in Fig. 5a matches
the observed phase loop (Fig. 8a) qualitatively.

The temporal structure of the model oscillation in
SST and h also bears similarities with the observed
ENSO cycles from June 1982 to December 1992 (Fig.
8b). First, the phase of anomalous thermocline depth
leads that of the SST anomaly by a small fractional
cycle in both the model (Fig. 5b) and the observation
(Fig. 8b). Second, the rise of SST takes longer than
the ensuing collapse (Figs. 5b and 8b). The interannual
oscillation that appeared in the coupled GCMs of Phi-
lander et al. (1992) exhibits similar features. In various
versions of Zebiak and Cane’s models (Battisti and
Hirst 1989; Chang et al. 1994) and the hybrid coupled
model (Neelin 1990), the interannual oscillations ob-
tained for steady basic states are essentially limit cycle-
type of solutions.

In the eastern tropical Pacific, most El Nifio episodes
tend to start during the warm season and mature near
the end of the year. The persistence of the Southern
Oscillation also breaks down during the warm season
of the cold tongue. In the present model, when the basic
state varies annually, the warming most frequently
starts in late boreal spring (May) (Fig. 9a) and peaks
in late boreal winter (February) (Fig. 9b). This resem-
bles the observed ENSO phase-locking to annual cycle.
The model thermocline oscillation is also phase-

(a) SSTA-h20A at (153W-135W, 25-2N) (Jul.1982-Dec.1986)

©
S

o l
|
40 ..
> ! .t
g 20 . 'I AT ..
s or————— -'F.u-_l__—'?- —————
.
&1 ey Lo
A
—40 DO
~60 4 I
|
-80 3 2 - 0 1 2 3
SST Anomaly

(b) SST and h20 anomalies at (153W-135W, 2S-2N)

S 50
4. SSTA 40
/v e h20A . 30
g2 /’\\ AN N0
< Y o i Q) 10 7
ool i At /\/_)\ 00 S
17 \ s N ; N
o - 3 \f\’\.;//-—/ / |-10 =
~2 \ Y 20
-3 I N 30
-4 >_" 1—-40
-5 50
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

FiG. 8. Observed anomalous monthly mean SST (°C) and depth of
20°C isotherm (m) derived from NCEP ocean reanalysis (Ji et al.
1995) for the equatorial eastern Pacific (2°S—2°N, 153°—135°W) re-
gion: (a) Scattering diagram for the period of July 1982 to December
1986, roughly one ENSO cycle. Each closed dot denotes one calendar
month. The square denotes the beginning month. (b) Reconstructed
time series for the period of July 1982-December 1992. Only the
first two EOF modes are used for the reconstruction.
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(a) Frequency of occurence of the transition phase
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FiG. 9. The phase-locking and frequency-entrainment in the chaotic
oscillation for the annual cycle basic state and p = 1.315, a = 0.0184.
(a) Frequency of occurrence (percentage) of the transitional phase in
each calendar month. (b) As in (a) except for the peak warming phase.
(c) Frequency distribution of the oscillation period measured by the
time interval between two adjacent peak warmings (in units of sea-
son).

locked with the basic-state annual cycle but the pre-
ferred transition phase is 3 months ahead of SST
transition—in boreal winter (figure not shown), indi-
cating that the basic state annual cycle does not alter
the phase relationship between thermocline displace-
ment and SST.

The favorable comparisons add confidence to the rel-
evance of the model oscillation to ENSO cycles and to
the interannual oscillations found in the coupled nu-
merical models. It suggests that the ENSO dynamic
system captures the basic oscillatory nature of the ob-
served ENSO cycle.

6. Mechanism of the model oscillation

For a restricted range of the air—sea coupling coef-
ficient, the model produces interannual oscillations. A
number of questions need to be addressed here. First,
which process(es) is(are) essential for the oscillation?
Second, how does a warming change to a cooling or
vice versa?
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The first question is easy to answer because the os-
cillation is essentially nonlinear while the model’s non-
linearities are contained only in the ocean thermody-
namics. The temperature advection must be essential
for the model’s finite amplitude oscillation. As seen
from Eqgs. (3.6b,c), the effects of horizontal tempera-
ture advection signified by 8§, play the same roles as
those of the thermocline fluctuation on vertical tem-
perature advection signified by u. Quantitatively, how-
ever, the vertical advection makes a greater contribu-
tion.

The model oscillation is sustained by the nonlinear
interaction between SST and thermocline variations.
The thermocline variations directly influence SST via
changing the upwelled water temperature. This is a
““fast’” process, taking only a small fraction of the os-
cillation period (a few months). It is this process that
sets up the phase of thermocline variation leading that
of SST variation in the eastern Pacific. The SST vari-
ation, on the other hand, indirectly affects thermocline
variation through changing wind stress. This is a
‘‘slow’’ adjustment processes, taking the major portion
of the oscillation period.

The slow adjustment process may be alluded from
Eq. (2.10b), which describes how SST gradients (wind
stresses) force upper ocean and change thermocline
depth. In general, the zonal wind stress and pressure
gradient force associated with thermocline slope are not
in equilibrium balance. In fact, the nondimensional pa-
rameter 6 is an O(1) quantity [see (2.13)]. The im-
balance between wind stress and thermocline variation
excites two forms of motion: fast equatorial Kelvin and
Rossby waves and slow divergent flow associated with
the off-equatorial quasigeostrophic Rossby waves. The
relative contribution of the two components is sym-
bolized by parameter ¢ [Eq. (2.12)]. Setting ¢ = 0
eliminates equatorially trapped waves. In this limit,
however, there remains slow divergent motion forced
by wind stress and deflected by the Corriolis force,
which can result in a slow thermocline adjustment. It
would be interesting to perform a distorted-physics ex-
periment in which e vanishes and to examine the ther-
mocline adjustment. The observed equatorial thermo-
cline displacement appears to involve fast Kelvin wave
passages (free waves in the eastern Pacific) on intra-
seasonal timescale and a slow eastward propagation of
a wave packet (coupled with zonal wind anomalies) on
interannual timescale. It seems plausible to suggest that
the former manifests fast wave adjustment whereas the
latter reflects slow adjustment associated with the cou-
pled basinwide mode.

In reality, the slow basin-wide thermocline adjust-
ment is a complex process that involves both equatorial
and off-equatorial (forced and free) waves propagating
and reflecting in the bounded basin. The slow ther-
mocline adjustment can be viewed as a delayed re-
sponse to the change of SST in the eastern equatorial
Pacific. The present dynamic system model does not
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deny essential roles of the wave dynamics in this de-
layed response, rather, it takes into account the collec-
tive wave effects by simply assuming the coupled basin
mode being a standing seesaw resulting from the su-
perposition of numerous equatorial and off-equatorial
waves generated by local or remote wind forcing as-
sociated with SST variation and reflected from two me-
ridional boundaries. This bypasses the difficulty to di-
rectly deal with complex wave adjustment process and
leads to a maximum simplification of the ENSO system
(2.10a,b). In this way, the delayed adjustment is built
in the standing seesaw assumption. We emphasize that
the delayed adjustment is a behavior of the coupled
basin mode and takes a much longer timescale than that
of equatorial wave crossing the basin.

In essence, the delayed oscillator model does not
need to consider detailed mixed-layer thermodynamic
processes. It can be derived by an instantaneous equi-
librium balance between SST and thermocline varia-
tion in the eastern Pacific (Cane et al. 1990). Different
from this thermodynamic equilibrium point of view,
the present model emphasizes the essential role of the
phase leading of thermocline to SST variation in the
eastern Pacific in sustaining the oscillation. This is
equivalent to emphasizing the roles of the mixed layer
thermodynamics and slow SST mode alluded to by
Neelin (1991). Figure 10 explains this point. The sys-
tem (3.5a,b) has two characteristic lines given by dT:/
dt = 0 and dhz/dt = 0, which are, respectively,

a, +a3T
=T———=f(T A
h @+ add F(T) (6.1)
T
h=3. (6.2)

The two characteristic lines divide the limit cycle into
four phases (Fig. 10). During the phase I (and III),
SST and h have the same tendency: the deepening (or
shallowing) of thermocline and rising (or lowering) of
SST occur simultaneously. The phase leading of ther-
mocline variation, however, plays a critical role in
switching over from one state to another. It yields an
opposite tendency in thermocline and SST variations
during the phase II (and IV). Thus, the shoaling of
thermocline eventually stops the increase of SST (in
phase II) or vice versa (in phase IV). It is the phase
lead between the thermocline and SST variations that
provides a negative feedback turning the coupled sys-
tem from a warming or cooling to an opposing process.

Therefore, in the present model, both the upper-
ocean dynamics (delayed thermocline response to SST
variation) and the mixed-layer thermodynamics (phase
lead of thermocline to SST variation) are essential el-
ements for the coupled oscillation mode. This mode is
characterized by a nonlinear interaction between slow
upper-ocean divergent motion and SST variations,
which is realized through air—sea coupling (surface
wind stress and upwelling) in a spatially and tempo-
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FiG. 10. Schematic diagram showing the phases of the nonlinear
oscillation. The limit cycle is the same as in Fig. 5a.

rally varying basic state. The model emphasizes not
only the importance of the slow thermocline displace-
ment—SST interaction, but also the fundamental im-
pacts of the basic state variations on air—sea coupling,
as will be discussed in the next section.

7. Impacts of the annual cycle

Solutions shown in Figs. 7 and 9 indicate that the
annual basic state plays dual roles in ENSO cycle. On
the one hand, it generates deterministic chaos; on the
other hand, it regulates ENSO evolution, causing oc-
currence of transition (or mature) phase of ENSO in a
fixed season on a regular basis. This agrees very well
with the results obtained from coupled intermediate nu-
merical model experiments performed by Chang et al.
(1995) and Tziperman et al. (1995).

The phase-locking of the model’s interannual oscil-
lation with annual cycle may be partially due to sea-
sonal dependence of the coupled instability of the basic
state. Figure 2a shows that the climatological basic
state is most unstable (stable) in boreal spring (fall).
For the nonlinear oscillation, which requires @ < 0.03
(Fig. 2b), perturbations amplify in boreal spring basic
state, whereas they decay in boreal fall and winter basic
state. The implication is that boreal spring may be the
season during which ENSO has weakest persistence
and development of warming is favored due to poten-
tial fast growth of perturbations, whereas the boreal fall
and subsequent winter basic states would tend to level
off the ongoing growth and favor maturation of warm-
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ing. We have tested this idea by shifting the phase of
annual cycle forward by 6 months: The northern fall
becomes the most unstable season. The corresponding
warming then tends to start in November and peak in
the late northern summer, indicating the ENSO phase
lock is indeed controlled by annual variation of the ba-
sic-state instability.

Hypotheses regarding the cause of the preferred bo-
real spring coupled instability have been proposed. Phi-
lander (1990) conjectured that the initiation of unstable
ocean—atmosphere interactions requires that unusually
warm surface waters cause a local heating of the at-
mosphere; therefore, the coupled system is more unsta-
ble in boreal spring than boreal autumn. Others pos-
tulated that the boreal spring is the season during which
ocean—atmosphere coupling is weakest. The weakest
coupling invites random growth of perturbations. The
latter may cause loss of predictability. In the present
model, the frequent initiation of ENSO warming in bo-
real spring is not due to the weak coupling between the
ocean and atmosphere (because the coupling coeffi-
cient is invariant), rather, it is due to a strong coupled
instability: The largest vertical temperature difference
" (T — T.,) and the weakest east—west thermal contrast
T! (as well as the weakest easterly wind stress and
equatorial upwelling) during boreal spring is most fa-
vorable for coupled perturbations to grow. The reasons
follow: Suppose SST is initially higher than normal.
First, the initial warming would induce an anomalous
westerly and downwelling, which acts on mean vertical
temperature gradient (I — T,), further enhancing
warming. Increase of (T — T7,) during boreal spring
reinforces this positive feedback and favors coupled
instability. Second, the initial warming would also in-
crease the anomalous vertical temperature gradient,
which enhances cooling associated with mean upwell-
ing and suppresses initial warming. However, the weak
mean upwelling in boreal spring would minimize this
negative feedback, also favoring spring coupled insta-
bility.

The preferred transition of the ENSO cycle in boreal
- spring implies a weak spring persistence of the South-
ern Oscillation index. It may contribute to the spring
prediction barrier of SST anomalies. Using an inter-
mediate ocean model coupled to a statistical atmo-
sphere, Balmaseda et al. (1995) found that their mod-
el’s heat content has a prediction barrier in boreal win-
ter. The preferred thermocline transition in boreal
winter demonstrated in the present model may explain
the loss of predictability of model heat content in boreal
winter.

As a result of the tendency of mature phase locking
to annual cycle, the oscillation period counted by the
intervals between two adjacent peak warmings tends to
be an integer multiple of the annual period. Figure 9¢
clearly illustrates such a tendency. For an annual mean
basic state, the system has an intrinsic oscillation period
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of about 34 months. The annual variation of the basic
state not only develops irregularity in oscillation period
but also tends to “‘lock’’ the period to 3, 4, and 5 years.
Changes in oscillation period are expected to create
irregularities in the oscillation amplitude.

Physically, the seemingly opposing effects of the an-
nual cycle—generation of chaos shown by the strange
attractor in Fig. 7a and the phase and period regulation
shown in Figs. 9a—c—may actually have the same or-
igin: the modulation of the intrinsic coupled oscillation
by the annual cycle through seasonally varying coupled
instability of the basic state. The season-dependent
coupled instability causes ENSO phase-locking to an-
nual cycle, and thus a period-locking to the integer mul-
tiple of annual period, which, in turn, results in irreg-
ularities in the period and amplitude of the oscillation.

Our extensive numerical experiments show that the
route leading to chaos is through period doubling, and
the period tends to lock to integer number of years in
a similar way as shown in numerical experiments of
Chang et al. (1995).

8. Summary

A theoretical model for the coupled tropical ocean
and atmosphere is derived from a coupled Zebiak and
Cane’s (1987) ocean and Lindzen and Nigam’s (1987)
atmospheric model. We show that the essential physics
of the coupled system can be described by a so-called
ENSO system, which consists of two prognostic equa-
tions, one for SST and the other for thermocline vari-
ation. The ENSO system (2.10a,b) provides a useful
theoretical framework for study of interannual varia-
tion of the tropical climate system.

The observed ENSO can be approximately consid-
ered as an equatorially symmetric east—west standing
oscillation. This standing oscillation mode can be
viewed as the free eigenmode (Cane and Moore 1981)
or coupled unstable basin mode (Wakata and Sarachik
1991) in the meridionally bounded Pacific basin. Con-
sidering only the largest-scale, standing basin mode, we
show that the evolution of ENSO is depicted by a min-
imum dynamic system (Lorenz 1963)—a set of sec-
ond-order nonlinear ordinary differential equations
with coefficients varying periodically with time.

The system has an equilibrium state—the climato-
logical mean basic state—which may become unstable
as the air—sea coupling coefficient exceeds a critical
value. The mean state is most unstable (stable) in
northern spring (fall) because the weakest mean up-
welling minimizes its negative feedback to SST and the
largest vertical temperature gradient across the mixed-
layer base maximizes the positive feedback of anom-
alous upwelling to SST; both favor coupled instability
in boreal spring. The rate of perturbation growth de-
pends on the air—sea coupling coefficient, whereas the
way by which perturbations grow (oscillatorilly or as-
ymptotically) is determined by both the air—sea cou-
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pling and the thermocline effect coefficients. The cou-
pled instability is mainly affected by the strength of the
mean upwelling or the east—west SST gradient, while
the oscillatory behavior is more sensitive to the vertical
temperature gradient across the mixed-layer base.

When the basic state is the climatological annual
mean, the ENSO dynamic system is autonomous. For
a fairly restricted range of the air—sea coupling coef-
ficient, the system possesses a unique limit cycle so-
lution, which represents a finite-amplitude, perpetual,
interannual oscillation in SST, in upper-ocean heat con-
tent, and in equatorial zonal wind. In the phase plane
(anomalous SST and thermocline depth), the limit cy-
cle encircles the unstable focal point representing the
equilibrium mean state (Fig. 5a). The limit cycle is a
stable attractor. Any initial perturbation inside the limit
cycle or outside the limit cycle (restricted by the lo-
cation of the second equilibrium state—an unstable
saddle point) will eventually be attracted to the nonlin-
ear periodic solution.

The limit cycle describes intrinsic oscillatory behav-
ior of the coupled ocean—atmosphere. The key feature
of the nonlinear oscillation over the eastern equatorial
Pacific is that the variation of the thermocline depth
leads that of SST by about one-tenth of the oscillation
period (Fig. 5b). This feature resembles observed in-
dividual ENSO cycles in the 1980s (Fig. 8) and the
interannual oscillations simulated by coupled ocean—
atmosphere GCMs (e.g., Philander et al. 1992), cou-
pled intermediate models (Zebiak and Cane 1987 and
many others), and the hybrid coupled model (Neelin
1990).

The model oscillation results from nonlinear inter-
actions of thermocline displacement and SST variation.
The thermocline displacement affects SST by changing
the temperature of the water upwelled into the mixed
layer, yielding a phase leading of thermocline displace-
ment to SST variation. This phase lead is critical for
the turn over from one state of the Southern Oscillation
to the other. The SST variation, on the other hand, af-
fects thermocline via changing wind stress and thus the
divergence of the upper-ocean currents. This is a slow
adjustment process—a delayed response—during
which wave dynamics play critical roles. Although the

dynamic system model does not explicitly resolve in-

dividual wave activity, by considering the basin seesaw
mode it implicitly includes collective effects of equa-
torial Kelvin and Rossby wave and off-equatorial
Rossby wave adjustment including processes of bound-
ary reflections. The model oscillation regime occurs
when the meridional length scale of the coupled mode
is sufficiently large, suggesting that the slow Rossby
waves play an overwhelming part.

When the basic state includes annual variations, the
limit cycle evolves into a strange attractor if the inten-
sity of the annual variation exceeds a critical amplitude.
The corresponding oscillation exhibits deterministic
chaos (Fig. 7). This behavior resembles that of the os-
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cillation obtained in the coupled intermediate model of
Chang et al. (1995). The primary peak in energy spec-
trum of the chaotic oscillation (Fig. 7b) is determined
by the period of the limit cycle. The subharmonic peaks
in the power spectrum result from the asymmetry in the
temporal evolution of the limit cycle. It is inferred that
an asymmetric 4-year oscillation can induce a sizable
quasi-biennial peak. The broadness of the spectral
peaks is simply a manifest of the strange attraction of
the limit cycle modified by the basic-state annual cycle.

Apparently, ENSO irregularities can be caused by
other processes. Considering atmospheric high-fre-
quency stochastic forcing or finer spatial resolution
would increase degrees of freedom or raise the order
of the dynamic system. Even without annual variation
of the basic state, the system could have chaotic oscil-
lations. It is also plausible that, by the same mechanism
demonstrated here, the interdecadal variation of the ba-
sic state may also cause changes in ENSO evolution as
speculated by Wang (1995).

How can a regular annual variation of the basic state
cause chaos in the model ENSO cycle? One important
cause is that the coupled instability depends on the an-
nually varying basic state. As a result, the warming
preferably starts in late boreal spring and peaks in late
winter—an ENSO phase-lock to annual cycle (Figs.
9a,b). The regulation of the ENSO phase results in a
tendency of period ‘‘locking’’ to an integer multiple of
the annual period (Fig. 9¢). This, in turn, leads to ir-
regularities in the amplitude and frequency of the os-
cillation.

Whereas the minimum dynamic system model
(3.5a,b) provides a useful conceptual model for un-
derstanding the cyclic, chaotic, and phase-locking be-
havior of ENSO cycle, it involves a number of critical
assumptions and simplifications. The most severe lim-
itation of the model arises from its crucial spatial trun-
cation. The east—west seesaw is not a precise descrip-
tion of the thermocline variation. Observations show
that the rising of the western Pacific thermocline
slightly leads the deepening of the thermocline in the
eastern Pacific (Wang 1996, manuscript submitted to
Dyn. Atmos. Oceans). The Wakata and Sarachik’s
(1991) work suggests that the node point of the cou-
pled basin mode is located off the equator and to the
east of the mid-Pacific basin. The assumption of the
equatorial mid-Pacific node point leads to two flaws:
the central Pacific thermocline does not vary with time,
and the zonally integrated thermocline depth vanishes.
Both are at odds with observations. This fails to sim-
ulate the eastward propagation of the upper-ocean heat
content associated with ENSO, which is evident and
primarily confined to the equatorial central Pacific.
Similarly, the meridional truncation also severely limits
the model’s ability in modeling meridional mode in-
teractions. These deficiencies can be eliminated by in-
creasing the degree of freedom of the system. A more
realistic model should depict the different meridional
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scales of SST and thermocline depth variation and the
equatorial phase propagations of the thermocline dis-
placement. These underline the needs for future studies.
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APPENDIX A

Equations of Motion in the Coupled Ocean—
Atmospheric Model

In the Zebiak and Cane (1987) ocean model, the
mixed-layer currents V; is expressed as a sum of a ver-
tically mean current of the upper ocean V and an Ek-
man flow V,, which vanishes at the mixed-layer base:

H.
v, =V+E2Ve, (A.1)
where H, = H — H,.

The anomalous vertical mean currents, # and v, are

depicted by a linear, reduced-gravity model on an equa-

torial S plane. With long-wave approximation and ne-
glect of meridional wind stress the governing equations

are

oh ou v
-gt--i-h’(a-f-ay) =0, (A.2a)

Ou , Oh
o Byv = —g p + Uu,, (A.2b)

Oh
Byu = —g' Ew (A.2c)

y

where u, and U, denote, respectively, the zonal com-
ponent of surface wind and its characteristic scale. In
(A.2b), we have linearized the bulk formula for zonal
wind stress; thus, the coefficient -

j=Palp
po H'

where p, and p, are the densities of the surface air and
seawater, respectively, and Cj, is the drag coefficient.

The Ekman flow V, also represents the vertical shear
between the mixed layer and subsurface layer and is
governed by

(A.3)
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H
rit, — Byv, = — U u,, (A.da)
H,

ry, + Byu, = 0. (A.4b)

The vertical velocity at the mixed-layer base is de-
termined by the divergence of mixed layer currents V,.
Using (A.1), (A.2a), and (A.4a,b), it can be shown
that near the equator the anomalous upwelling

HH, H, 6h .8
= H . + — . —_ e ——— .
w Vv V-V, H ot 272 U,
(A.5)

Similarly, the mixed-layer zonal current in the vicinity
of the equator is
H, g'oh H,IUp
= + — e = — + - — 2.
BT ET Ty TH
A thermocline depth anomaly equation can be de-
rived from combining Eqgs. (A.2a—-_c):

(A.6)

;Oh g'HO (20h _9°h\ g'HOoh
Yo T BT ar\yay 9y B ox
IUH [ Ou,
—-T(y dy u,,). (A7)

The atmospheric model is a simplified Lindzen—Ni-
gam ( 1987) model in which boundary layer winds are
taken to be nondivergent. The surface winds u, and v,
are given by

oT

radg — Byv, = dR — (A.82)
Ox
T

rv, + Byu, = dR Q—, (A.8b)
dy

where r, is the Rayleigh frictional coefficient, d the
atmospheric boundary layer depth normalized by the
atmospheric density scale, and R the gas constant.

APPENDIX B
Derivation of Free Wave Solutions

In the absence of wind forcing, the nondimensional
thermocline-depth equation (A.7) becomes

or , (2 on o%h\] oh
8t[yh+(y——3y 3y2>] Y

where y and ¢ are scaled by (g'H)"*8"? and (g'H) '/
X B7'2, respectively. Assume

h(x,y,t) = Re[y-H(y)e*>—"].

(B.1)

(B.2)

The amplitude function H(y) is bounded as |y| — o
and satisfies, from (B.1),
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d*H 1 2
—|{=—+y*+=5|H=0.
dy* (c g y2>

(B.3)

Equation (B.3) has eigen solutions of the following

form (Hochstrasser 1965):
H,(y) = e?"y*"\2L(0(y2),  (B.4a)

where L{*(x) denotes a generalized Laguerre function

n k
L) =Y (—D*(” - ") T (B4b)
0 n—a/k!
with
—+3
a=x3 (B.5)
and
_ ! _3
B 4n + 5 a——2 ’ 012
c= ——1— _—2 n= s v )
am—_1\*T"2)
(B.6)

The mode with & = —3/ and n = 0 is the Kelvin
wave yvhose phase speed ¢ = 1 and meridional structure
is e™7%, The modes with @ = =3/ andn=1,2, - --
are symmetric long Rossby waves whose phase speed

1 1
Cc = 5,"';,—ﬁ, (B7a)
and meridional structures are
e 2L (2, (B.7b)

The modes witha =3/ andn =0, 1, 2, - - - are anti-
symmetric long Rossby waves whose phase speed

1 1 1
¢ = 5 s 9 ’ 13 ’ (B'Sa)
and meridional structures are
ey LD (y?). (B.8b)
APPENDIX C

Existence of the Limit Cycle

The existence of linear oscillation requires b > 0,
(2a, — a;) > 0. Define

r=[bQa; — a))]'"* > 0. (C.1)
Let
b
T' = - 2hg — T) (C2)
t' =rt. (C.3)

WANG AND FANG

2801

Substituting (C.2) and (C.3) into the dynamic system
(3.5a,b) leads to

d; =—h+dT' +IT'?> + mT'h + nh* (C4a)
% =T, (C.4b)

where
d=(a +2b)Ir (C.5a)
[ = —as/b, (C.5b)
m = (4as — az)/r, (C.5¢)
n=—-2b2a; — a,)lr*. (C.5d)

According to the theorem of Ye (1965, p. 300), Egs.
(C.4a,b) have one and only one limit cycle solution if

dm(l+n) <0 (C.6)
and

{d| is sufficiently small. (C.7)
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