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ABSTRACT

Based on first principles, a theoretical model for El Nifio~Southern Oscillation (ENSO) is derived that consists
of prognostic equations for sea surface temperature (SST) and for thermocline variation. Considering only the
largest-scule, equatorially symmetric, standing basin mode yields a minimum dynamic system that highlights
the cyclic, chaotic, and season-dependent evolution of ENSO.

For a steady annual mean basic state, the dynamic system exhibits a unique limit cycle solution for a fairly
restricted range of air—sea coupling. The limit ¢ycle is a stable attractor and represents an intrinsic interannual
oscillation of the coupled system. The deepening (rising) of the thermocline in the eastern (western) Pacific
leads eastern Pacific warming by a small fraction of the cycle, which agrees well with observation and plays a
critical role in sustaining the oscillation. When the nonlinear growth of SST anomalies reaches a critical ampli-
tude, the delayed response of thermocline adjustment provides a negative feedback, wring over warming to
cooling or vice versa,

When the basic statc varies annually, the limit cycle develops a strange attractor and the interannual oscillation
displays inherent deterministic chaos. On the other hand, the transition phase of the oscillation tends to frequently
occur in boreal spring when the basic state is most unstable. The strongest boreal spring instability is due to the
weakest mean upwelling and largest vertical temperature difference across the mixed layer base. The former
minimizes the negative feedback of mean upwelling, whereas the latter maximizes the positive feedback of
anomalous upwelling effects on SST; both favor spring instability. It is argued that the season-dependent coupled
instability may be responsible for the tendencies of ENSO phase locking with season and period-locking to
integer multiples of the annual period, which, in turn, create irregularities in oscillation period and amplitude.

1. Introduction

The Southern Oscillation implies an interannual
mass exchange between the Eastern ( Asian— Australian
monsoon region) and Western (Pacific trade wind re-
gion ) Hemispheres. Its physical cause had been a mys-
tcry for more than a half century until Bjerknes (1966,
1969) visualized a close association between atmo-
spheric Walker circulation and SST contrast fluctuation
in the equatorial Pacific Ocean. The equatorial SST
contrast is primarily determined by the warming (El
Nifio) or cooling (La Nifia) of the eastern Pacific cold
tongue. The Southern Oscillation and the El Nifio cy-
cle, therefore, describe a unified interannual climate
variation simply referred to as ENSO.

The complexity and nonlinearity of the ocean—at-
mosphere interaction pose great difficulties for theo-
reticians to explain ENSO using simple models. Con-
sequently, numerical modeling became a popular ap-
proach. Successes have been achieved during the last
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decade in numerical simulation of ENSO with coupled
intermediate models (e.g., McCreary and Anderson
1984; Cane and Zebiak 1985; Anderson and McCreary
1985; Zebiak and Cane 1987; Schopf and Saurez
1988), general circulation models (GCMs) (e.g., Phi-
lander et al. 1989; Latif et al. 1993), and hybrid models
(Neelin 1989, 1990). The understanding gained from
numerical experiments has considerably advanced our
knowledge of ENSO physics.

At the same time, theoretical studies of the properties
of the coupled ocean and atmosphere system have been
extensively pursued, following Bjerknes’ (1969) hy-
pothesis. Neelin et al. (1994) provided a comprehen-
sive review in this regard. Early theoretical analyses
adopted prototype coupled models (McWilliams and
Gent 1978; Lau 1981; McCreary 1983). Philander et
al. (1984) presented the first rigorous stability analysis
of a coupled shallow water system on an equatorial beta
plane. Additional mechanisms and extensions were
proposed in subsequent studies (e.g., Gill 1985; Ya-
magata 1985; Hirst 1986; Battisti and Hirst 1989; Xie
et al. 1989; Neelin 1991; Wakata and Sarachik 1991;
Jin and Neelin 1993a,b; Neelin and Jin 1993; Wang
and Weisburg 1994). The development of a warm ep-
isode is now understood as resulting from a coupled
instability of the atmosphere and ocean. Theoretical
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models developed thus far, however, are primarily con-
fined to a linear dynamic framework and have made
little progress in delineating nonlinear evolution of the
coupled system.

Theoretical explanation of the temporal structure of
the Southern Oscillation remains an outstanding chal-
lenge. A central question raised in Bjerknes’ (1969)
pioneering work was how the turnabout from a cold to
a warm state takes place. Zebiak and Cane (1987) first
attempted to address Bjerknes’ puzzle by examining
the cause of the oscillation in their numerical model.
They found an increase of equatorial heat content prior
to warm events and a sharp decrease during the events.
The variability in the upper-ocean heat content was
identified as a critical element of the model oscillation.

Primarily based on the perceptions gained from nu-
merical experiments, Saurez and Schopf (1988) and
Battisti and Hirst (1989) put forward a delay oscillator
model for ENSO. Their semiempirical analog models
highlighted how the coupled instability happens in the
eastern Pacific and how the reflected equatorial waves
at the western boundary provide a delayed, negative
feedback to ‘‘shut down’’ the original growth. The de-
lay that plays a central role in the above argument re-
sults from ocean wave dynamics as shown by Cane et
al. (1990) and Schopf and Saurez (1990). The delay
oscillator model demonstrates a certain degree of con-
sistency with observed thermocline variability (Kessler
1991) and simulated large-scale baroclinic waves tra-
versing an ocean basin in some ocean GCMs (Schnei-
der et al. 1995) or coupled GCMs (Latif et al. 1993).
However, the process involving reflection of Rossby
waves at the western boundary is a matter of debate
(Graham and White 1988; Battisti 1989; Chao and Phi-
lander 1993; Li and Clarke 1994; Mantua and Battisti
1994; Schneider et al. 1995). The basin-wide thermo-
cline adjustment involves continuously forced, both lo-
cally and remotely, equatorial and off-equatorial waves
propagating in the interior basin and reflected at merid-
ional boundaries. Identification of precursors associ-
ated with reflected Rossby waves is extremely difficult.

In addition to the cyclic nature, ENSO exhibits at
least two other prominent characteristics: irregularities
in amplitude and frequency (Gu and Philander 1995;
Wang and Wang 1996) and phase locking with annual
cycles (Wyrtki 1975). Mature phases of warm epi-
sodes tend to occur in boreal winter (Rasmusson and
Carpenter 1982). So do mature phases of cold epi-
sodes. The persistence of the Southern Oscillation
breaks down during boreal spring (Trenberth and Shea
1987; Webster and Yang 1992). It has been suggested
that ENSO irregularities might be the result of high-
frequency stochastic forcing (e.g., Graham and White
1988; Mantua and Battisti 1995) or due to an inherent
nonlinearity of the ENSO system (Vallis 1988; Mun-
nich et al. 1991). Recent coupled intermediate numer-
ical model experiments have demonstrated that the
ENSO irregularities are essentially a low-order chaotic
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behavior driven by the annual cycle (Jin et al. 1994;
Tziperman et al. 1994; Chang et al. 1994). The tran-
sition to chaos is featured by a tendency of frequency
locking to 1/Q (year), where Q is an integer (Tzip-
erman et al. 1995; Chang et al. 1995). The physical
causes of the tendency for frequency-locking and the
phase-locking to annual cycles, however, remain un-
clear.

Theoretical understanding of the essential physics of
ENSO requires an analytical model. Any convincing
theory that demonstrates new ideas must be derived
from the first principles and based on adequate simpli-
fications supported by observations. The theoretical
model is also expected to be able to reproduce essential
aspects of ENSO evolution: cyclic, chaotic, and phase-
locking with annual cycles. Fundamental questions
need to be addressed include

o Why does the climate of the coupled tropical
ocean—atmosphere system oscillate in a highly irreg-
ular manner? Is the system inherent chaotic?

© Why does ENSO evolve with a tendency of phase-
locking with annual cycle? In particular, why does
warming often start and the persistence of the Southern
Oscillation often break down in boreal spring?

The present study aims to address the above ques-
tions using a simple nonlinear ENSO model. We will,
in section 2, derive a theoretical model from first prin-
ciples. A number of simplifications are involved but
none of them distorts essential physics of the coupled
system. The spatial structure of ENSO allows for a cru-
cial reduction of the three-dimensional model to a sim-
ple nonlinear dynamic system, which is capable of re-
producing an irregular interannual oscillation that re-
sembles ENSO. The model is instrumental for
understanding the nature of the coupled mode, the
mechanisms of the irregular oscillation, and the sea-
sonal dependence of ENSO evolution.

2. Theoretical model for coupled tropical ocean—
atmosphere

a. Governing equations

The ocean component of the coupled model is a sim-
plified version of Zebiak and Cane (1987). The model
consists of an active upper ocean with a mean depth H
overlying an inert deep ocean. To better describe SST
variation, the upper ocean above the thermocline is fur-
ther divided into a well-mixed, frictional surface layer
of constant depth (H,) (hereafter referred to as mixed
layer) and a subsurface layer (Cane 1979). To focus
on ENSO physics, the model treats ENSO as a low-
frequency departure from its climatological annual cy-
cle. In the mixed-layer thermodynamic equation, me-
ridional temperature advection will be neglected be-
cause 1) it plays a minor role and 2) its effect can be
partially surrogated by vertical advection: convergence
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of meridional currents tends to warm equatorial cold
water, which is akin to an effect of anomalous down-
welling. In the equatorial eastern Pacific where up-
welling prevails nearly all the time, anomalous up-
welling (or downwelling ) could enhance (or suppress)
mean upwelling and induce anomalous cooling (or
warming ). Further assume that all isotherms beneath
the mixed layer move in harmony with the vertical ther-
mocline displacement. A rise (deepening) of thermo-
cline induces a decrease (increase) of the temperature
of subsurface water upwelled into the mixed layer, 7,.
A simple parameterization of T, follows: T,(h)
= 4 (h)h (Battisti and Hirst 1989), where the coef-
ficient ., measures the degree of influence of ther-
mocline fluctuation # on 7,. With the above consider-
ations, the mixed-layer thermodynamic equation can be
written as

QZ+_6_T+ £(T+T—
o “ax Moy )

== D (T=T.+T— pgh)
= H, e M

w

where T, u;, and w denote anomalies of mixed layer
temperature (hereafter refer to as SST), zonal currents,
and the upwelling at the mixed layer base, respectively;
overbars represent mean state quantities; «; is a coef-
ficient of Newtonian cooling that represents all pro-
cesses that bring SST toward its climatology (Neelin
et al. 1994).

Assume the motion is semigeostrophic (long-wave
approximation). Further neglect the meridional wind
stress in view of its minor role compared to zonal wind
stress in the equatorial ocean. The equation governing
thermocline displacement is (appendix A)

,0h g'HO (20n 8°h g'H Oh
_.___+__ ——— e — e e —
ot B* or\ydy 0Oy* B Ox
IUH ou
=22y = —_ul. 22
B (yay u) (2:2)

In the absence of wind forcing, Eq. (2.2) yields free
equatorial Kelvin and long Rossby waves. These waves
may be expressed in terms of generalized Laguerre
functions (appendix B), which can be transformed to
parabolic cylindrical functions used by Gill (1980) or
Hermit polynomials used by Matsuno (1966). The
equatorial mixed-layer zonal currents and the upwell-
ing at the mixed layer base are, respectively, given by
the following diagnostic equations [appendix A: (A.6)
and (A.5)]:

8 oh

_ H; U
By Oy

Uy,
Hl rg

(2.3)

u, =
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H, oh 1,8
w= - —--— 2

- U,
H Ot r:

(2.4)

The second term in the rhs of (2.4) indicates that an
equatorial anomalous westerly induces anomalous con-
vergence and downwelling.

Surface winds are forced by SST gradients. A sim-
plified Lindzen—Nigam (1987) model is adopted in
which boundary layer winds are taken to be nondiver-
gent [appendix A: (A.8a,b)]. This assumption is ac-
ceptable because the rotational zonal wind dominates
its divergent counterpart even in the deep Tropics (Mu-
rakami and Wang 1993). The distortion of zonal winds
owing to the above assumption is small over the equa-
torial wave guide where the ocean cares. With this sim-
plification, it is easy to show that the zonal wind and
the forcing in the rhs of (2.2) are

dR or orT

=5 s =ty — ), (2

i (R e g) e
ou, —dRr, OT

—U, | = 55—+ (T, y), (2.5b
<yay u) g e AT, (@sb)
where r, is the Rayleigh frictional coefficient, d the
atmospheric boundary layer depth normalized by the

atmospheric density scale height, and R the gas con-
stant, and

_ dRy o*T 0°T
ﬁ(T’y)=r§+,6'2y2[ra8x6y+ﬂy3y2
282y oT

oT
_—r§+52y2<raa+ yay)]. (2.5¢)

Note that, f, (T, 0) = 0. Therefore, near the equator the
principal wind forcing is simply proportional to zonal
SST gradient.

The governing equations for the coupled ocean—at-
mosphere system have been reduced to two coupled
prognostic equations: one for SST anomaly, Eq. (2.1),
and the other for thermocline depth anomaly, Eq. (2.2).
The SST and thermocline equations consist of a closed
system with the diagnostic equation for mixed-layer
zonal currents (2.3), upwelling (2.4), and zonal winds
(2.5a,b). The essence of this theoretical model is the
nonlinear coupling between mixed-layer thermody-
namics and upper-ocean dynamics through wind stress
and upwelling. The thermocline displacement plays a
critical role, which not only ‘‘memorizes’’ effects of
SST variation on winds but also conveys atmospheric
feedback to SST in a nonlinear fashion via vertical tem-
perature advection. The set of prognostic equations
(2.1) and (2.2) will be referred to as the ENSO system.

b. Scale analysis

The model involves a number of basic parameters
(listed in Table 1). Based on observations, we take
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TasLE 1. List of the model parameters.

Geometrical parameters

L Zonal width of the ocean basin 1.7 X 10" m
H Mean depth of the thermocline 150 m

H, Depth of the mixed layer 50 m

d Nondimensional atmospheric boundary layer depth 0.2

Geophysical parameters

Equatorial planetary vorticity gradient

228 X 107" m's7!

g Reduced gravity 28x102ms™!

1 = p.CplpH Wind stress coefficient 10 m™!
Friction/damping parameters

a;, Newtonian cooling coefficient for SST anomaly (125 day)™

e Rayleigh friction coefficient in the oceanic mixed layer (1.5 day)™!

Ta Rayleigh friction coefficient in the atmospheric boundary layer 3.6 X 107¢57!
Other inherent parameters

G Oceanic Kelvin wave speed 20ms™!

L, Oceanic Rossby radius of deformation 300 km

L,=rl/B Ekman spreading length scale 338 km

one-half basin width L/2 and H, as characteristic zonal
distance L, and vertical thermocline displacement, re-
spectively.

The characteristic scale for surface zonal wind
speed, U,, can be deduced from a primary balance be-
tween wind stress and pressure gradient force—the
equatorial Sverdrup balance (Sverdrup 1947) {Eq.

(A2b)]. Thus,
U, = <g—’H1>”2.

IL,
Anomalous upwelling is primarily induced by Ek-
man pumping. Its characteristic scale can be estimated
by the divergence of Ekman flows [Eq. (2.4)]. Thus,

"H,H.
W=ﬂg el

riL,

(2.6a)

(2.6b)

The characteristic anomalous SST scale may be de-
termined from the equatorial zonal momentum balance
in the atmospheric boundary layer [Eq. (A.8a)]:

7 Lx g ’ Hl 1/2
iR ( ] ) . (2.6c)

The timescale relevant to ENSO development de-
pends on the principal process that changes SST. The
interannual variation of SST in the eastern Pacific re-
sults primarily from cooling (warming ) associated with
the anomalous upwelling (downwelling). This yields
the ENSO development timescale:

_ nL

Bg'H,’
7 depends on r; or the time interval required for oceanic
Ekman flows to be fully adjusted to imposed wind forc-
ing (1/7,). If we take r, equal to the intrinsic frequency

scale (8Co)'? = 0(107°s7!), then 7 = HL./C,H,,
which represents a timescale for a Kelvin wave

T

(2.6d)

crossing the ocean basin. The ENSO development
timescale, therefore, is the same order of magnitude as
that for equatorial wave adjustment.

If the meridional scale of SST anomalies is set by
meridional temperature advection associated with Ek-
man drift, one may estimate the SST meridional scale
based on Ekman dynamics, which yields L, = r,/f8
representing a meridional distance over which Ekman
transport spreads SST anomalies on the ENSO devel-
opment timescale. Again, if we take r; equal to the in-
trinsic frequency scale (8C,)'* = 0(1073s7!), the
meridional SST scale is the oceanic Rossby radius de-
formation. Generally speaking, the characteristic me-
ridional length scale for the coupled ENSO mode, L,,
should not be the oceanic Rossby radius of deformation
because atmospheric wind response has a broader me-
ridional scale, which results in a broader meridional
scale for thermocline variation (this will in turn affect
the time needed for thermocline adjustment). Without
loss of generality, we treat L, as a parameter that de-
pends on the air—sea coupling coefficient. The reason-
ing is as follows: First, L, is related to the characteristic
zonal current scale U, as can be inferred from the semi-
geostrophic balance [Eq. (A.2c)]. Furthermore, when
the westward acceleration produced by zonal wind
stress is balanced by internal friction or entrainment
across thermocline, the speed of the steady state zonal
current is only a tiny fraction of the surface zonal wind
speed due to the immense density difference between
air and water. Assume the scale of zonal currents

UO = aUa9 (263)
where a is an empirical air—sea coupling coefficient
that measures the strength of ocean currents feedback
per unit wind speed anomaly. Using (2.6e) and (A.2¢)
one can show that

_ H 1/4
b o)),

(2.7)
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where L, is the oceanic Rossby radius of deformation.
The meridional length scale, therefore, depends on the
air—sea coupling coefficient. )

Using the parameter values listed in Table 1, we have
U,=4ms™', W= 055mday™', § = 2.1°C, and 7
= 3.05 months. These characteristic scales agree rea-
sonably well with observations.

It can be readily shown from (2.3) that the mixed-
layer zonal currents associated with Ekman flows are
substantially weaker than the vertical mean zonal cur-
rents because

(Hz u, )
o\ — U,
H] rs HZ LZ

(%g@ﬂ THLL,
By Oy

Here, we have assumed that O(L,)) = O(L,) and L,
< L,. It can also be shown, from (2.4), that the up-

welling at the mixed-layer base is predominantly driven
by Ekman divergence because

ov-V)

H, -
O(H, \Y Ve>

The expressions for w and u,, (2.3) and (2.4), there-
fore, reduce to

< 1.

H,
o

811
u = 2.8
' [J’y ay’ (28)
H.
w= — ZrBdROT. (2.9)
rir, Ox

Note that retaining the first term in (2.4) does not
change the results qualitatively. Substituting (2.8) and
(2.9) into (2.1) and using L., L,, 7, 8, and H, to scale
x,y,t, T, and h, respectively, one may obtain the fol-
lowing nondimensional SST and thermocline depth

equations:
or' _ar’ 1 on'
ATy — @+ T' — p'h' + 6, — =—
o ox ( o 'y )
+ T;(T' ph' + 6 i,gi) —a!T' (2.10a)
0 2 0n'  O%h’ oh' or’
5____ 12y 7 + — - ——= -
atr [y h €<yr ayl 6y12>:l 5x' 8x'
(2.10b)

where the prime denotes a nondimensional quantity,
oy = a7, and the fi(T, y) in (2.5¢) has been omitted
as we focus on the oceanic wave guide in which f, (T,
y) nearly vanishes. Inclusion of fi(7T, y) requires te-
dious manipulation but does not alter the results qual-
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itatively. The nondimensional basic state parameters in
(2.10a,b) are

ATy =(T - T,/

(2.11a)
il = /L, (2.11b)
_ L 8T

e el 11
Te=0 o (2.11¢)

where T. symbolizes zonal SST gradient or the
strength of the mean upwelling [Eq. (2.9)]. The non-
dimensional numbers/ in (2.10a,b) are

g¢H LO 4
= == 12
©T AL <L> (=1
H, f°LY _ M,
b=—4 - H(L,) (2.13)
Hl Lr : Hl -1
=—|— — . 2.14
1 H2<Ly> 7 (& (2.14)

All three nondimensional parameters depend on cou-
pled meridional scale L, or the air—sea coupling coef-
ficient @. Parameter 6 measures the importance of the
non-Sverdrup balance, §, represents the contribution of
the horizontal temperature advection by anomalous
zonal currents to local SST variation, and € measures
the relative importance of the equatorial wave motion
to slow divergent motion associated with off-equatorial
Rossby waves. Setting e = 0 corresponds to the neglect
of local time change of zonal currents in Eq. (A.2b).
That eliminates equatorially trapped waves.

There are two nondimensional coupling coefficients.
One is the air—sea coupling coefficient a« [Eq. (2.6e)]
and the other is

r_ psH,
9 b
which measures the degree of coupling between ther-

mocline and SST. For convenience, it will be referred
to as the thermocline effect coefficient.

(2.15)

3. Dynamic system governing ENSO evolution

To focus on temporal behavior of the ENSO system,
we apply the Lorenz (1963) method. In a zonally
bounded yet meridionally infinite equatorial ocean ba-
sin, Cane and Moore (1981) showed, with the long-
wave approximation, the existence of a free low-fre-
quency standing wave mode that consists of long Kel-
vin and Rossby waves. Using a linearized version of
the Zebiak and Cane (1987) model, Wakata and Sar-
achik (1991) demonstrated that the unstable coupled
basin anomaly mode in a spatially varying basic state
exhibits a similar structure. The thermocline variation
in the western basin tends to be in an opposite phase
with that in the eastern basin. These theoretical results
are supported by observations. Wang (1996, manu-
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script submitted to Dyn. Atmos. Oceans) has shown
that the thermocline anomalies averaged over the west-
ern and over the eastern half of the Pacific basin be-
tween 15°N and 15°S (or between 25°N and 25°S) are
nearly 180° out of phase. To the lowest approximation,
the coupled basin mode may be treated as an equato-
rially trapped and symmetric east—west ‘‘seesaw’’.

The nondimensional meridional structure may thus
be represented approximately by the lowest-order par-
abolic cylindrical function

Do(y') = e, (3.1)

Assume that the basic state is meridionally invariant
(note that consideration of idealized meridional varia-
tion is solvable but involves complicated derivation).
The solutions of the Egs. (2.10a,b) can be approxi-
mately expressed by

il

Ty =T(x', 1")Do(y"),
h' = h(x',t")YDo(y").

Substituting (3.2a,b) into (2.10a,b) and projecting the
resultant equations onto Dy(y") yields

(3.2a)
(3.2b)

or , . 0T
W = (ATO —ui) O’
+(TL—a)T— (w + 6)TLh
20T . , .
350 [T—(u +6)h], (3.3a)
oh oh T
o - ”(a‘ axr) (3.3b)
where
2
h=—" :
§(1 = 3¢) (3:4)

is a nondimensional number that depends on the air—
sea coupling coefficient (or L,) and represents collec-
tive effects of all waves on slow thermocline adjust-
ment. To the lowest order, we treat ENSO as a basin
standing mode with one pole in the eastern Pacific
(xz = 0.5 representing 120°W) and the other in the
western Pacific (xjy = —0.5 denoting 160°E). Consis-
tent with observations and for simplicity, we assume
that the SST anomaly vanishes at xy, and its amplitude
increases eastward linearly, so that 37/0x’ = Ty, where
T denotes SST anomaly at xz. Assume the node point
of the standing thermocline oscillation is located at the
middle of the basin, x; = 0. The thermocline displace-
ment in the eastern basin can be solved with a boundary
condition A’ (xy) = 0. The anomalous SST and ther-
mocline depth at the eastern Pacific, Ty and hg, are
therefore governed by
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% =a, T — axhg + \/g Te(Tg — ashg) (3.5a)
% = b(2hs — Tg), (3.5b)
where
a = (AT{—u} + T, —al)l, (3.6a)
a = (p+ 6)T;l, (3.6b)
a; = (p + 6y), (3.6¢)
and p = p' |y

The dynamic system (3.5a,b) describes the interan-
nual variation of the coupled system in the core region
of ENSO: SST and thermocline variations in the Nifio-
3 region and wind anomaly over the central Pacific. The
evolution of ENSQ is governed by a nonlinear dynamic
system that is second order in time with time-dependent
coefficients, differing from the delay oscillator model.

4. Solutions

a. Equilibrium states, coupled instability, and linear
behavior

The ENSO dynamic system, (3.5a,b), possesses two
steady solutions:

Ty =hy’ =0, (4.1a)

2a, — a,

TP =2 = (4.1b)

2(13 — a4
The first steady solution is the origin in the phase
space and represents the climatological mean equilib-
rium state or an ENSO ‘‘transitional’’ state in which
both SST and 4 are normal. The model’s climatological
mean states (annual cycles) are illustrated in Fig. 1.
They were obtained by running an intermediate tropical
Pacific Ocean model (Wang et al. 1995) using ob-
served climatological monthly mean solar radiation,
surface wind stress, and cloudiness forcing.
The climatological equilibrium state becomes unsta-
ble when g, + 2b > 0 (the primary bifurcation). The
corresponding perturbation growth rate

1 _
7=§(AT6—LTI+T§"OI§)IXE+ (4.2)

2
6(1 — 3e)
depends on climatological mean state and the air—sea
coupling coefficient «, but not the thermocline effect
coefficient u. For a given mean state, the growth rate
increases exponentially with increasing coupling co-
efficient « or decreasing meridional scale of the cou-
pled mode (Fig. 2a). For a given a, the growth rate
varies with season. The largest (smallest) growth oc-
curs for a boreal spring (fall) mean state. Additional
computations reveal that the annual change of the cou-
pled stability is mainly caused by annual variation of
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FiG. 1. Climatological mean annual cycles used in the model: (a)
SST difference between equatorial eastern (Ty) and western (Ty,) Pa-
cific; (b) the temperature difference between the mixed-layer and
subsurface-layer water, T — Tp; and (c) the mean equatorial zonal
currents ir; averaged over Nifio-3 region.

zonal SST gradients or mean upwelling and the tem-
perature difference across the mixed layer base.

Perturbations in the vicinity of the climatological
equilibrium state may approach (or depart from) it ei-
ther asymptotically or oscillatorilly. It is readily shown
that the presence of a linear oscillatory solution (grow-
ing or damping oscillation) requires

a, — a

0<
2

1
-5 (a3 — 2a1a,)'"* < b

. a, ; a +%(a% _ 2661612)”2 (4.3)

and

2 _
;.c>—61+$(AT6—zﬂ+T§—a§).

X

(4.4)

The oscillatory behavior occurs only when b, and
therefore «, takes restrictive positive values and p ex-
ceeds a threshold. The linear oscillation period is

T* = dnr[d4b(a; — ay, — b) — ail "%, (4.5)
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which depends on basic climatic state, «, u, and mod-
el’s geophysical parameters. For given parameters
listed in Table 1, the oscillation period 7* is an order
of magnitude longer than the ENSO development time-
scale 7. It decreases with increasing p but depends on
a in a subtle manner: The longest oscillation period
occurs for an intermediate air—sea coupling strength
(Fig. 2b). When the vertical temperature gradient
(ATy) decreases, oscillation requires a considerably
larger p; meanwhile, the oscillation period lengthens
(Fig. 3a). The oscillatory behavior also sensitively de-
pends on the mixed-layer friction, r, (Fig. 3b). De-
creasing r, markedly raises the threshold p and in-
creases the oscillation period.

The second equilibrium state, (4.1b), is located on
the straight line 7z — 2h; = 0 and represents an unsta-
ble saddle point in the phase space. It is physically triv-

Ly (#1000 km)

growth rate (1/month)

-0.4 Y
0.005 0.02 0.04 0.06 0.08
alpha (air-sea coupting coefficient)

4,50
- 4 decay growing oscillation
< oscill
©
§ 3.59
5
a
- 3
o X
% 2.5
o
c
- 2
o
g G 18
15 =
£ —
~ 7, R Sa———
3 Y 2. 36—
S

0.5

0.005 0.02 0.04 0.06 0.08 0.1

alpha (air—sea coupling coefficient)

FIG. 2. Linear behavior of the ENSO dynamic system: (a) the
growth rate as a function of « for the annual mean (thick solid line),
January (long dashed line), April (short dashed line), July (dotted
line), and October (thin solid line) basic state; and (b) the oscillation
period (month) as a function of a and y for annual mean basic state.
The light shading represents the nonoscillatory domain; the dark
shading outlines the domain of nonlinear oscillation (limit cycle).
Also given in (a) is the meridional length scale L, as a function of a.



1 OCTOBER 1996

MU (thermocline effect parameter)

0.04 0.06

al phO(uir sea coupling coefficient)

MU (thermociine effect parameter)

b
0.04

0.06

al th(air sea coupling coefficient)

FiG. 3. The convention is the same as in Fig. 2b except that (a)
shows the influence of AT, (temperature difference between the
mixed-layer and subsurface-layer water), which was changed from
3.0°t0 2.5°C, and (b) shows the effect of Rayleigh friction coefficient
in the mixed layer r,, which was changed from 1.5 to 1.0 day™".

ial. For typical mean state parameters this steady so-
lution is also unrealistic.

b. Limit cycle solution for the annual mean basic
state

For the ENSO dynamic system (3.5a,b), we are
more interested in finding out whether finite-amplitude,
periodic solutions (or limit cycles) exist. We first ex-
amine the case in which the basic state is time inde-
pendent (the annual mean state shown in Fig. 1). In
this case, the dynamic system is a second-order auton-
omous system with one focus and one saddle point
when g > . Such a system can have at most one limit
cycle solution. Furthermore, if a limit cycle exists it
must encircle only the focal point (the climatological
mean state ). Since the ENSO dynamic system contains
two coupling coefficients as parameters, it is important
to find the parameter domain in which the limit cycle
solution may exist.

WANG AND FANG

2793

Appendix C shows that for a given steady basic state
the ENSO dynamic system possesses one and only one
limit cycle solution if conditions (C.6) and (C.7) are
satisfied. Figure 4 illustrates the parameter domains in
which the condition (C.6) is valid and the values of d
defined by (C.7) are sufficiently small, providing a
guidance for numerical search for limit cycle solutions
in the parameter space. The actual parameter domain
in which limit cycle exists (shown by the dark shading
area in Fig. 4) was determined by numerical integration
of (3.5a,b). The numerical results suggest that (C.6)
and (C.7) are necessary conditions for the existence of
a limit cycle.

The limit cycle territory is imbedded in a spacious
domain of linear oscillation (Fig. 2b), indicating it ex-
ists only in a restricted range of the air—sea coupling
coefficient. This implies that search for oscillation in
coupled numerical models is often a challenging task.
Note also that the limit cycle occurs at the primary
bifurcation point, indicating the first bifurcation is a
Hopf bifurcation. This agrees with Neelin’s (1990) as-
sertion.

In the phase plane, the limit cycle is an elliptic en-
circling the climatological equilibrium state (Fig. 5a).
The second equilibrium state, being a saddle point, is
necessarily located outside the limit cycle. Numerical
experiments further demonstrate that the limit cycle is
a stable attractor. Any perturbed initial state starting
from inside the limit cycle or from outside but within
a realistic distance (restricted by the location of the
unstable saddle point) will eventually be attracted to
the limit cycle.

In the physical space, the limit cycle represents a
perpetual, finite-amplitude oscillation as shown in Fig.
5b. Note that the thermocline displacement slightly
leads SST variation. The cycle is asymmetric: warming
takes much longer than cooling. Further studies indi-
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FiG. 4. Search for the domain of existence for the limit cycle in
parameter space. The contour shows values of d (C.7) in the area
where condition (C.6) meets. The dark shading indicates the domain
of existence for the limit cycle determined by numerical integrations.
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FIG. 5. The limit cycle solution for annual mean basic state and u
= 1.315, « = 0.0184. (a) The phase orbit. When a > a, the pertur-
bation initially located near the origin (the annual mean state) grows
and oscillates, approaching the limit cycle. (b) Time series of anom-
alous SST (solid line) and thermocline depth (dashed line) from
model integration year 145 to year 150.

cate that the degree of asymmetry varies with the
strength of the nonlinearity. .

The period and amplitude of the model’s nonlinear
oscillation depend on the climatological mean state and
the coupling coefficients. Figure 6a displays the period
as a function of i and « for the given annual mean state
shown in Fig. 1. For typical parameter values listed in
Table 1, the oscillation period ranges from 18 to 60
months. Note that the oscillation period is primarily
determined by the parameter u, suggesting the impor-
tance of the effect of thermocline displacement on SST
in setting up the oscillation timescale. Note also that
the period calculated for linear oscillation near the cli-
matological equilibrium state provides a good estimate
for the nonlinear oscillation (Figs. 2 and 6a), suggest-
ing the usefulness of the linear analysis (Figs. 3a,b for
instance). The amplitude of nonlinear oscillation is
also in a reasonable range for the given annual mean
basic state (Fig. 6b). As u and a increase, amplitude
increases at a comparable rate.

c. Strange attractor in the presence of the basic-state
annual cycle

With a time-independent basic state, the ENSO dy-
namic system can have only regular nonlinear oscilla-
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tion: chaos does not exist in a second-order autono-
mous system. When the basic state includes an annual
cycle, however, the ENSO system becomes nonauton-
omous and increases its degrees of freedom, thereby
possibly entering a chaotic regime when the amplitude
of the basic-state annual cycle exceeds a threshold
value. This is indeed the case when the annual cycles
shown in Fig. 1 are taken as a basic state.

Figure 7a shows the phase orbit of the irregular os-
cillation of the dynamic system with the annual cycle
basic state. The parameters used in Fig. 7a are identical
to those used in Fig. 5a except for the basic state. The
chaotic phase orbits in Fig. 7a are trapped in the vicinity
of the limit cycle shown in Fig. Sa, indicating that the
limit cycle becomes a strange attractor when the basic
state varies annually.

The corresponding power spectra for the above reg-
ular and chaotic oscillations are compared in Fig. 7b.
For the regular oscillation (the limit cycle), the primary
energy peak appears on an oscillation period of about
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Fi1G. 6. Dependence of (a) the period (month) and (b) the amplitude

(°C) of SST anomaly of the limit cycle on a and y for the annual
mean basic state.






