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Abstract

" A theoretxcal model for the coupled troplcal ocean and atmosphere is denved from phyaxcal
principles. The model characterizes the temporal evolution of the El Nino cycle as a second order.
nonlinear dynamic system. With an annual mean basic state the model has, for a rather restricted
range of air-sea coupling strength, a unique limit cycle solunon vyhxch is a stable attractor repre-
senting a regular interannual oscillation of the coupled ocean and atmosphere. The oscillation is
characterized by a delicate phase lead of thermocline displacement to SST, which agrees well with
observations. This phase lead results from a nonlinear interaction between SST and thermocline
variations and plays a critical role in providing a negatxve feedback to turn a warmmg toa coolmg "
or vice versa, sustaining the oscillation.

When the basic state varies annually, the limit cycle dévelops a strange attractor and the in-
terannual oscillations exhibit deterministic chaos. We show that the basic state is most unstable'. . -
(stable) in northern spring (fall). The season-dependent development of the coupled mode causes
a phase “lock” of the ENSO cycle with annual cycle—the transition phases of the oscillation tend
to occur during most unstable season—which, in turn, causes the irregularities in the oscillation
period and amplitude. :

I. Introductlon
1. Observed JSeatures af the El Nino cyclc _

The spatial structure of the Pacific warming (El ano) is charactenzed by a posmve SST
anomaly trapped in the eastern-central basin ’ nearly mendxonally symmetnc relative to the e-
quator. As visualized by Bjerknes (1966, 1969), the warmmg is closely associated with
westerly anomalies over the equatorial western and central Pncxf:c. The latter is a mamfest of
the pressure rising over Asian-Australian monsoon region and a drop over the trade wmds re-
gion (the Southern Oscillation). ‘ . o

The temporal structure of the El Nino cycle or Southern Oscillation exhibits the follow-
ing characteristic features: (1) quasi-periodicity with a period ranging from two to seven
years; (2) prominent irregularities in the amplitude and period of the oscillation (Gu and
Philander, 1995; Wang, B., and Y. Wang, 1995); (3) seasonal dependence of the evolu-
~tion; warming tends to start xn the warm season of the annual cycle and matures in the cen-

. tral Pacxfxc toward the end of a calendar year (Rasmusson and Carpenter, 1982)

2. Background in theoretical studies
In the last decades or so, a large number of theoretical studies have been c_arried out to

t
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explain fundamental mechanisms of .El Nino-'Southem Oscillation (ENSO). They deal with
primarily two issues: ( I ) What causes the initial grow of the SST and wind anomalies?
(I) How does the turnabout from a cold to a warm state take place?

The question I was first addressed conceptually by Bjerknes (1969). He attributed the
cause of the warming to a positive feedback between §he atmospheric Walker circulation and
the oceanic thermal contrast between the western Pacific warm pool and eastern Pacific cold
tongue. This hypothesis has greatly inspired succeeding theoretical studies of the properties
of the coupled ocean and atmosphere system. Philander et al. (1984) presented first rigorous
stability analysis of a coupled shallow water system on equatorial beta-plane. Additional
mechanisms and extensions were made by many ensuing studies (see review of McCreary and
Anderson, 1991; Neelin et al. , 1994). The deve'lopmer_xt of a warm episode is now under-
stood as resulting from the coupled instability of a. mean state of the atmosphere and ocean.

The question I was a Bjerknes’ (1969) puzzle. It is much more difficult for simple the-
oretical models to address because of the complexity and nonlinearity of the coupled ocean-at-
mosphere system. Consequently, numerical modeling of ENSO became a popular approach.
Among them, the intermediate coupled models are theoretician’s favorable tools for under-
standing physics of the coupled system. Zebiak and Cane (1987) first aspired to address
Bjerknes’ puzzle by examining the cause of the oscillation in their model and found that the e-
quatorial heat content increases prior to warm events and decreases sharply during the
events. The variability in the heat content of the upper ocean was identified as a critical ele-
ment of the model oscillation.

Primarily based upon the understanding gained from numerical experiments with inter-
mediate models, Saurez and Schopf (1988) and Battisti and Hirst (1989) put forward a semi-
embirical analogue model for ENSO—the delayed oscillator model. Their models interpret
the turn over from a warming to cooling as resulting from the reflected equatorial waves at
the western boundary which provide a delayed, negative feedback to “shot down” the origi-
nal growth in the eastern Pacific. The delay which plays a central role in the above argument
results from ocean wave dynamics as shown by Cane et al. (1990) and Schopf and Saurez
-~ (1990). ' | |

The delayed-oscillator model shows certain degree of consistence with observed thermo-
cline variability (Kessler, 1990) and the occurrence of large-scale baroclinic waves traversing
the ocean basin in some coupled GCMs (e. g. , Latif et al. , 1993). However, theé reflection
of Rossby waves at the western boundary prior to the onset of an El Nino has not been clear-
ly identified by observations. The model that removes western boundary reflection remains
to be capable of simulating ENSO-like variation (Wang and Wesburg, 1994). In addition, -
the analogue models are not rigorously derived from physical principles and they do not ex-

plain the irregularity and season-dependence of ENSO.

3. Thcofctkﬁl targets
Our theory is aimed at addressing the following fundamental questions:
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.°Why does the climate of the coupled tropical ocean-atmosphere system oscillate? What
determines its predominant period and amplitude?

+Why is the oscillation so irregular? Is it an inherent behavior v. ..ie nonlinear coupled
climate system?

*Why does the warming often start in the warm season of the year? Why does the per-
sistence of the Southern Oscillation break down in boreal spring?

We will derive a theoretical model from the first principles with the aid of a number of
simblifications. To facilitate analysis, we keep the model as simple as possible. Hence only
most relevant .physics are included. The characteristic spatial structure of the E! Nino
anomalies allows for a crucial reduction of the three-dimensional model to one-dimensional
that focuses on the eastern equatorial Pacific Nino-3 region (5°N—5°S, 150°-90°W). The
one-dimensional model—a nonlinear dynamicsystem—is capable of reproducing irregular in-
terannual oscillation that conslderably resembles ENSO. The model is therefore instrumental
for understanding the mechanisms of the u'regular oscillation and the seasonal dependence of
ENSO.

I . Theoretical model for the coupled tropical ocean-atmosphere 4 ‘

The trapping of ENSO warming in the eastern equatorial Pacific manifests the impor-
tance of climatological mean states. To delineate relevant physics of ENSO, it is wise to
treat ENSO as a low-frequency departure from its climatological mean (annual cycle).

Consider an active upper ocean with a mean depth of H overlays an inert deep ocean with
thermocline as an interface. To better describe SST variation, the upper ocean is further di-
vided into a well-mixed, frictional surface layer of constant-depth ( H; ) (hereafter refer to
1s mixed-layer) and a subsurface layer (Cane, 1979).

The dominant contributor to SST variation in the equatorial eastern Pacific is the up-
welling process. We will neglect horizontal advection of temperature, although inclusion of it
is straight forward. The mixed-layer temperature (hereafter referred to as SST) anomaly is
therefore governed by

%+§:[T—T.+T—T,(h)]+§-;(T—T.(h)) =—aT, (@
where overbars denote basic-state quantities; w represents upwelling at the mixed-layer
base; @, is a coefficient of Newtonian cooling that represents all processes which bring SST
towards its climatology; 7', denotes temperature of subsurface water that is upwelled into the
mixed-layer. In (1), we have assumed that an anomalous downwelling (or upwelling) could
suppress (or enhance) mean upwelling and induce anomalous warming (or cooling). This is
reasonable in the equatorial eastern Pacific where upwelling prevails nearly all the time. Fur-
ther assume that all isotherms beneath the mixed-layer move in harmony with vertical ther-
mocline displacement. A rise (deepening) of thermocline results a decrease (increase) of T, .

A simple parameterization of T, in terms of thermocline anomaly % follows (Battisti and
Hirst, 1989).
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“T(h) = p, (F)h, 2)
where the coefficient #2. measures the degree of influence of thermocline fluctuation on SST.
The upwelling w is generated by two processes; the Ekman divergence in the mixed lay-
er and the vertical displacement of the thermocline. We will consider the former being domi-
nant and neglect the latter, although inclusion of the second contributor is not difficult. The
problem becomes how to determine Ekman flow divergence. Assume that the Ekman flow V,
vanishes at the mixed layer base, thus it also represents the vertical shear between the
mxxed-layer and the subsurface layer. It is thus governed by (Zebiak and Cane, 1987 )

r:uc Byvl gru" ) (3)
r,v, + pyu. =§I{-rv.’ ' (4)

where #, and v, denote zonal and mendxonal surface wind speed, respectwely we have lin-
eanzed the bulk formula for wmd stress ’ thus the coefficient

r=[IU,, andlap‘ (}:}’, (5)

where U, is a characteristic scale for surface wind speed; L. and o, the densmes of the surface
air and sea water, respectwely; and Cp the drag coefficient. o

From (3) and (4), one can solve for Ekman ﬂow and compute its divergence so that the
upwelhng at the tmxed-layer base w can be obtained. It can be shown that near the equator

= H}f”v V,~— H,—E,u., (6)

w

where H, = H H 1e Equatxon (6) implies that an equatorial anomalous westerly induces
anomalous convergence and downwellmg.

The upper ocean dynamics, i. e. , the thermocline anomaly 2 and anomalous vertical
mean currents above the thermocline, x and v , can be described by a linear, reduced-gravity
model on the equatorial 8- plane. Here semi-geostrophic motion (long wave approximation)
is assumed because the square ratio of the meridional to zonal length scale, (L,}/L.?)?, is
small. The anomalous meridional wind stress will be omitted because of its smallness and the
dullness of the ocean to its vanatlon The govermng equatxons for the entire upper ocean may
then be wntten

o & x S ‘
z THEG +3)=0 , @
g‘i_py,,_‘.glﬂ-ym,,' ' ®

U ‘» ., . =— ) ' )

yu g’ ay 3 .

A thermoclme-depth anomaly equatxon can be denved from combmmg Equatxons (7)_—'
9, ' . o ) _'A.‘
ﬂiléﬁ.';ﬂ _gH® _rH . _ : _(16)




A Theory for El Nino Cycle 629

associated curl. .

In the absence of the wind forcing, Equation (10) yields a free equatorial Kelvin wave
and a family of free long Rossby waves. These wave solutions may be expressed in terms of
generalized Laguerre functions (Appendix) which can be transformed to parabelic cylindrical
functions used by Gill (1980) or Hermit polynomials used by Matsuno ( 1966).

With the aid of (2) and (6), the SST anomaly equation is

31" H zrﬂ
T Hp

Once wind stress is known, SST and h can be determmed by Equatxons (10) and (11)

Surface winds are forced by SST gradients. A sxmphfied Lindzen-Nigam (1987) model is
used in which boundary layer winds are taken to be nondxvergent 80 that the feedback of the
free atmosphere to the boundary layer flow is negligible. Thxs assumptlon is acceptable be-

cause the rotational zonal wind dominates over its dxvergent counterpart even m the deep
tropics (Murakami and ‘Wang, 1992). Note ‘that the distortion of zonal winds ansmg from
the above assumption is small over the equatorial wave guide where the ocean cares. With
this sxmplexcatxon, the surface wmds are simply given by (Wang and Li,1993)

raty — ﬂyv.adxé'.' ] a2
Cmtm=awI, T

where 7, expresses Rayleigh frictional coefficient,. d a non-dimensional. depth of the atmo-
spheric boundary layer, and R the gas constant. From Equations (12) and:(13) surface wind
can be solved as a function of SST. The zonal wmd and the forcmg in the r. h s of Equatxon

(10 are .
W= Tt AR as)
(yfas’-—u.) sr.,_*_ﬂx?'z 'a_z—-!-fl(T’y)’ , “..... . (15) )
where f,(T, 0) == 0. Therefore, near the equator the pnnclpal parts of wind forcmg 14)
- and (15) are sxmply propomonal to zonal SST grachent. » .
f‘ The coupled tropxcal ocean and atmosphere 1s thus governed by two prognostxc equa-
:,.,: ' tions ; one for thermocline depth anomahes y Equanon (10) ’ and the other for SST, Equatxon
= . EQuanons (14) and (15) consist of 2 “closed system with the dmgnostxc relations for

ki
1

zonal wlnd. The essence of this theoretical model is the nonlinear coupling between mixed-
layer thermodynamice and upper-ocean dynamics through wind stress and _upwelling. .

LR Y

PRI




630 Climate and Environment

X . ENSO dynamic system
1. Scale analysis

“The present model involves a number of basic :parameters which are listed in Table 1.
Based on observations, we take one-half basin width and H, as, respectively, the characteris-

tic scale for zonal distance and vertical thermocline displacement.

Table 1 List of the model parameters.

Geometric parameters

L Zonal width of the Ocean basin ' 1.7X10"m

H Mean depth of the thermocline . . 150 m
H, Depth of the mixed-layer ' s0m

d Nondimensional atmospheric boundary layer depth 0.2

Geophysical Parameters

B Equatorial planetary vorticity gradient 2.28X 10 m=ts~}
rd Reduced gravity 2.8X10"tm s~}
l= p,Cp/oo H Wind stress coefficient 10-*m~!?

Friction/damping parameters

a, Newtonian cooling coefficient for SST anomaly (125 &)1
.. Rayleigh friction coefficient in the oceanic mixed layer (1.5d)!
Ts Riyleigh friction coefficient in atmospheric boundary layer 3.6X10"¢m™}
Other inherent parameters ‘
Co Oceanic Kelvin wave speed , 2.0ms™!?
L, Oceanic Rossby radius of deformation 300 km
L,=r,/8 ' Ekman spreading length scale ‘ . 338 km

The ;haracteristic scale for surfacé zonal wind speed, U, , can be deduced from a prima-
cy balance between wind stress and the pressure gradient force associated with the thermo-
cline slope—the equatorial Sverdrup balance (Sverdrup, 1947) (Equation (7)). Thus,

_ &£H -
U= &t (16) |
From (6), the characteristic scale for anomalous upwelling
w ril, ° an

The characteristic anomalous SST scale may be determined from the equatorial zonal

nomentum balance in the atrhospheric boundary layer (Equation (12)) which leads to

- Te L8 Hy 18)
6= Zx Ot as
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The local change of SST primarily results from cooling (warming) associated with the
anomalous upwellmg (downwelhng), the time scale for SST variation is H,/W , which
yields

riL,

| ' 19)

=B EH-Hy ¢
. Generally speaking, the characteristic meridional length scale for the coupled mode, L, ,
should be neither the oceanic, nor the atmospheric Rossby radius of deformation. Without

loss of generality, we assume that '
L’ = ALQ, ) (20)

where L, = 4/ % is oceanic Rossby radius of deformation. Note that L,is related to character-

istic zonal currents scale U, as implied by (9). The zonal currents may be scaled by

. | U, = aU,, 2L
where @ is an empirical air-sea coupling coefficient that measures the ocean currents response
to unit wind speed. With the aid of (21) we can show that

A= altcg-*-L,)‘ (22)

Equations (20) and (22) indicate that the meridional scale of the coupled mode depends on
the air-sea coupling coefficient.
Using parameter values listed in Table 1, we haveU, = 4m s} yW =0.55md™?, 0=
2.1°C, v =3. 05 months. These characteristic scales agree well with observations.
" Using L. ,L,,r,0,and H,to scalez , y st T , and k , respectively, one may obtain
the following nondimensional SST and thermocline-depth equations;

A = ATy +T = w0 +T' (T — iy - d, T, (23)
a & ,
E] 2 & Er\_& __ T
v+ -F - 5% e
where ' denotes-nondimensional quantities. The nondimensional basic state parameters are
’o = (T - Ta)/aﬁ ' ' (25
L. 3T
T, ==—0— =’ (26)

whete 7", symbolizes zonal SST gradient or the strength of the mean upwelling. The model
contains the following nondimensional numbers

H L) ¢
caé%s(z) , @0
&= %&La%(%)z, (28)

where L. = r,/B depicts a meridional distance over which Ekman transport spreads out SST
anomalies on ENSO development time scale. The nondimensional number 8 measures the rel-
ative magnitude of the thermocline variation and non-Sverdrup balance. The parameter ¢
measures the relative importance of the wave motion to slow non-Sverdrup flow forced by
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wind stress. A vanishing € implies the absence of oceanic wave motion. Both & and & depend
on coupled meridional scale L, or the air-sea coupling coefficient a. Another nondimensional
coupling coefficient '

Hs Hl

i o= (29)

measures the degree of influence of wind-induced thermocline fluctuation on subsurface water
temperature. For convenience it will be referred to as thermocline-SST coupling coefficient.

2. ENSO dynamic system
. The observed SST and k anomalies exhibits a spatial pattern that is nearly symmetrical
and trapped to the equator. The meridional structure of the ENSO mode can, therefore, be

represented roughly by the lowest-order parabolic cylindrical function
!

Dy(y') = = (30)
Further assume that the mean state is invariant in meridional direction. The anomalous SST
and & can be written approximately as the following highly truncated form
T =T(z, ¢)De(¥), ' @D
B =R(Z, ¢)D(¥). - . (32)
Substituting (31) and (32) into Equations (23) and (24) and pro;ectmg the resultant e-
quations onto D,(y') yield

Lo T ar—esr—imas JETr—um, @
. adh & . T\
2 - b( 2-Z), (34)
where ‘ . o
2 : .
b ﬂm . (35)

The simplest spatial finite difference form of (33) and (34) may be obtained by considering
two boxes, one centered at z5 (120°W, for example) and the other at zw (160°E, for
instance) , representing the eastern and western Pacific, respectively. The distance between
the two boxes is taken as L, . In consistence with observations, we further neglect SST fluc-
tuation at the western Pacific and take thermocline fluctuation at zw precisely 180° out of
phase with that at z; . Equations (33) and (34) then become _.

% =g, Ty — C;zhz + 4\/ %T:(Tz — phg), (36)
%-'.-:'5(2’1: -Tg, (373

where T'g and Ag denote, respectively, anomalous model SST and thermocline depth averaged
over the equatorial eastern Pacific.(approximately the Nino-3 region). The coefficients.in

(36) and (37) are ‘ . | o R
a,= AT, + T, —a)|,» . _ -(38):
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a; = uT. |, o 39

p=p . - " 40)

' The ENSO mode at the equatdriel eastern Pacific is thus goverhed by a nonlinear dynam-

ic system that is second order in time and differs from delayed oscillator model. The system
describes the behavior of ENSO mode in the core region of El Nino (SST and thermocline

variations in Nino-3 region and wind anomaly over the central Pacific) ; much of the funda-
mental features of ENSO can be modeled by this simple dynatmc system.

V. Stability of the climatological mean state and llnear behavior
Equatxons (36) and (37) possess two steady soluuons:

Ty = b ® =0, (41
Te® = Qhy® me —281 "4 ; ‘ “42)
lw-m ’

H

The first steady solutxon represents a chmatologlcal mean equnhbnum state or an ENSO
transxtlonal phase in whxch both SST and 4 are normal. In SST-A phase space it is located at
the origin ancl can be either a stable or an unstable focus pomt. Phystcally, the climatological
equilibrium state becomes unstablewhen a, -+ 26> 0 (the pnmary bxfurcanon) The corre-
sponding growth rate of a perturbation is

2

73—(47" +‘T’ —-d,) -!-m

- (43)

Equation (4.3) shows the dependence of the growth rate on the equlhbnum state and the cou-
pling coefficient a. Note that the initial growth does not depend on the couplmg coeffxcxent 2
Given the annual mean state, Tz — Ty =—3.5C, (T —T,) I., =3C, the growth rate in-
creases exponentxally with increasing coupling coefficient « or decreasmg mendlonal scale of
the coupled mode (dark solid curve in Figure la). For given a, the growth rate varies with
seasons. The strongest (weakest) growth occurs for a boreal spring (fall) mean stgte (Fig-
ure la). This is due to the weakest east-west contrast and equatorial upwelling in b_oreal
spring favor for unstable growth. . |

Perturbations in the vicinity of the equilibrium state may approach (or depart from) the
equilibrium state either asymptotically or oscillatorilly. The presence of an oscillatory solu-

“tion (growing or damping oscillation) requires that

o< 1«/ —za,a,<b<-3-—-—+ ~/ 2a1a,, (44)

a“d"z"'z‘¥1<001‘

n> ;—(AT..' +T) —4a'), (45)
Equation (44) implies that the oscillatory behavior occurs only when b , therefore a takes val-
ues in a restrictive positive interval. Equation (45) means that the oscillation requires x
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exceed a critical value. Numerical results shown in Figure 1b confirm the inferences. Fur-
thermore, the oscillation period shortens with increasing #. The dependence of the period on
@ is more subtle: there exists an intermediate air-sea coupling strength (or meridional scale)
for which the period is the longest for given # (Figure 1b). The strong dependence of the os-
cillation period on x« hints the importance of thermocline fluctuation. The linear oscillation
period also depends on basic state. For instance, as vertical temperature gradient decreases,
oscillation requires considerably larger 4 ; meanwhile, the oscillation period lengthens (fig-
ure not shown).

~ The second equilibrium state, (42), is located on the straight line T, — 2A, = 0 and rep-
resents an unstable saddle point in the phase space. It is, therefore, physically trivial. Be-
sides, for typical mean state parameters this steady solution is physically unrealistic.

V.. Nonlinear oscillation
1. The limit cycle solution

For the ENSO system, we are more interested in finding out possible finite-amplitude,
periodic solution (or limit cycle). If the basic state is time-independent, the ENSO system is
a second order autonomous system with one focus and one saddle point. There is at most one
limit cycle solution. Furthermore, if a limit cycle exists, it must encu-cle only the focus point
(the equilibrium basic state). .

. The limit cycle solution occurs in a rather restricted range of the coupling parameter aas
shown by the dark shading area in Figure 1b. This domain was determined by numerical in-
tegration of (36) and (37). It is a small area imbedded in a much larger domain of linear os-
cillation. This explains why the search for oscillation in coupled numerical models is often a
challenge task.

As expected, the limit cycle is an elliptic encircling the climatological equilibrium state
(Figure 2a). The second equilibrium state, being a saddle point, is necessarily located out-
side the limit cycle. Numerical experiments further demonstrate that the limit cycle is a sta-
ble attractor. Any perturbed initial state starting from inside the limit cycle or from outside
but within a realistic distance (restricted by the location of the unstable saddle point) will
eventually be attracted to the limit cycle.

In physical space, the limit cycle solution represents a perpetual finite-amplitude oscilla-
tion as shown in Figure 2b. The thermocline displacement slightly leads SST variation. The
decay of warming is faster than the development.

2. The relevance of the model nonlinear oscillation to ENSO cycle A
Figure 3a shows an observed SST- & scattering diagram for the period of July 1982 to

November 1986, roughly one cycle. Each closed circle represents monthly mean anomalies

reconstructed from the first two empirical orthogonal functions derived from assimilated o-

cean data set made by National Center for EnvironmentalPrediction (NCEP) (Ji et al. I
1995). Evidently, the limit cycle orbit (Figure 2a) matches observed phase loop i
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growth rate (1/month)

0.005 0.02 0.04 0.06 0.08

'\
44 '!l \ decay
\

L .; AN ; ‘
0.005 0.02 0.04 0.06 0.08 0.1

Figure 1 (a) The dependence of growth rate (month~!) on air-sea coupling coefficient « for the basic
states of climatological annual mean (thick solid line), January (long dashed line), April (short dashed
line), July (dotted line), and October (thin solid line). (b) Period of linear oscillation as functions of a
and u for annual mean basic state. The contour interval is 6 months. Light shading represents the non-
oscillatory domain. Dark shading outlines the domain of nonlinear gscilhtion (limit eycle). The straight
line @ = 0. 018 divides the growing and decaying oscillation regime.

anomalous SST-thermocline depth plane (Figure 3a) qualitatively well, suggesting that the
model captures basic oscillatory nature of ti-xe observed ENSO cycle.

The temporal structure of the model oscillation in SST and & , also bear similarities with
the observation. First, the phase of anomalous thermocline depth leads that of SST anomaly
by a small fractional cycle in both the model (Figure 2b) and observation (Figure 3b).
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Figure 2 (a) The limit cycle orbit shown in the phase plane. When a>a, the perturbation initially locat-
ed near the origin, which represents an climatological mean state, grom and oscillates, approaching the
limit cycle. (b) Time series of anomalous temperature (solid line) and thermocline depth (dashed line)
from model integration year 138 to year 150. The basic state is annual’ _mean. and == 1,28 , @ = Q. 0192.

Second, the rise of SST takes longer time than the ensuing collapse (Figures 2b and 3b).
The interannual oscillation that appeared in the coupled GCMs of Philander et al. (1992) ex-
hibits the same features. ’ |

The aforementioned favorable comparisons .add. confidence to the relevance of the limit
cycle solution to ENSO cycle and to the interannual oscillation found in the coupled numeri-
cal models.

3. Oscillation period and amplitude

The period and amplitude of the model’s nonlinear oscillation depend on climatological
mean state and the couphng coefficients. Figure 4a displays the penod as a function of coefﬁ-.
cients z# and « for the given annual mean state. The oscillation penod ranges from 18 monthl
to 60 months. Note that, the period calculated for linear oscillation (Figure 1b), in factg
provxdes a good estxmate for the nonlinear oscillation (Figure 4b). Note also that the oscllh
tion period is pnmanly determined by the parameter . This suggests the unportance of the
thermocline fluctuation in setting up the time scale for the oscillation.
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Figure 3 (a) Scattering diagram of observed anomalous monthly mean SST ('C) and depth of 20TC
isotherm (m) averaged over 153°—135°W, 2°S—2°N for the period of July 1982 to December 1986,
roughly one cycle. Each closed dot denotes one calendar month. The square denotes the beginning month.
(b) Reconstructed anomalous SST and depth of 20°C isotherm averaged over 153°—135'W, 2°S—2°N for
the period from July 1982 to December 1992. Only the first two EOF modes are used for reconstruction.
The original data are derived from NCEP ocean rean;lysil (Ji etal. .»1995); o .

The amplitude of nonlinear oscillation in SST and thermocline depth are also in a realis-
tic range for the given annual mean basic state (Figures 5a and b). The amplitude increases
with increasing x# and «in a comparable rate.

4. The mechanism of the ﬁonlincar oscillation
= It can be shown that the existence of growing oscillation or limit cycle requires 5>>0and.
w. #£2>2. To focus on essential mechanisms for the nonlinear oscillation, we assume that AT",

S T e T Te = o), e

: %";!-fb(rg-zhx), L 4n
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Figure 4 (a) Period of limit cycle as function of @and #for the annual mean state and (b) period of hmJt

cycle minus period of linear oscxllatlon. The contour interval is 6 months.

where

w(Ty) =— (T'. + ,./ 2T, | (48)

Flgure 6 illustrates how the coupled nonlinear system (46) and (47) oscillates. The two
characteristic straight lines T = 2k and T == g partition the limit cycle to four phases. For
simplicity, we consider that the total upwelling w(T) > 0. During the phase I and I the
depending (or shallowing) of thermocline and rising (lowering) of SST take place simultane-
ously, implying a dominance of the positive feedback between the thermocline displacement
and SST. Note, however, that during the phase I and IV, the variation in 4 and SST have .




A Theory for El Nino Cycle 639

1.2 0.022  0.023 0.02¢  0.025 0.02 . 0.027

Figure 5 Amplitudes of the limit cycle for (a) SST anomaly ('C), (b) thermocline depth anomaly (m).
\n opposite tendency, i.e. , increase of SST causes shoaling of thermocline (on phase I) or
ice versa (on phase N ). This results in a phase lead of the thermocline displacement to SST
-ariation and provides an negative feedback that turns the coupled system from warming to
:ooling or vice versa.

The nonlinear 4 -SST interaction includes a direct influence of 2 on SST via changing the
upwelled water temperature and an indirect feedback from SST to 4 via changing surface

. wind. How does thermocline displacement respond to wind or SST variations? In the delayed

' Osqillator model, long equatorial Kelvin and Rossby waves are essential players. In contrast,

the slow-SST model (Neelin 1991) denies the roles of these waves and expresses upper ocean
dynamics by a diagnostic relation—the Sverdrup balance. To address the above question and
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Figure 6 Schematic diagram showing the mechanism of the nonlinear oscillation.

to clarify the roles of various vupper» ocean dynamic processes,'we examine Equation (24)
which governs wind forced motion of the upper ocean. - -~ - - - .,

The Sverdrup balance precludes acceleration of zonal currents and Coriolis effect, there-
by leads to a degenerated dynamic regime: The evolution of the thermocline field itself can

‘not be determined. To predict slow thermocline variation, which is essential for ENSO, it is
imperative to consider a non-Sverdrup balance regime. In fact, the scale analysis in Section .
K indicates that on the ENSO development time scale the ENSO dynamics are essentially of
non-Sverdrup balance. ‘ '

The imbalance between zonal wind stress and pressure gtedient force associated with
thermocline tilt may bring on two forms of motion: equatorial waves and forced divergent
flow. The relative contribution of the two components is measured by parameter ¢ (Equation
(27)). In the limit of € =0, no oceanic wave motion is possible but there remains slow diver-
gent motion forced by wind stress and deflected by Coriolis force. The latter can result in a
slow thermocline edjustmenf; In a coupled system this forced slow motion must be associated
with the coupled ENSO mode because the wind is a response to SST. It is important to real-
ize that the wave adjustment is not the only mean for thermocline adjustment. In fact, as-
suming € =0 does not upset model’s nonlinear oscillation. On the other hand, the slow diver-
gent motion associated with the co(xpled mode may play a more profound role in the interan-
nual variation of the thermocline.

VI. Causes of the chaos and season—dependence
. With a time-independent basic state, the ENSO system (36) and ( 37) can have onl)'
regular nonlinear oscillation; Chaos does not exist in a second-order autonomous systetpr

) When the basic state includes annual cycle, however. the ENSO system becormes non-au-

tonomous, thereby possibly enters a chaonc reglme when the amplitude of the basic state an-

nual cycle exceeds a threshold value. This is indeed the case when a reasonably reahsnc -V

annual cycle is introduced into the basic state. The annual cycle used was obtnned by
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running a full intermediate tropical Pacific model (Wang et al. , 1995) using observed solar
radiation, surface wind stress, and cloudiness forcing.

Figure 7 Phase portraits of the strange attractor that represents a chaotic oscillation. Parameters are the

same as thou in Figure 2 except that an annual cycle bamc state is used.

Flgure 7 shows phase plane orbits for the chaotic oscillations. The parameters used in
the chaotxc case are identical to those in the limit cycle case (Fxgure 2a). The chaotic phase'-.
orbits never repeats itself but are trapped to the surroundmgs of the limit cycle, indicating
that the limit cycle is a strange attractor. A ¢

The power spectra for regular and chaotic oscillations are combared in Figure 8. For the
regular oscillation, a primary energy peak app‘ears' on an oscillation period of about 46
months; the secondly subharmonic peaks result fromlasymmetric temporal evolution of the
nonlinear oscillation. The existence of chaos broadens and cuts down the primary energy
peak, smears and shifts the subharmonic peaks toward lower frequencies. It is interesting to
notice the sharp peak on the annual time scale which manifests the influence of the annual ‘
variation of the basic state on the ENSO mode. This resonant response also means a possible
rectification of the chaotic ENSO oscillation to the annual cycle of the basic state.

Apparently, the irregularity of ENSO can be caused by other processes. For instance, if
the atmospheric high-frequency variations are included in the model, the minimal model
would be a third order dynamic system which, even without the annual variation of the basic
state, could have chaotic ascillation. ‘ h

In the eastern tropical Pacific, most El Nino episodes tend to start during the warm
phase of the year. Philander (1990) argued that the initiation of unstable ocean-atmosphere
interactions requires that unusually warm surface waters cause a local heating of the
atmosphere. He speculated that the coupled system is more unstable in boreal spring than
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Figure 8 Log spectrum density of anomalous SST for the limit cycle (dashed) and chaotic oscillation -
(solid) shown in Figures 2a and 7, respectively.

boreal autumn. On the other hand, the numerical results of Battisti and Hirst (1989) implied
almost the opposite.

Figure 1a shows that the climatological basic state is most unstable (stable) in boreal
spring (fall), gonfirmihg Philander’s conjectufe. For the nonlinear oscillation, perturbation
would grow in boreal spring and decay in boreal fall and winter. This means that the weakest
east-west thermal contrast (as well as the weakest easterly wind stress and equatorial up-
welling ) during boreal spring is most unstable to coupled perturbations. Conversely, the
cold season tends to reduce coupled instability or resists unstable growth. The ramification is
that boreal spring might be the season when the coupled system has weakest persistence or
least predictability due to potential fast growth of random perturbations, whereas the boreal
fall and subsequent winter basic state posslbly levels off the ongoing growth and favors for a
mature of warming or cooling.

VI. Summary ’

With a number of assumptions (none of them distorts the coupled physics in a funda-
mental way), we derived a simple system of governing equations for ENSO. The system
consists of only two equations, one describes oceanic mixed-layer thermodynamics and the
other depicts upper ocean dynamics. The atmosphere serves as a medium through which SST
anomalies affects thermocline displacement and upwelling.” We have shown that the temporal
structure of ENSO can be qualitatively described by a second order nonlinear dynamic sys-
tem., . ) ' Lo

When the basic state is time-independent (climatological mean for example), the ENSO
system is an autonomous system. Beyond a critical value of « the system exhibits a Hopf-
bifurcation and possesses a unique limit cycle solution that represents a regular, finite;




A Theory for EL Nino Cycle 643

amplitude oscillation. The limit cycle exists only in a rather restricted domain of . Itis a

stable attractor. Any initial perturbation inside the limit cycle or dutside the limit cycle (re-

stricted by the location of the second equilibrium state—an unstable saddle point) will even-
tually be attracted to the limit cycle.

The stable limit cycle describes intrinsic oscillatory behavior of the coupled system. The
oscillation is characterized by a lead of thermocline displacement to SST variation and by a
temporal asymmetry in its evolution. We have shown that these features resemble some of
observed individual ENSO cycles in the 1980s as well as the interannual variations simulated -
by coupled Ocean-Atmosphere GCMs (e. g. » Philander et al. , 1992).

The model oscillation is caused by the nonlinear interaction between the thermocline dis-
placement and SST variation. The former affects SST by changing the temperature of the
water upwelled into the mixed layer, whereas the SST alters thermocline via changing wind
stress and thus the divergence of the ocean currents. This nonlinear interaction involves both
a positive and a negative feedback. The latter is characterized by a lead of thermocline fluctu-
ation to SST variation and is responsible for the switch from a warming (or cooling) to an
opposing phase. . .

When the basic state includes annual variations, the ENSO system becomes non-au-
tonomous. The corresponding limit cycle may evolve into a strange attractor. The corre-
sponding oscillation exhibits deterministic chaos. This reveals that the solar radiation forcing
may generate ENSO irregularities through controlling the annual cycle of the basic state on
which ENSO evolves. Other processes, such as interdecadal variation in the basic state
(Wang, 1995), the transients in the atmosphere and ocean, or spatial variability, can also
conceivably raise the order of the ENSO system or increase the system’s degree of freedom,
and generate chaos.

The observed primary peak in the power spectrum of Nino-3 SST anomalies is deter-
mined by the period of the limit cycle which, in turn, depends on the basic climatic state, the
geometric, rotational, gravitational, and dissipative properties of the coupled system, as
well as the coupling coefficients. The dominant period of oscillation does not specifically re-
lated to the wave propagation time scales. Note that the subharmonic peaks in the power
spectrum may be a result of the asymmetry in the temporal evolution of the nonlinear oscilla-
tion. An asymmetric 4—5 year oscillation can induce a sizable quasi-biennial peak. The
broadness of the spectral peaks can be simply a manifest of the strange attraction of the limit
cycle in the presence of basic-state annual cycle.

The model, however, is far from realistic and by no means perfect. We have kept the
model as simple as possible for the purpose of qualitatively understanding the basic mecha-
nisms of the Southern Oscillation. Many modifications or extensions can be made to imple-
ment and improve the model’s physics and mathematical representations.

One of the major limitations that arises from the crucial truncation in longitudinal direc-
tion is that the present model is unable to explain the eastward propagaiioh of the upper
ocean heat content associated with ENSO. This feature was simulated by OGCM (Chao and
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Philander, 1993) and confirmed by our recent analysis of the NMC assimilated data; the
eastward propagation of thermocline depth is prominent in the equatorial western-ceatral Pa-
cific. This underlines a need for future studies.
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Appendix Derivation of Free Wave Solutions
In the absence of wind forcing, the nondimensional thermocline-depth equation becomes

g+ (2-Z-%3) -2 =0 A.D
where y and ¢ are scaled by (g H)*8~V? and (g’ H)~V*f~V? , respectively. Assume
h(z, y, t) = Re[y « H(y)e*="=7], (A.2)
The amplitude function H(y) is bounded as |y| == o and satisfies, from (A.1),.
‘ilf l+y‘+-g;)H=o ©(AD)
Equation (A. 3) has eigen solution of the following from (Hochstrasser, 1965) ‘
, H.(y) = e~y +E L@ (47, ’ (A.4)
where L{” (z) denotes generalized Laguerre function
L 'gl ‘n-!-a)_;:‘_
Lo = (=1 ( z (A. 42)
with
@=zt -32- | (A:5)
and ‘
1 3 ’
. —- = (a= ), .
= , 4":-5 2 n=0,1, 2, = . (A.S) :
palrr— (2 == — 'é.-) ’

The mode thh Q.= — 3/ 2 and n = 0 is the Kelvin wave whose phase speed ¢ = 1 and
meridional structure is e=?'? . The modes witha@=— 3/2andn =1, 2, - are symmetric long

Rossby waves whose phase speed

Fy, . L '
ELE&;‘I*&!:H.:'. R )
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' i _1 _1 .,
| =TT T TIn o (A.72)
and meridional structures are
&7 L&D (y2), (A. 7b)

The modes with@=3/2andn =0, 1, 2, - are antisymmetric long Rossby waves whose
phase speed

1 1 _1 .. o
— . C = 3’ 9 ’ 13, | (A. 8‘)
and meridional structures are ' N
e’y L(2) (9. , (A. 8b)
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