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ABSTRACT

A complementary analysis of Charney-model baroclinic instability for a zonal current with
easterly shear is presented. In contrast to an infinite number of unstable modes (the Charney,
Green, and Burger modes) in westerly shearing currents, in easterly shearing flow, only a
single unstable mode exists, corresponding to the Charney mode. For the same magnititude of
vertical shear, the maximum growth rate in easterly shear is substantially smaller while the
preferred wave length is considerably longer than the corresponding counterparts in westerly
shear. The steering level of the most unstable mode is higher than one density scale height for
easterly shear, while lower than one half density scale height for westerly shear. The
asymmetry of baroclinic instability arises from the asymmetric variation of the basic state
potential vorticity gradient with respect to the sign of the vertical shear due to the combined
effects of the meridional variation of the Coriolis parameter and the vertical variation of

density stratification.

1. Introduction

The environmental setting in which a monsoon
depression or Africa wave is imbedded exhibits
strong easterly shear (e.g., Mishra & Salvekar,
1980, Burpee, 1972). Disturbances developing in
such an environment display an unstable
baroclinic wave structure (e.g., Saha and Chang,
1982). This points to the necessity of clarifying
the nature of baroclinic instability in an easterly
shearing current. In the Eady (1949) model, the
characteristics of baroclinic instability do not
change when the vertical shear reverses its sign.
This is simply an artifact due to the neglect of the
meridional ‘gradient of the basic state potential
vorticity. Using a 2-layer f-plane model with
unequal fluid depth, Pedlosky (1979) showed that

‘the critical shear required for instability depends

on the sign of vertical shear. In a more general
framework, Moorthi and Arakawa (1985) demon-
strated that baroclinic growth is asymmetric with
respect to the sign of vertical shear due to the

effect of non-zero Beta-effect and of vertical

variation of the stratification. The purpose of this
paper is to further elaborate upon this asymmetry
by analyzing the stability of easterly currents
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using Charney’s (1947) model. Several fundamen-
tal differences in baroclinic instability between
easterly and westerly shears are emphasized.

2. Review of Charney model of zonal-flow
instability

The basic zonal flow is U(z) = A«z and the
density is p, = poexp(—z/H). The vertical shear
Ax, density scale height H, and Brunt-Vaisala
frequency N are all assumed to be constant.
Motion is confined in a semi-infinite domain on a
f-plane channel with half width L. Let us scale
horizontal coordinates x, y by L, horizontal veloc-
ity by A« H, time ¢t by L/A«H, and p, by p,. The
non-dimensional linear quasigeostrophic poten-
tial vorticity equation for adiabatic and
frictionless motion is (Wang et al., 1985, hereaf-
ter referred to as WBH)
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The boundary conditions may be proposed as
(Pedlosky, 1979):

i‘l’.: , aty= +1, (2.23)
Ox
3y oy _ -
oo ax 0, atz=0, (2.2b)
b} al// 5!//]
J d s [<6t+z 6x> 0z 0Ox 0.
as z - 0. (2.20)

In eq. (2.1), ¥ is the perturbation streamfunction,
S = N2H?/f§L? is the Burger number and

2 _ |, BVHIf
6y /1* ’
is proportional to meridional gradient of the basic
state potential vorticity. Vertical shear A, is
positive for westerly shear and negative for eas-
terly shear.

Following Charney and Stern (1962), a neces-
sary condition for baroclinic instability can be
obtained for the normal mode solution of the
form y = Rey(z,y)e¥x~), which is

f fps 0%y

j yI'IlP
_ lel?
For instability to exist in the Charney model, the
meridional gradient of basic. state potential
vorticity, dQ/dy, must be positive. This can be

satisfied for any value of westerly shear A4 > 0 or
easterly shear greater than a critical value, i.e.,

(2.3

=0. 2.4

2 =0

Aw<A.=—BN2H|/f}. 2.5
Assuming  Y(y,z) =e??®(z)cosly,  where
I=m+Hn,m=0,1,2,..., defining a modified

non-dimensional total honzontal wavenumber as
K = (SK? + 1) (2.6a)

where K2=k24 12, and transforming vertical
coordinates from z to

¢=K(z—c), (2.6b)

we formulate an eigenvalue problem for ®(¢) and
elgenvalue o=Ke:

d gz @7
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do 1
—_— = —g0; 2.
<d§+ ®)+<I> 0, at¢ 'R (2.8a)
®(¢) remains bounded as (-0, (2.8b)
where
n= 6%% 2.9)

WBH have shown that the complex amplitude ®
is:
O(D) = cs(MD4(D) + (M DY), (2.10)

and the eigenvalue ¢ is the root of the dispersion
equation

N-1
Z 4,6"+cln(=0) ). B,o"=0, N-oo.
n=0 n=1

2.11)

In (2.10), the regular solution ®,(¢) and singular
solution ®,(¢) are

®,()= a8,

(2.12a)
nw=1
®)=0,OMmE+ ) e (2.12b)
n=0
where
al = 1’ a2 = _”’
an = (an- 27 2ﬂ0n~ l)/ [n(n - 1)]’
n>3, (2.13a)
bo=—1/Q2n), b, =0,
bn = [bn-z - 2ﬂb -1 (2” - l)a,,]/[n(n - 1)],
nz2, (2.13b)
The coefficients are
1 \
cm) = EE(CZ’"' - 1), (2.14a)
1) = cytn) In2 = 1+29 + 1/20)
d
4T - n)], (2.14b)

where y=0-57721 - - - is the Euler constant, and
I'(x) is the Gamma function. The logarithm is
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rendered single valued by choosing a branch cut
such that «

Iné=In{é| +iarg,
In eq. (2.11), _
Ay =crbo, A =c3l(a; +bo/(2K)],
4,= (1ol - Da, +a,_,/2R)]
+eifa, +(— Db, +5,_,/R)]},
nz2,
B,=(—1yc)lna,, , +4a,/2K)], n=>1.

—r<argé < m

(2.15)

3. Stability of baroclinic easterly zonal
currents

Numerical solution of the dispersion equation
(2.11) requires truncation of the infinite series.
We refer to eq. (2.11) as the Nth order truncation
if the series is truncated at finite integer N. WBH
have shown that for westerly shear, the third-
order truncation yields satisfactory results. For
easterly shear, however, the numerical solution
becomes more cumbersome because of the slow
convergence of the infinite series when # is small.
The convergence of the numerical solution was
tested for different truncation parameter N.
When N =3, eq. (2.11) has one westward propa-
gating growing mode and a pair of complex
conjugate roots. The growing mode. is always
identifiable and asymptotically converges to a
limit as N increases (when A4 changes to positive
values, this mode recovers the Charney mode
under westerly shear), whereas the other two
roots are not traceable as N increases. The west-
ward-propagating growing mode is a physical
mode, while all other modes which are
truncation-dependent are computational modes.
The solution for the physical mode is found not to
change when N exceeds 10; thus the 10th order
truncation of eq. (2.11) was employed to calculate
the growth rate and phase speed.

In Fig. 1, contours of §°K¢,, proportional to
the growth rate, and of the phase speed ¢, are
displayed as functions of non-dimensional shear,
A= A+/(BN*H[f?}), and wavenumber. For the con-
venience of comparison, the results for westerly
shear 1 <0 are also plotted. In the region where
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0<1<0.2, n is large, and S}°Kc; and ¢, are too
small to be plotted. The region in which
—1<A<0 represents a stable regime of the
easterly shearing flow, in which the necessary
condition for instability .is not satisfied (see
eq.(2.5)).

It should be pointed out that as A - —1 from
below the parameter n tends to zero and
progressively higher-order truncation is required
in order to obtain an accurate solution. Thus,
numerical computation becomes impossible.
However, the solution near A= —1 ( = 0) can be
analytically derived. When A- —1, -0, it
follows from eq. (2.14) that c,(n)-»0 and
¢,(n) - 4. From eq. (2.13a),

{l/(2m+ !, n=2m+1,
a,=

0, n=2m, m=0,1,2,....

Thus, ¢,(i)®,(&) - —;-sh ¢ asn-0.

Likewise,

0D Y, et~ Seng, 1.
From eq.(2.1"0)‘,)

lim 0¢) =5 6h £ — ch O 3.0

Substituting eq. (3.1) into eq. (2.8a) yields

.= 2K
28-1’
or
¢=0, ¢= L 3.2)
i ’ r K‘,’._ % . *
The numerical solution near A= —1 ‘indeed

matches this analytical solution. Therefore, the
unstable mode derived for  # 0 (when the criti-
cal layer exists) approaches the neutral solution at
n=0 (when the critical level disappears). The
solution in the absence of the critical level comes
from both the regular solution (3sh ¢) and the
singular solution (—4%ch &) without the logarith-
mic term involved. In fact, eq. (2.1) can be solved
directly for # =0, which gives the same result as
eq. (3.2). If the Boussinesq approximation is
further introduced, the solution reduces to
¢;=0,c,=1/K. The same neutral mode can be
obtained in the Eady (1949) model (where =0,
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Fig.’1. Contour plot of (a) growth rate $"?kc; and (b) phase speed ¢, for an inviscid non-Boussinesq fluid as a
function of non-dimensional vertical shear A and total wave-number squared SK2. The dashed-dotted lines indicate

the most unstable Charney mode.

, the meridional gradient of the basic state
potential vorticity vanishes) when the upper
boundary tends to infinity, although the upper
boundary condition is different.

The most striking feature shown in Fig. 1 is the
asymmetry between westerly and easterly shear.
Major differences may be summarized as follows.

(a) For westerly shearing current, 0 <# < oo,
and in the wavenumber-vertical shear plane,
there exists an infinite number of unstable
regions which correspond to the Charney mode
(0 <n<1), Green (1960) mode (1 <n<2), and

Burger (1962) mode m<n<n+1,n=2,3,--), ' while in the upper troposphere (higher than one

respectively. For an easterly shearing current,
however, it follows from egs. (2.9) and (2.3) that
— oo <5 <1; thus there is only a single unstable
mode occurring for 0 <# <1 which corresponds
to the Charney mode.

(b) For the same absolute value of non-dimen-
sional vertical shear, the maximum growth rate
in easterly shear is substantially less than that in
westerly shear. The preferred wavelength of the

most unstable mode in easterly shear is
significantly longer than that in the westerly
shear. The wave selection is clearer for the west-
erly shear than for the easterly shear, especially
when |5} <2.0. .

(c) The propagation speed of the most unstable
mode in easterly shear is generally much larger
than that in westerly shear. The steering level
where the local wind speed equals the phase
speed of the most unstable wave is located, in the
lower troposphere for the westerly shearing
current (lower than a half density scale height),

density scale height) for the easterly shearing
current.
4. Discussion

It is important to notice that the instability
criterion eq. (2.5) indicates that the baroclinic

instability of easterly shearing currents depends
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crucially on- planetaty ‘rotational effect. Taking
H=8x 10°m and N=10-2s"", at 45°N, with

Jo=10"%s~1 and B=156x10"11m 15!, we

find Z.= —1.25 ms~'km-!. Note that A. de-
creases rapidly ‘with decreasing latitude. For in-
stance, at 20°N, where f,=0.5 x 10~4s-! and
B=2.13x 10" m~! s~1, ], is equal to —6.82
ms~1km~!. This implies that baroclinic instabil-
ity in subtropical easterly currents with constant
shear: can only rarely occur, since the instability
requires an unusually large vertical easterly shear.
This suggests that the horizontal shear and/or the
vertical variation of the vertical shear associated
with the internal jet structure may play important
roles in generating dynamic instabilities in the
subtropical regions where the easterlies prevail.
One such example may be found for the Africa
wave. Rennick (1976) showed that the mid-level
easterly jet over North Africa is unstable to
perturbations on the scale of Africa wave due to
both of its horizontal and vertical shears.
However, the quasi-geostrophic baroclinic energy
conversion is not important in the generation of
the waves, and the vertical transport of momen-
tum which is proportional to the vertical shear
alone does not act to support any instability. On
the other hand, the horizontal momentum trans-
port which is proportional to the horizontal shear
alone still transfer energy from mean flow to the
waves and support unstable waves.

Numerical calculations have previously been
conducted by Moorthi and Arakawa (1985) using
a vertical seven-level difference approximation of
Charney model (hereafter referred as MA). Some
differences between their results and the present
result are noticeable, though there is a general
qualitative agreement. First, in Fig. 2 and MA,
short waves are stable with a cut-off wavelength
of 2000 km for both easterly and westerly shear,

while no short-wave - cut-off exists in the
continuous model. The short wave cut-off is an
artifact of finite-difference approximation. Short
waves have small vertical extent and thus cannot
be resolved in a multi-level model. Second, al-
though in both models, there exists long-wave
cut-off for easterly shear, the cut-off wave-length
in MA is only about 3500 km while in the
continuous model it is about 15000-20000 km for
—4 < <1.25. Finally, for a similar basic state,
the critical shear required for the instability of

‘easterly shearing currents in the continuous mod-

el is nearly twice as large as that in the MA
model. This implies that the asymmetry of the
instability with respect to the sign of vertical
shear is more prominent in the Charney model.

The asymmetric behavior of baroclinic insta-
bility results from the asymmetric variation of the
basic state potential vorticity gradient with
respect to the sign of vertical shear. In the
Charney model, the dimensional basic state po-
tential vorticity gradient is :

6Q- .ﬁ (—Iap">
oy =4 Nz)“ b o)

In the presence of density stratification, the
reverse of the sense of vertical shear causes
asymmetric change in Q/dy if f#0. Both the
presence of the meridional variation of the
Coriolis parameter and the vertical variation of
density stratification are necessary to create the
asymmetry.
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