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ABSTRACT

A simple theoretical analysis on the stability of a resting tropical atmosphere to semigeostrophic perturbations
is given using a free atmosphere-boundary layer coupled model on an equatorial S-plane.

An unstable mode emerges when sea surface temperature is higher than a critical value. The growing mode
is a moist Kelvin wave modified through coupling with a Rossby wave of the lowest meridional index. The
modified Rossby modes, however, remain damped even for high SST. The unstable mode selection can be
explained in terms of wave energy generation due to the latent heating induced by frictional moisture convergence.

The horizontal mode-coupling has profound impacts on wave instability. It favors the amplification of long
planetary-scale waves, slows down eastward propagation, and suppresses unrealistically fast growth of the un-
coupled moist Kelvin mode by creating substantial meridional flows. These effects make the coupled unstable
mode more resemble observed equatorial intraseasonal disturbances.

The results also demonstrate that when maximum SST moves from the equator to 7.5°N, the growth rate
of the unstable wave is significantly reduced, suggesting that the annual march of the “thermal equator” and
associated convective heating is likely responsible for annual variations of the equatorial 40-50 day wave activity.
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1. Introduction

The slowly eastward-moving equatorial convection
and circulation anomaly first described by Madden and
Julian (1972) is believed to be a dominant mode of
tropical intraseasonal variations. Numerical studies
demonstrate that condensational heating interacting
with equatorial wave motions may maintain long-last-
ing transient disturbances that have a zonal scale of
wavenumber 1 or 2 and move eastward at a speed of
about 10-20 m s~'. In many aspects the long-lasting
modes found in these idealized numerical models re-
semble the observed intraseasonal oscillation modes.
It was suggested that the intraseasonal oscillation is
associated with a Kelvin wave-CISK mode (Lau and
Peng 1987; Swinbank et al. 1987; Lau et al. 1988), or
a coupled Kelvin—-Rossby mode (Hayashi and Sumi
1986; Hendon 1988). ’

Attempts have been made to understand intrasea-
sonal oscillation in terms of moist equatorial wave dy-
namics. A number of recent theoretical model studies
have provided useful insights into moist Kelvin wave
dynamics (e.g., Lau and Shen 1988; Chang and Lim
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1988; Wang 1988a). Yet these analyses are confined
to two-dimensional motion in the equatorial zonal
plane. The present study is an extension of moist Kelvin
wave analysis by using a dynamically consistent model
that includes a meridional component of the motion;
namely, the intrinsic modes in the model include both
the eastward propagating Kelvin wave and the west-
ward-propagating long Rossby waves.

One of the main objectives of the present study is
to examine the impacts of the presence of meridional
winds on moist wave dynamics. Some recent eigen-
mode analyses suggested that equatorial Rossby waves
are stable with respect to time-lag CISK effects (Chang
and Lim 1988) and are damped by evaporation-wind
feedback (Neelin et al. 1987). An important question
remains unclear; that is, what is responsible for this
unstable mode selection? Equatorial Rossby modes
appear to play important roles in moist adjustment
processes in the tropics (Yamagata 1987) and in de-
termining horizontal structure of intraseasonal distur-
bances (Hayashi and Sumi 1986). In the presence of
boundary-layer moisture convergence, how does the
presence of long Rossby modes affect the amplification,
propagation, and horizontal structure of the moist un-
stable Kelvin mode? The examination of the effects
and mechanism of the coupling between moist equa-
torial Kelvin and Rossby waves are expected to provide
useful insight into low-frequency wave dynamics.

Another aspect to be addressed is the cause of sig-
nificant seasonality of the equatorial low-frequency
wave activity. By analyzing 19 near-equatorial station
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rawinsonde data, Madden (1986) showed that the in-
traseasonal variability in zonal wind exceeds that in
adjacent lower and higher frequency bands by the larg-
est amount during December, January, and February.
Using ten years of outgoing longwave radiation (OLR)
data, we investigated temporal variations of 77 low-
frequency eastward-moving equatorial events and
found that the overall intensity of intraseasonal con-
vective anomalies are significantly stronger in boreal
winter (from November to April) than in boreal sum-
mer (Wang and Rui 1989). Madden (1986) speculated
on the role of convective heating distribution in annual
variation of low frequency wave activities. We shall
examine the relationship between SST variation and
wave instability using a simple model developed in
sections 2 and 3.

- 2. A simplified dynamic framework

Observed low frequency waves are characterized by
anisotropic horizontal length scales: the zonal scale (L,
~ 107 km) is much larger than the meridional scale
(L, ~ 10° km). A scale analysis shows that the me-
ridional acceleration in v-momentum equation can be
neglected. The zonal wind component is thus in geo-
strophic balance with meridional pressure gradient and
the motion is semigeostrophic. With this approxima-
tion, high frequency inertio-gravity waves, mixed
Rossby-gravity waves as well as short Rossby waves
are filtered out, and the analysis of moist equatorial
Kelvin and long Rossby waves is greatly facilitated.

For low frequency waves, the characteristic time
scale (~11 days) is smaller than advective time scale
(L/V ~ 29 days), if the zonal velocity scale V'is taken
as 4 m s™!. Neglect of nonlinear advection terms is
thus a marginally acceptable approximation. We shall
consider small perturbation motions about an at-rest
basic state.

Based upon observed humldlty distributions over
the equatorial Indian Ocean (Tomasi 1984), the ab-
solute humidity of the basic state atmosphere is as-
sumed to fall off with height exponentially with a con-
stant water vapor scale height H, in the lower tropo-
sphere. The mean specific humidity in the layer
between pressure p;.and p,(>pi), 4(p1, D2), can then
be determined by (Wang 1988a):

(" —p")

s . , 2.1
m(p2 — p) (21

q(p1,p2)=4q

where m = H/ H, is the ratio of density scale height H
to water vapor scale height, H;, and g; is the specific
humidity at the surface. On the time scale of a month
"Or S0, g, is well correlated with sea surface temperature
(SST) and may be approximated by the followmg em-
pirical formula (Wang 1988a):

= (0.940 X SST (°C) — 7.64) X 1073, (2.2)
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In order to examine the role of meridional distribution
of SST on wave dynamics, the SST in the present model
is assumed to be an idealized function of y:

—yrnsc, _ BY

2
SST(°C) = SSTM e -==, (23)
Co

where SSTM is the maximum SST at the equator y
=0;C =50 m s~! is long gravity wave speed of the
gravest baroclinic mode. Numerical values computed

- using (2.3) are given in Table 1. Also given are observed

SST in February along 90°E estimated from Sadler et
al. (1987). Between 20°N and 20°S, (2.3) is represen-
tative of observed SST profiles over the winter Indian
Ocean.

With the foregoing assumptions, basic equations
governin'g low-frequency perturbation motions can be
written in pressure coordinates on an equatonal B-
plane:

au i 1)

— — Byv = — o (2.4a)
¢
Byu = '’ (2.4b)
ou Ov 6w
—+—+—=0, .
ox ay ap (2.4¢)
6 84) Ao R
ap TSP = Thg o Olp), (24)
a Ds
— M, + V-(gV)dp=E,— P,. (2.4e)
at g Py

The horizontal momentum equations (2.4a, b) and
continuity equation (2.4¢) are written in conventional
forms under semigeostrophic approximation. In the
thermodynamic equation (2.4d), only two major dia-
batic heating processes are included—condensational
latent heat and longwave radiation. Here u denotes a
constant coefficient for Newtonian cooling, Qc ex-
presses condensational heating rate per unit mass, S(p)
is static stability parameter, and R and C, are the gas
constant, of the air and the specific heat at constant
pressure, respectively. In the moisture conservation

TABLE 1. Meridional distributions of SST (°C) computed from
(2.3) and observed SST in February over the Indian Ocean (90°E).
Observed values are obtained from Sadler et al. (1987).

Latitude
. 20°S  10°S- 0° 10°N  20°N
SST computed from (2.3) 23.6 28.3 300 283 23.6
Observed SST in Indian
Ocean (90°E,
February) 255 280 285 275 250
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equation (2.4¢), M, represents total moisture per unit
area (expressed as a depth of liquid water), E; and
P’ are the perturbation, evaporation, and precipitation
rates, respectively; V represents horizontal wind, p, and
ps are pressures at the upper boundary and the surface,
respectively. It is assumed in deriving {2.4e) that in
the equilibrium basic state, evaporation just balances
precipitation and the precipitable water of the basic
state in the unit area does not change with time.

Since E, associated with intraseasonal waves is gen-
erally an order of magnitude smaller than P}, (Wang
1988b), we shall neglect E; in the following analysis.
Gill (1982) argued that in a “wet” region of moisture
convergence the extra moisture gained by convergence
is lost as precipitation, whereas in a “dry” region of
subsaturation or divergence there is no precipitation
and change of moisture content is balanced by moisture
divergence. The perturbation precipitation rate is thus
related to the rate of moisture convergence in a non-
linear fashion. In this study, we do not attempt to ad-
dress the effect of the nonlinear heating. Assume the
rate of local moisture change small, Eq. (2.4¢) reduces
to

b 'Ds
P'=—-1 V-(qv)dp,

Py
where b is a moisture factor that accounts for the frac-
tion of total moisture convergence which condenses
out as precipitation. Finally, the condensation heating
rate Q.(p)in (2.4d) can be related to the precipitation

rate in the region. The appropriate equation is

(2.5a2)

'Ds
rr=2 [ ode,  (@3b)
8 Vb,

where L. is the latent heat. Equations (2.4a-d) and
(2.5a, b) consist of a close set of equations if the vertical
distribution of heating is specified. The above deriva-
tion leads to a heating formulation identical to that of
CISK-model which does not treat moisture process ex-
plicitly.

3. The 2% layer model

The behavior of viscous Kelvin wave-CISK modes
in a vertically continuous model was discussed in detail
by Wang and Chen (1989). Their results suggest that,
although an ideal model should consist of more than
four levels in the vertical because the lowest four in-
ternal modes may have significant response to heat
forcing, the basic mechanisms can be qualitatively
demonstrated in terms of a simple 22 layer model
which consists of a two-level representation of “free”
atmosphere and a well mixed boundary layer. To con-
centrate on the coupling mechanism between moist
Kelvin and Rossby waves and to facilitate analysis, we
adopt this low vertical resolution model.
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a. Model equations

A schematic structure of 2'2 layer model used in
Wang (1988a) is given in Fig. 1. Writing horizontal
momentum and continuity equations at upper level
P, and low level P; and the thermodynamic equation
at midlevel P, of the model free atmosphere, expressing
vertical derivatives by centered difference of resolution
Ap = p; — p;, and then introducing barotropic and
baroclinic parts of wind and geopotential defined by

1 1
u+=§(u3+u1), ”+=§(”3+01),

1
o =§(¢3 + ¢1), (3.1a)
=3 (= w), vo=3 (v~ v)
u- =5 (u3 — ), ——2(3 1),
1
- =§(¢3 = ¢1), (3.1b)
we obtain:
ou.. do_
— - By =-— 2
Ey Byv e (3.2a)
0¢ _
By = — 2=, (3.2b)
dy
d Sf Ou_  dv_
(az+“)¢‘+c"(ax ay)
RAp C02
= - — = (we + Wy :
2C,ps O, 2Ap (we + wy)  (3.2¢)
ou, 0.
—t - =2 2
o Byv. o (3.2d)
w.,’O
. P,
T qh‘
Ap v, P
) ay
w,,5,, Q
2 2 2 p2
. Qs
AD Vs, ¢3 p3
q.‘!l
we,
p
9e €
wg=0 E

FiG. 1. Schematic vertical structure of the model.
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‘ 0
Byus = — % (3.2¢)
du, dv, 1
T P (we—w)=0. (3.2f
dx dy 24p (we = wu) ( )

In Egs. (3.1) and (3.2), subscripts + and — denote,
respectively, the barotropic part for which the velocity
is independent of height and the baroclinic part for
which the upper level flow is equal and opposite to the
low level flow; subscripts 1, 2, and 3 represent variables
at pressure levels p;, p», and ps, respectively; quantities
wy, wy and w, are the vertical pressure velocities at p,,
D2, and p,, respectively; O, is condensational heating
rate at p,;

Co = (S$:4p%/2)'72, (3.3)

is a constant long gravity wave speed of the gravest
baroclinic mode, and .S, is static stability parameter at
D2. From vertical difference forms of (2.5a, b), Q, is
expressed as

bL -

O, =— _A—bﬁ [wz((b -
where ¢,, g3, and g, represent mean specific humidities
in the layer (p;, p.), (Pe, P2), and (p2, p.), respectively,
where (p;, p;) denotes the layer between p; and p;. In
the present model, p, = 900 mb, p, = 100 mb and p,
=500 mb, g, is taken as a constant value of 0.0004,
while g; and g, are computed using (2.1).

Using the horizontal velocity scale Cy, the length
scale (Cy/3)"'/?, the time scale (8Cy)~'/2, the geopo-
tential scale Cy%, and the vertical p-velocity scale
2Ap(BCy)!? we obtain nondimensional equations
from (3.2) with the aid of (3.4):

3)), (3.4)

q) + we(ge —

% —yo_ = ajx‘ , (3.52)
Vu_ = — %, (3.5b)

(2 w12 2)
=w(B—- 1)+ w,(I—1), (3.5¢)
%i—yv+=—%i, (3.5d)
yuy = —%, (3.5¢)
W wy = (‘?)’: + %'fyi) . (35D

The vertical p-velocity at p; is

w=Swocts ((Z;_-Fav). (3.6)
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In (3.5a-f) the nondimensional numbers are

N = u/VBC, (3.7a)
I=Ld@~@)/s (3.7b)
B =L(24,— & — §1)/S (3.7¢)
S = 2C,Ce/(RbAD) = (Cop2Ap/RB)S,  (3.7d)

where N is a nondimensional Newtonian cooling coef-
ficient; S measures mean static stability of the basic
state; 7 and B represent ratios of latent heating to adi-
abatic cooling due to vertical motion at p, and p,, re-
spectively.

b. Boundary layer friction-induced vertical motion

The linear steady barotropic boundary-layer model
of Wang (1988a) is employed to evaluate w,; details
can be found therein. The nondimensional vertical ve-
locity at the top of the boundary layer, p,, can be ex-
pressed in terms of geopotential at p,, ¢, (Wang and
Chen 1989):

@ = (ps"'pe) 2.V Ei-—yi
¢ 2Ap(E*+yH) | E2+ 2\ 7 9y x

2 2
E(a + 2 )+i]¢e. (3.8)
dx

x?  9y?
In (3.8), the Ekman number
Pe8A;

E= , 39
(ps - pe) b BCOh ln(h/ZO) ( )

where A, is turbulent viscosity, p, the density at p,, &
the depth of the surface layer, z, the surface roughness
length, and In denotes the natural logarithm.

If the characteristic horizontal velocity scales U and
V are the same order in the boundary layer while L,
> L,, the rhs terms in (3.8) containing differentials
with respect to zonal coordinate are higher-order small
quantities compared to the remaining terms. To be
consistent with the semigeostrophic approximation, the
vertical p-velocity at p, may be simplified as

(ps — pe)E 2y a KK
20p(E2+ y) \E2 + »2 3y 92

We =

)(¢++¢ ).

(3.10)

In (3.10), ¢, was approximated by ¢; = ¢+ + ¢_.
Numerical computations show that (3.10) is a very
good approximation to (3.8).

c. Models Aand B
If the “rigid lid” upper boundary condition
w, = 0,

at p=p, (3.11)

is used, the horizontal divergence of barotropic part is
sustained by compression of air columns due to fric-
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tional mass convergence [see (3.5f)]. On the other
hand, frictional convergence also affects the baroclinic
part via adiabatic cooling (heating) and latent heating
associated with the boundary-layer frictional moisture
convergence [see (3.5¢)]. Since boundary layer con-
vergence is controlled by both the baroclinic and baro-
tropic parts, the two parts are coupled through frictional
effects. We refer to this model as Model A.

To construct a model in which interactive heating
forces only the baroclinic mode, one may replace the
rigid lid by a free surface and assume a linearized upper
boundary condition:

Wy = We,

at p=p,. (3.12)

It follows from (3.5f) that, (3.12) renders the barotropic
part nondivergent. The generation of barotropic part
via frictional mass convergence is then artificially
eliminated. This allows us to examine an idealized
model in which the baroclinic part is independent of
the barotropic part. Governing equations for the baro-
clinic mode only reduce to

du- - _ 90
o v o’ (3.13a)
_ 0¢-
yu_ = —ay , (3.13b)
a du_  dv_
(3I+N)¢ +(1"1)(—x+—‘ay)
=w/(B+1-2), (3.13¢c)

where w, is given by (3.10) with ¢, = 0. The vertical
p-velocity at p, is

(3.14)

( du_  dv_ )
W = we + =

ax " 9y
This model is referred to as Model B. '
d. The energy equation for Model B

From Egs. (3.13a-c), the following energy equations
are obtained:

9
2R = (5K, (3.152)
% P=—(1-I)(P-R)+GP-Np2, (3.15)
where
_ (u?
P 7) (3.16a)
5o (0
P=( . ) (3.16b)
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u_ av_
P.-K , 3.16
(P-Ky=¢- ( 3 ) (3.16¢)
GP=w,p_(B+1-2), (3.16d)
and the “—” notation denotes horizontal average. To

the lowest order, kinetic energy K is made of zonal
wind component only. This results from the semi-
geostrophic approximation. Here { p - K) represents the
conversion of available potential to kinetic energy for
large scale motion, and GP denotes the generation of
wave available potential energy due to the latent heating
associated with the boundary-layer moisture conver-
gence; — N2¢_ is the potential energy dissipation due
to Newtonian cooling. The available potential energy
generation due to the latent heating associated with
interior wave divergent motion is given by I{P-K).
The total generation of available potential energy due
to condensational heating is the sum of GP and
I{P-K).

4. Moist mode analysis

In Matsuno’s ( 1966) theoretical model, the approx-
imate lateral boundary condition, consonant with 8-
plane approximation is that ¢, ¥ and v vanish as y
approaches infinity. For numerical computation of the
eigenvalue problem we shall assume:

¢+9 ¢— = 0 at y= iyO,

where latitudinal circles y = %y are lateral boundaries.
An alternative lateral boundary condition can be pro-
posed as

(4.1a)

vy =v_-=0 at y= =y, (4.1b)

implying that there is no meridional wind crossing the
boundaries between the midlatitude westerly regime
and the tropical easterly regime. When yj is adequately
large (about four times the Rossby radius of deforma-
tion), the equatorial Kelvin mode and the m = 1 and
2 Rossby modes (m is the index of meridional modes)
are not affected appreciably by the value of y,. Nu-
merical computations indicate that the solutions are
not sensitive to the forms of lateral boundary condi-
tions. That is to say, use of (4.1a) or (4.1b) yields nearly
the same results as long as y; is adequately large.

For Model A, solutions to (3.5a-f) with vertical
boundary conditions (3.10) and (3.11) are sought of
the form:

(ur, vo, ¢, u_, v, ¢p_, w,)
= R AU MV (y), 2.(¥), U-(¥), V_(¥),
D_(y), Qe(y)]e'*x—en

where zonal wavenumber k is given and the complex
frequency ¢ = o, + io, is an eigenvalue to be deter-

(4.2)
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mined. Complex meridional structure functions ®.,(y)
and ®_(y) satisfy:
(Ly = L)@y — Ly®_ =0,
[((N—ioc)— (1 —I}L;, — (B~ 1)L,]¥_
—(B—=1)L,®, =0,

(4.3a)

(4.3b)

‘ where
e d* 2ied ik
=2 L5 (4.4a
Ty Py )y )
= PP E (& 2y d
2T 20p E?+ y2\dy* E*+y*dy)’

(4.4b)

Equation (4.3) with meridional boundary condition
(4.1a) are solved for the eigenvalue ¢ and eigenfunc-
tions ®_ and ®.. Other dependent variables are ob-
tained by
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For Model B, substituting normal mode solution of
the baroclinic component of (4.2) into (3.13a—c) and
(3.10) and eliminating U_, V_, and £, yield:

[(N —ig) — (1 = I)L, ,
—(B+1-2)L,]%_=0. (4.6)

Other fields, U_, V_, and Q. are given by (4.5a), (4.5b),
and (4.5¢) with &, = 0, respectively.

Methods used -to solve eigenvalue problems for
Models A and B include a finite difference method and
a shooting method (Langer 1960}. In the absence of
heating and dissipation, both methods with y;, = 3 can
recover known analytical solutions for Kelvin and
Rossby waves with low meridional indices.

A major difficulty encountered in the moist mode
analysis is that numerical solutions are sensitive to the
width of the equatorial S-plane ‘“‘channel,” 2y,, and
meridional resolution, Ay. To obtain accurate solu-
tions, one must use adequate values for yp and Ay. For
the purpose of the present study, it is sufficient to focus
on the moist Kelvin and m = 1, 2 Rossby modes, which

U.= -~ 1 @; , (4.5a) are tightly trapped near the equator.
y dy Comprehensive sensitivity tests have been carried
ik ic d® out to assure the convergence of numerical solutions
Vo=—®_ +=5—, (4.5b) using adequate channel width and meridional resolu-
y y© dy tion. We first examined the depenence of solutions on
1 do, half-width y, using high resolution Ay. For moist Kel-
Uy=—--——, (4.5¢)  vin modes, which turn out to be most unstable, the
y dy . )
solutions were found not to change once nondimen-
ik ioc d®, stonal y, exceeds two. For moist m = 1 Rossby mode,
V= ‘; @, + ? dy ’ (4.5d) 4 greater value for yj is required to obtain convergent
. solutions. Figure 2 shows the growth rate k¢; = ¢; and
Q.= Ly($, + &) (4.5¢) phase speed ¢, = o,/k computed using Model B for
BOUNDARY SENSITIVITY TEST
FIRST ROSSBY MODE (WL=20000 KM)
rrrrrrrrr Lo e e | T LN NI B B L N M B L e (RO
omlh Y:45, 60
. -6 -
% -om} 3
Q —~—— - AR A TR R ay,
i e 8 ©
5 R &
@ -0.40 \\‘\\ v
z PR %
% ¢¢3\8\1~ QN‘ . 10 g
S a8 Tl
412
-0.56 e e e
10 12 14 16 18 20 22 24 26 28 30
"sST (C)

. FIG. 2. Values of growth rate (dashed lines) and phase speed (solid lines) computed for
the first Rossby mode (7 = 1) of wavenumber two by shooting method for different half-
width of the equatorial 8-plane channel, yo. Nondimensional resolution Ay used in computation
is 0.01 (about 0.13 deg lat). The curves for y, = 4.5 and y, = 6.0 coincide exactly. .
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different 5. When ), exceeds about 4.5, solutions for
m = 1 Rossby mode are nearly the same. These con-
clusions are valid for all wavelength and SSTM lower
than 30°C.

The next examination was the sensitivity of solutions
to meridional resolution Ay. For both shooting and
finite difference methods, when nondimensional me-
ridional increment Ay < 0.02 (dimensional Ay,
= (.27° lat), solutions were found not to change with
increasing resolution. We thus use Ay = 0.01 in shoot-
ing method and finite difference method for Model B.
For Model A, since finite difference method requires
a large memory when the resolution is high, we use Ay
= (.0235, corresponding to N = 241 if y; = 3, where N
is the number of internal grid points uniformly spaced
in the meridional direction. Figure 3 compares the
growth rates and phase speeds of the most unstable
mode at SSTM = 29°C computed using different res-
olution N. Solutions display convergence as N in-
creases. The two solutions for N = 201 and 241 have
maximum errors less than 9%. 1t is seen that insufficient
meridional resolution may cause large computational
errors.

In order to check for correct numerical convergence,
we also compared results obtained by the finite differ-
ence method with those obtained via the shooting
method. For adequate values of y; and Ay as suggested
above both methods yield nearly the same results. The
general agreement between the two methods suggest
correct convergence and add confidence to the accu-
racies of the results.

020

e
o

o
o

GROWTH RATE (DAY?)—s

WAVELENGTH (103KM) =

(a)
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5. Mode selection
a. Inviscid problem

Without boundary layer friction, the baroclinic
mode decouples with the barotropic mode and indi-
vidually satisfies versions of the shallow water equation
(3.13a—c). For convenience we rewrite (3.13a—c) as

du_ 1. _ 99—
a 27 x’ (5.1a)
Lo, 9
;U= 3’ (5.1b)
d¢ ou. dv_
—+(—+—]|=0. :
a (6x 6y) 0 (5.1¢)

In (5.1) the thermal damping was neglected (N = 0);
the horizontal velocity, horizontal length, time, and

geopotential height were rescaled by Vi1 —1|
X Co(V[1—1I1Co/28)"7%, (2BCoVI1 —I1)™'/?, and
|1 — I|Cy?, respectively. The positive sign in (5.1c) is
taken when I < 1, while the negative sign should be
used if 7> 1.

Equation (5.1a—c) allows normal mode solutions of
the form

(U=, v, ¢-) = R(U, ¥, @) "0, (5.2)

Let us first examine Kelvin wave by letting v_ = 0 in
(5.1).If I < 1, equatonially trapped neutral wave exists.
In dimensional form, we have

25
. N =241
—==  Nz20I
N=151
20 N=121
T 15
"
z
210
5 \:.
w \\
] N\
3 %
a 5}
10 20 30 40

WAVELENGTH (10°KM)—>

(b)

FIG. 3. (a) Growth rate and (b) phase speed of the most unstable mode in Model A computed
using finite difference method for different resolutions. N = 241 corresponds to nondimensional
resolution Ay = 0.025 or roughly 0.34 degree of latitude.
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B(y) = Boe P12 = cU(y), (5.3a)
c=CV1 -1 (5.3b)

On the other hand, if > 1, no equatorially trapped
wave is possible because substituting (5.1a)into (5.1c)

leads to
c=iCoVI— 1. (5.4)

Since ¢ is purely imaginary, the eigenfunction (5.3a)
does not satisfy the Matsuno-type (1966) boundary
condition: ® = 0, as y — +o0 . The untrapped structure
is neither consonant with the equatorial §-plane ap-
proximation nor with observations.

For Rossby waves, using (5.2) and eliminating U
and & yield:

d*v  (y?
71;5‘ (z+a)—0, I<1 (5.5a)
v (y?
—+|=——al]=0, 1 5.5
dy? ( 2 a) I> (5.5b)
where
1
a= e (5.5¢)
and the boundary condition is
V—>0, as y—> *oo. (5.6)

For I < 1, the general solution can be written as
(Abramowitz and Stegan 1972):

V(y)=AiVi(y) + AV2() (5.7)
where
2
Vi(y) = e""z/"[l + (a + %) %
1 s\ »°
+ (a+5)(a+5)z+ .- ] (5.7a)

3
= o4 3/ 2
Va(y)=e™ [y+(a+2) 3

3 7 y5
+(a+5)(a+§)§+ ] (5.7b)

are symmetric and asymmetric modes, respectively. To
satisfy boundary condition (5.6), parameter a must
take the values— (2m + 1)/2, wherem = 1,2,3, - - - *.
This leads to a dimensional phase speed:

__GV1 -1

=1,2,3--.
m+1 > "

(5.8)

* m = 0 gives ¢ = —1 which should be rejected because ¢ + 1 # 0
assumed in deriving (5.5a, b).
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These moist long Rossby waves are nondispersive and
have an equatorially trapped meridional structure.
However, if I > 1, the even and odd solutions of (5.5b)
are given by (5.7a, b) with —ia written for ¢ and
¥,/ for y. In this case, values a = (2m + 1)/2i
orc=—iCVI—1/2m + 1), (m=1,2,3-++)are
no longer meaningful eigenvalues which make eigen-
functions satisfy the boundary condition (5.6). When
boundary condition at finite y,, (4.1b), is used, nu-
merical solutions indicate that the eigenvalues vary with
the width of the equatorial 8-plane channel and the
eigenmodes are neutral. i

Condition I < 1 means that the latent heating rate
is smaller than the adiabatic cooling rate due to rising
motion in the midlevel of the model. In this stable
regime, eastward propagating neutral Kelvin waves and
westward propagating neutral Rossby waves coexist,
both with reduced phase speeds due to the heating-
induced reduction of static stability. When I > 1, no
equatorially trapped stationary unstable modes are-
possible. This implies that a single vertical-mode model
cannot demonstrate Kelvin—-Rossby wave-CISK.

Unless otherwise explained, the values for physical
parameters used in the present model are listed in Table
2. Based on typical values for S, H, and H, in Table
2, nondimensional number I was calculated as function
of SST using (2.1) and (3.7b). Results are shown in
Table 3. Typical tropical atmosphere falls in the stable
regime I < 1. We shall confine our discussion to this
regime.

b. Viscous problem

The frictional convergence in the boundary layer is
not in phase with the vertical motion at midlevel. When
the boundary-layer moisture concentration is suffi-
ciently high, the positive contribution to wave growth
due to latent heating induced by frictional moisture
convergence will exceed its dissipative contribution.
The frictional moisture convergence thus provides ad-
ditional energy source to destabilize the basic state and
realize instability.

TABLE 2. Values for -physical parameters used in the models.

Symbol Parameter Value
S, Static stability parameter 3.14 X 10 m?s2p,?
Co Long gravity wave speed

of the gravest

baroclinic mode 50.1 ms™!
H Density scale height - 7.6 km
H, Water vapor scale height 2.2 km
u Newtonian cooling

coefficient 6 X 107557
A, Boundary layer turbulent

viscosity 10 m?2s~!
h Depth of the surface layer 40 m
2 Surface roughness 00l m
b Fractional moisture

converted into rainfall 0.9
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TABLE 3. Values of moisture content and related nondimensional
numbers used in the model as functions of SST. The meanings of
nondimensional numbers are referred to in the text.

SST (°C)
20.2 24.0 26.0 28.0 30.0
4 @kg™) 114 14.9 16.8 18.7 20.6
7 (g kg™ 10.1 13.2 14.9 16.5 18.2
7 kg™ 5.0 6.5 7.3 8.2 9.0
I 0.47 0.63 0.71 0.80 0.88
B+I-2 0.0 0.63 0.94 1.30 1.65

Figure 4 depicts the phase speed and growth rate
varying with SST for moist Kelvin mode and the first
and second Rossby modes. Calculations are for the
gravest baroclinic mode in Model B. At SSTM = 8.2°C,
there is no moisture below 500 mb, so that the values
represent those for dry modes. Boundary layer friction
and Newtonian cooling damp these waves and slow
their propagation. When SST increases, the propaga-
tion speeds for both Kelvin and Rossby modes are re-
duced but the directions of their movement remain
unchanged (Fig. 4a). It is apparent that the reduction
of the phase speed is mainly caused by the wave con-
vergence-dependent heating, which results in a smaller
effective static stability. In a previous analysis of moist
Kelvin waves, one of the authors found that heating
due to boundary-layer moisture convergence slightly
increases the eastward propagation speed for Kelvin
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waves (Wang 1988a). It is of interest to notice the
distinct behavior of moist Kelvin and Rossby modes
in the growth rate (Fig. 4b); growth rate of the moist
Kelvin mode increases with rising SST and amplifi-
cation occurs as SSTM exceeds a critical value (about
29°C). On the other hand, growth rates of both first
and second Rossby modes slightly decrease with rising
SST and remain negative at all times. It is clear that
the additional energy supply due to boundary-layer
frictional moisture convergence favors only the am-
plification of moist Kelvin waves.

The mode selection in the present model is related
to the spatial distribution of frictional moisture con-
vergence, which is an important contributor to the
generation of perturbation energy. The rate of gener-
ation of perturbation available potential energy due to
the latent heating associated with frictional moisture
supply is (B + I — 2)w.¢_ [see Eq. (3.16d)], where
the coefficient (B + I — 2) is a function of SST. In the
present model it is positive (negative) when SST is
greater (less) than 20.2°C; it increases with rising SST
as shown in Table 3. Normally, high SST occurs near
the equator, implying that the equatorial warm water
region is conducive for the generation of wave energy
when w, and ¢ _ are positively correlated. Figures Sa,
b illustrate horizontal distribution of ¢_ and w, com-
puted from Model B for dry Kelvin wave, while Figs.
6a, b illustrate those for dry m = 1 Rossby mode. For
the Kelvin mode, both ¢ _ and w, fields have maximum
amplitudes at the equator. They are also almost in

MODE SELECTION (WL=20000 KM)
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F1G. 4. (a) Phase speed and (b) growth rate of the moist Kelvin mode (K), m = 1 Rossby mode (R1),
and m = 2 Rossby mode (R2) as functions of SSTM computed from Model B. The wavelength is 20 000 km.
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FIG. 5. Horizontal structures for (a) geopotential thickness, ¢ _
and (b) vertical pressure velocity at the top of the boundary layer,
w,, computed for a dry damped Kelvin wave in Model B. Solid and
dashed lines indicate positive (or zero) and negative contours, re-
spectively; contour intervals for w, is 20% of the maximum vaiue
and that for ¢ _ is 10% of the maximum value.

phase near the equator. This strong positive covariance
implies an efficient generation of eddy available po-
tential energy when the boundary layer moisture con-
tent exceeds 10 g kg™! so that B + 1 — 2 > 0 (Table
3). For m = 1 Rossby mode, w, has maximum at the
equator and around y = +1. Near the equator between
0.75 and —0.75, ¢_ and w, are negatively correlated.
This situation is destructive to wave energy generation
when moisture content is high near the equator. Away
from the equator near y = *1 there are narrow bands
where ¢ _ and w, are positively correlated. These bands
shift poleward as SST increases, and the moisture con-
tent within the bands is much lower than that in the
equatorial belt. As a result, there is no net generation
of wave energy due to frictional moisture convergence-
induced latent heating.

6. The impact of the horizontal mode-coupling

To elucidate on the impact of coupling between the
moist Kelvin and Rossby modes via boundary-layer
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frictional convergence/divergence, we focus again on
the single gravest baroclinic mode first. We shall com-
pare results obtained from two models: one is Model
B in which Kelvin and Rossby modes coexist; the other
is a viscous Kelvin wave-CISK model in which the
meridional winds vanish in the model free atmosphere.
For the convenience of comparison, SST is assumed
to be uniformly distributed in both models. The com-
plex frequency in the viscous Kelvin wave-CISK model
was previously obtained (Wang 1988a):
iN ) N?
o > + k(1 —-1) 7
(ps = Pe)

L
e ApE

1/2
(B+1- 2)] . (5.1)

a. Growth rate and phase speed

Figure 7 compares growth rates and phase speeds
computed from (a) Model B (dash-dotted lines), and
(b) viscous Kelvin wave-CISK model (dotted lines)
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15 FEBRUARY 1990

COMPARISON OF GROWTH RATE
KELVIN WAVE (§5T=29.0 °C)

0.40
0.35 )
0.30
0.25

0.20

GROWTH RATE (0AY™!)

~-0.05

10 15 20 25 30 35 40
WAVELENGTH (109KM)

{a)

BIN WANG AND HUALAN RUI

407

COMPARISON OF PHRSE SPEED
KELVIN WAVE (§5T=29.0 %C)

38

25

20

PHASE SPEED (M/8)

10 15 20 25 30 35 40
WAVELENGTH (103KM)

(b)

F1G. 7. Comparison of (a) growth rate and (b) phase speed as functions of wavelength. Dotted,
dash-dotted, and solid lines indicate values computed from Eq. (5.1) of the viscous Kelvin wave-
CISK model, the Model B with uniform SST = 29°C, and the Model B with latitude depen-
dent SST (2.3), respectively. All other parameters are the same as listed in Table 2 except

p=35X10"%s"

for uniform SST = 29°C. There are several noticeable
differences. First, the phase speed of the pure moist
Kelvin mode increases with increasing wavelength and
are between 18 and 30 m s™!, whereas the phase speed
of the most unstable mode in Model B decreases with
increasing wavelength and are between 18 and 6 ms ™.
This suggests that the coupling between moist Kelvin
and Rossby modes slows the propagation of the moist
unstable mode, especially for long waves.

KELVIN WAVE GROWTH RATE (DAY"!)
0.01/0.0
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Second, the growth rate of the unstable mode in
Model B is substantially smaller than that of the viscous
Kelvin wave-CISK mode. Observed development of
an intraseasonal OLR anomaly low (which is a measure
of deep convection activity) occurs in the equatorial
Indian Ocean and western Pacific with a composite
rate of intensification about 15 W m 2 pentad ~', cor-
responding to an e-folding time an order of 5 days (Rui
and Wang 1990). After crossing the date line where

KELVIN WAVE PHRSE SPPED (M/S)
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29.
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FIG. 8. (a) Growth rate and (b) zonal phase speed of the unstable mode in Model B as functions
of wavelength and the maximum SST at the equator.
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SST drops below 27.5°C, the intraseasonal convection
anomalies tend to decay rapidly. It seems plausible to
consider 28°C as a critical SST for the development
of the intraseasonal modes and 5 days as a typical e-
folding time scale for growth rate at a maximum SST
of 30°C. For a given thermal damping coefficient (5
X 1078 s7'), the most unstable Kelvin wave-CISK
mode grows as SSTM exceeds 25°C, and obtains a large
growth rate of 0.5 day~' at SSTM = 30°C, whereas
the most unstable mode in coupled Model A amplifies
as SSTM exceeds 28.3°C and obtains a moderate
growth rate of 0.15 day~'. Comparing these observa-
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FIG. 9. Horizontal structure of the unstable wavenumber two
in Model B at SSTM = 29.5°C: (a) geopotential ¢ _, (b) zonal
wind, u#_, (c¢) meridional wind, v_, (d) w,, and (e) w,. Solid
and dotted lines denote positive (or zero) and negative contours,
respectively. Contour intervals for ¢_ and u_ are 10% of the
maximum value and those for v_, w,, and w, are 20% of the
maximum value.

tions, it is apparent that the growth of the unstable
mode in coupled model A or B is more realistic than
that of an uncoupled Kelvin—-wave CISK mode. In fact,
one of the drawbacks of the viscous Kelvin wave~-CISK
is that strong thermal damping (Newtonian cooling
coefficient 15 X 1075 s™') is necessary for the purpose
of explaining the observed development over a warm
ocean surface (SST higher than 28°C, for example)
and slow eastward propagation (say, 10-15 m s™!)
(Wang and Chen 1989). It was speculated that the
large damping rate may crudely account for the hori-
zontal mode coupling effects and nonlinear effects that
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FIG. 10. Horizontal distribution of the (a) generation of available
potential energy due to frictional convergence-induced latent heating,
and (b) generation of kinetic energy computed for unstable wave-
number two at SSTM = 29.5°C in Model B. Solid and dotted lines
are positive (or zero) and negative contours, respectively. Contour
intervals are 20% of the maximum value.

are absent in the model. In the presence of meridional
wind components and the coupling between Kelvin
and Rossby modes, it indeed requires only a much
smaller Newtonian cooling coefficient, 5 X 1076 s,
to explain the observed development and slow prop-
agation, '
Another important difference is that in the Kelvin
wave-CISK model the shortest wave has the largest
growth rate while in Model B the longest wave is most
unstable. This implies that coupling between Kelvin
and Rossby modes favors the development of longest
planetary waves. This wavelength selection is an in-
teresting result and deserves further examination. Fig-
ure 8 displays the dependences of growth rate and phase
speed on the wavelength and SSTM computed from
Model B. Figure 8a indicates the longest wave being
most unstable until SSTM exceeds 29.5°C. Above this
temperature wavelength of the fastest growing wave
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gradually shifts to shorter planetary scales (wavenum-
ber 2). The propagation speeds of the most unstable
waves are slow, generally less than 10 m s™'. It has
been found that the coupling between vertical modes
via the boundary-layer frictional effect may result in
long-wave selection in the viscous Kelvin wave-CISK
model (Wang and Chen 1989). The result here dem-
onstrates that interaction between Kelvin and Rossby -
modes via the boundary-layer frictional effect displays
a similar dynamic effect, leading to a preferred plan-
etary scale of instability.

b. Horizontal structure and energetics

Figures 9a-e show horizontal structure of the moist
unstable mode in Model B at SSTM = 29.5°C for
wavenumber 2. The geopotential ¢ . and zonal wind
u_ nearly satisfy geostrophic relation. Both of them are
symmetric about and trapped near the equator. These
properties are similar to those of the moist Kelvin wave.
However, unlike the moist Kelvin wave, there exists
significant meridional wind component whose ampli-
tude is about one-quarter that of the zonal wind com-
ponent. Meridional winds are asymmetric about the
equator with extrema located at one-half Rossby radius

_ of deformation away from the equator. This feature

results from coupling between Kelvin and Rossby
modes via boundary layer frictional effect. This cou-
pling is further enhanced by the feedback from latent
heating associated with moisture convergence. The
vertical motion at midlevel is maintained by interior
divergent motion and boundary layer mass conver-
gence/divergence with the former dominating. The
horizontal structure suggests that the moist unstable
mode in Model B is a Kelvin wave modified by latent
heating and by coupling with m = 1 Rossby wave via
boundary-layer frictional effect.

Figure 10a illustrates horizontal distribution of the
generation of wave available potential energy (GP) due
to the latent heating caused by boundary-layer moisture
convergence for the unstable mode. Maximum occurs
in the neighborhood of the extrema of ¢_ field and
tightly trapped near the equator. The wave kinetic en-
ergy is also generated near the equator and almost in
phase with GP (Fig. 10b). The destruction of kinetic
energy occurs on both sides of the equator around y
= +0.4. This destruction is mainly caused by negative
covariance between ¢ _ and dv_/dy. This suggests that
meridional motions consume kinetic energy of the
equatorial unstable mode.

¢. Comparison of results obtained from the Model A
and B

The growth rate and zonal phase speed computed
from Models A and B are compared in Fig. 11. Both
models yield similar wave selection patterns, but the
growth in Model A is significantly larger than that in
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FIG. 11. (a) Growth rate and (b) zonal phase speed of the unstable mode in Model A (solid lines) and Model B
(dashed lines) as functions of wavelength at SSTM = 28.5 and 29.0°C. Resolutions Ay used in Models A and B are

0.025 and 0.01, respectively.

Model B for all wavelengths on planetary scales. The
eastward propagation in Model A is slower than in
Model B, particularly at the long-wave limit. It is ap-
parent that coexistence of the two vertical modes does
not change the wave selection resulting from horizontal
model coupling. The vertical mode coupling, however,
enhances wave growth and reduces propagation speed.

The vertical mode coupling also slightly modifies
wave structure. The horizontal structure of the baro-
clinic component of the unstable mode in Model A
(figures are not shown) is extremely similar to that of
the single unstable baroclinic mode in Model B. Both
resemble a modified Kelvin mode. However, the struc-
ture of the barotropic component of the unstable mode
in Model A is very different from that of the baroclinic
component (Fig. 12). The maximum amplitude of ¢
field is located around y = +1.5. The amplitude near
the equator is about 40% of the maximum value. The
u.-field is in geostrophic balance with ¢ . -field and
symmetric about the equator, while the v, -ﬁeld is an-
tlsymmetnc about the equator.

It is noticeable that horizontal divergence of the
barotropic wind component is forced by the compres-
sion associated with frictional upward motion [Eq.
(3.5f)]. This implies that the barotropic component
could bear structural features of m = 1 Rossby mode
through the influence of frictional mass convergence.
We note also that the maximum amplitude of the

1

baroclinic component is about five times that of the
barotropic component. Since the former has a maxi-
mum at the equator while the latter has a maximum
off the equator, the amplitude of the baroclinic com-
ponent near the equator is an order of ‘magnitude
greater than that of the barotropic component. The
compound flow fields in the equatorial zonal plane are
determined, to a large extent, by the baroclinic com-
ponent. Consequently, upper level flows are nearly out
of phase with low level flows, and the nature of insta-
bility such as wavelength selection and mode selection
in Models A and B are essentially similar to each other.

7. Response of the mstablllty to meridional variation
of SST

‘We first point out that a meridionally varying SST
profile (2.3) is more favorable for wave amplification
than a uniform SST profile, if the SSTs at the equator
are the same. This can be seen from Fig. 6, in which
the solid and dash-dotted curves represent results com-
puted using the meridionally varying SST profile (2.3)
with SSTM = 29°C and using a uniform SST = 29°C,
respectively. This indicates that stronger heating inten-
sity away from the equator does not favor development
of equatorially trapped unstable waves.

Meridional distribution of SST in the tropics exhibits
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F1G. 12. Horizontal structure of the barotropic component of the
unstable wavenumber two in Model A at SSTM = 29.5°C: (a) geo-
potential ¢, (b) zonal wind u,, and (¢) meridional wind v,.. Solid
and dotted lines are positive (or zero) and negative contours, re-
spectively. The interval for ¢, is 10% of the maximum value while
that for u, and v, are 20% of the maximum value.

significant annual variation. In the western Pacific and
Indian Ocean region, the maximum zonally averaged
SST is located between 5° and 10°N in boreal summer
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and moves to 0°-5°S in boreal winter. To simulate
the SST distribution in the boreal summer, we assume:

SST(y) = SSTM e~ -09/15 — (3, — 0.5)2  (7.1)

where y is nondimensional meridional coordinate
scaled by (BC,)!/2. The profile (7.1) has the same shape
as profile (2.3) but the maximum shifts northward by
about 7.5° latitude.

Using the SST profile (7.1) in Model B, we calculated
growth rates and phase speeds for the moist modified
Kelvin, m = 1 and m = 2 Rossby modes. Results are
plotted in Fig. 13. When SST maximum shifts to 7.5°N,
the growth rate of the unstable mode decreases sub-
stantially for all wavelength, while the propagation
speed increases. It is also noteworthy that both sym-
metric m = 1 and m = 2 antisymmetric Rossby modes
remain damped.

The horizontal structure of the unstable mode com-
puted using SST profile (7.1) (figure not shown) in-
dicates that due to the northward shift of the maximum
SST or available moist static energy of the basic state,
the strongest vertical motion at midlevel shifts from
the equator to about 3°N, meanwhile, stronger merid-
ional winds also occur north of the equator.

This experiment demonstrates that the amplification
of the unstable wave is controlled by the dynamic effect
of the geographical equator and the thermodynamic
effect of the “thermal equator” where maximum SST
occurs. The former tends to constrain the unstable dis-
turbance near the equator because it is of a modified
Kelvin wave nature. On the other hand, the SST dis-
tribution affects the condensational heating field which
contributes to the wave development. When the max-
imum SST moves away from the equator, decrease in
moist static energy source near the equator leads to a
decrease in the growth rate of unstable waves. This
appears to reasonably explain why the eastward prop-
agation in equatorial region is stronger in boreal winter
than in boreal summer.

8. Summary

We have analyzed the behavior of the horizontally
coupled unstable mode in a linear, semigeostrophic,
21 layer, equatorial §-plane model. The present model
has augmented the moist Kelvin-wave model by in-
cluding meridional wind components, boundary layer
frictional effects, and latitude-dependent SST or moist
static energy for the basic state. It allows investigation
of the impacts of horizontal mode coupling and annual
march of SST on moist, equatorially trapped low-fre-
quency waves,

Without sufficient moisture supply, the atmosphere
is stable. Due to the presence of thermal and boundary
layer dissipations, westward moving Rossby waves de-
cay faster than eastward moving Kelvin waves. When
moisture concentration gradually increases, the moist
Kelvin mode becomes progressively less damped and
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finally begins to grow when SST exceeds a critical value.
On the other hand, moist Rossby waves are always
damped (Fig. 4). The unstable mode selection in the
present model can be explained in terms of wave energy
generation due to latent heating induced by boundary-
layer frictional moisture convergence. Because of the
large concentration of moisture in the boundary layer,
the latent heating associated with frictional moisture
convergence produces a substantial portion (about one-
third) of the wave energy. Since the availability of basic-
state moist static energy is highest at the equator, the
equatorial warm water region is most conducive (or
destructive) for wave energy generation. In this region,
both Kelvin and Rossby wave-induced boundary layer
convergences reach their maxima (Figs. 5 and 6);
however, the frictional upward motion is positively
correlated with temperature in the Kelvin mode, while
the negative covariance between them is found for the
Rossby mode. Thus, available potential energy is gen-
erated efficiently by the frictional convergence-induced
latent heating in the moist Kelvin mode, but is de-
stroyed in the moist Rossby modes.

Although unstable modes appear to be rooted in
Kelvin waves, they are modified by the dynamic cou-
pling with Rossby waves. The horizontal structure of
the unstable mode resembles that of Kelvin waves but
exhibits significant meridional wind components,
which are asymmetric about the equator and similar
to that of the lowest meridional mode of Rossby wave

(Fig. 9). Another evidence of the coupling is that the
barotropic component of the unstable mode has a
modified m = 1 Rossby wave structure (Fig. 12), al-
though the dominant baroclinic component resembles
Kelvin-wave structure. This supports the notion that
the unstable mode is a moist coupled Kelvin—-Rossby
mode. .

Coupling between the moist Kelvin mode and the
Rossby mode via boundary-layer frictional conver-
gence and associated latent heating has fundamental
impacts on wave instability. Horizontal mode coupling
acts as an efficient brake on eastward propagation and
suppresses unrealistically fast growth of the pure Kelvin
wave—CISK mode (Fig. 7). More importantly, it favors
the amplification of long planetary waves, rather than
short waves, providing a wavelength selection mech-
anism (Fig. 8a). The vertical mode coupling between
the baroclinic and barotropic components further en-
hances the growth rate and slows zonal propagation of
the unstable modes (Fig. 11).

The annual variation of equatorial intraseasonal
wave activity is caused by the annual march of the
“thermal” equator where the highest SST is located.
This notion is confirmed by an experiment in which
the maximum SST is shifted to 7.5°N, a situation oc-
curring during boreal summer. In this case, the growth
rate of the unstable coupled Kelvin-Rossby mode is
substantially reduced (Fig. 13). Separation of the ther-
mal effect of warm ocean water from the dynamic effect
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of the equator stabilizes the tropical atmosphere for
planetary-scale low frequency disturbances.

An attempt has been made to examine the stability
of the tropical atmosphere with respect to the asym-
metric equatorial Rossby mode (m = 2) when SST
distribution is asymmetric about the equator. We found
no westward propagating growing mode in association
with asymmetric long Rossby modes. The assumption
of the semigeostrophic approximation confined our
discussion to planetary zonal scales. The question of
whether shorter Rossby modes could grow rapidly re-
mains unanswered. '

The choice of a parameter value for B and I is con-
sistent with the CISK model formulation. However, as
one anonymous reviewer pointed out, the basic-state
moist available potential energy in the CISK model
may be overestimated by using larger values in B and
I. A direct consequence of using a smaller value for B
+ I is the reduction of instability for other given pa-
rameters. This should not be seen as a defect of the
model, since a variety of other energy sources are avail-
able to excite such motions. More importantly, the
Newtonian cooling coefficient used here (6 X 10 °s™")
is also too large. When a smaller thermal damping is
assumed the instability will increase. Therefore, the re-
duction in growth rate due to reduced B + I can well
be compensated by the increase in growth rate caused
by reduced thermal damping. The important point here
is that the major conclusions regarding 1) mode selec-
tion, 2) effects of horizontal mode coupling, and 3)
effect of off-equatorial SST maxima are not affected by
the choice of particular parameter values.

Observational analyses of horizontal structure of the
intraseasonal modes have been carried out by Madden
(1986), Knuston et al. (1986 ), Murakami (1987), and
Rui and Wang (1989). Although detailed structures
obtained using various datasets or analytical ap-
proaches differ to some extent, these studies agree that
substantial meridional winds are present off the equator
and that the equatorial zonal winds appear to be as-
sociated with subtropical rotational cells. Observed
meridional wind anomalies on intraseasonal time scales
seem to be much stronger than those of unstable modes
in the present model. The model also failed to simulate
the linkage of equatorial zonal winds and subtropical
or midlatitude rotational cells. In the nonlinear single
vertical-mode model of Hendon (1988), the unstable
mode is reported to have a clear coupling of equatorial
zonal winds and subtropical rotational cells (his Fig.
8), suggesting an important nonlinear effect. When
wave propagation speed becomes comparable to per-
turbation wind speed, the nonlinear advective effect
is expected to play an important part in the wave dy-
namics.
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