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ABSTRACT

The moist stability of a midlatitude zonal flow with a conditionally unstable layer in the presence of an
Ekman layer is investigated. The vertical velocity employed in a simplified Kuo’s parameterization is sustained
by baroclinic wave forcing, diabatic heating and Ekman pumping. A general dispersion relation and eigenfunction
are derived analytically for a class of flows with various vertical heating profiles.

The moist unstable mode may be regarded as a baroclinic wave modified by the bulk effect of the convective
heating, for which the fundamental dependences of the baroclinic growth rate on the Burger number and vertical
shear remain qualitatively valid. Waves longer than the Rossby radius of deformation are not appreciably
affected, while the shorter waves are significantly destablized by the convective heating. The growth rates and
wavelengths of the most unstable modes are nonlinear functions of the averaged specific humidity of the moist
layer, and there is an optimum specific humidity that minimizes the preferred wavelength, this value being
proportional to the static stability for a representative heating profile. The quasi-geostrophic constraints and
baroclinity appear to be decisive factors that suppress short waves and lead to a finite preferred wavelength,

The destabilizing effect of the convective heating is considerably enhanced by the reduction of the static
stability. Among the other influential parameters that affect the growth rate, relatively lower cloud top and-a
deep moist layer have a profound effect on the stability. Because of the cooperative interactions between favorable
factors, the simultaneous occurrence of several of the mechanisms listed above may produce explosive-like
growth. The relatively shallow convection and the Ekman layer will slow down the wave propagation speed.
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1. Introduction

The theory of barcolinic instability established by
Charney (1947) and Eady (1949) has been the corner-
stone of the quasi-geostrophic theory. It provided a
reasonable explanation of the generation of midlatitude
synoptic disturbances when the available potential en-
ergy of the westerlies is the dominant energy source.
However, the theory excluded diabatic heating, which
plays an important role in the development of the moist
midlatitude disturbances, as indicated by a number of
diagnostic studies (e.g., Tracton, 1973; Smith et al,,
1984).

Cumulus convection often occurs in association with
the development of midlatitude cyclones in an atmo-
sphere with a conditionally unstable layer. Particularly,
the explosive deepening was found to take place once
the cumulus convection becomes organized in areas
adjacent to the storm center (Bosart, 1981; Gyakum,
1983b). The extratropical cyclones exhibit an asym-
metric pattern of convection with respect to the vortex
axis, the strongest convective area being found north
and east of the vortex in the region of the strong surface
wind (Bosart, 1981). These observations have led to
the belief that the importance of cumulus convection
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cannot be ruled out. The concept of CISK (conditional
instability of the Second Kind), which has been instru-
mental in understanding the dynamics of hurricanes
and tropical disturbances, may also be applicable to
midlatitude disturbances (Rasmussen, 1979).

So far, there are few analytical studies that incor-
porate the effect of convective latent heating into the
quasi-geostrophic baroclinic theory. Gambo (1976)
considered a prototype of this problem and showed
that the characteristics of the unstable disturbances de-
pend upon a parameter A, which loosely represents the
ratio of the vertical velocity due to the frictional con-
vergence in the boundary layer to that of the baroclinic
wave. His approximate solutions were limited by the
assumptions of A € 1 or A > 1 and the uniform vertical
heating distribution. Mak (1982) considered an Eady
model with a CISK parameterization and showed that,
as the heating intensity parameter is increased, the
growth rate and the phase speed of the most unstable
wave significantly increase, while its wavelength sig-
nificantly decreases. In his formulation, the vertical ve-
locity used in the parameterization of the diabatic
beating was only related to the rotational wind field
through the omega-equation; this approximation was
based on the perception that it leads to a wave selection.
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However, since the vertical velocity at the top of the
low-level convergence layer is partly driven by the latent
heat release, the consequences of this conceptual as-
sumption on the wave selection mechanism and wave
characteristics ought to be studied. Sardie and Warner
(1983) used a three-layer, quasi-geostrophic model in
which latent heating is parameterized for both stable
precipitation and convective precipitation associated
with CISK. They found that CISK alone is not sufficient
for the genesis of polar lows, while baroclinic instability
with CISK -appears to be essential for the genesis of
Atlantic polar lows. Since the solution with CISK was
shown to be sensitive to the vertical resolution of the
model (Chang and Williams, 1974; Anthes et al., 1983)
some of Sardie and Warner’s results may suffer from
the poor vertical resolution of their model; for example,
the wave selection undergoes large changes when the
heating in the lower layer changes by small amounts.
In their calculation for several case studies of polar
lows, Sardie and Warner (1983) showed that the in-
corporation of the CISK mechanism increases the
- growth rate, on average, by only some 40% (their Table
3), while Mak (1982) concluded that the maximum
growth rate can be as large as five times that of the dry
model. There is also some disagreement on the wave-
length of the most unstable mode.

A central question can be raised: How important is
convective heating during explosive cyclogenesis? The
answer to this question is tied to the following points
which require clarification: What is the dynamical na-
ture of the unstable wave in a baroclinic zonal flow in
the presence of CISK? How do the instability charac-
teristics change as we consider different vertical-heating
profiles and basic states characterized by different

properties? Is there any possible cooperation among

the various influential factors that results in extraor-
dinarily large growth? We propose to seek answers to
these questions. '

2. Model formulation

We consider a linear, y-independent, quasi-geo-
strophic perturbation about a zonally averaged basic
state, which is assumed to be a function of pressure
only, i.e., U= U(p)and ¢ = —ad Ind/dp = o(p), where
U is the zonal velocity, ¢ is the static stability, and
‘o and 4 are the specific volume and potential temper-

ature, respectively.. The perturbation quasi-geostrophic -

vorticity and thermodynamic equations, when ex-
pressed in an f~plane in the p-coordinate, can be written

as ]
P 3\ Pp . dw
LA A 2.1
(6t+U6x)6x2 fop (2.12)
P a\dp dUds o R ..
CLplye 470, % - H, (2.1b
(at Uax) d dpdx fp JoCop ( )

where ¢ represents the perturbation geostrophic
streamfunction, H denotes the diabatic heating rate
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per unit mass, w = dp/dt is the vertical p-velocity, R
the gas constant, C, the specific heat at constant pres-
sure, and f, the constant Coriolis parameter, The jus-
tification for the f~plane geometry will become apparent
in what follows.

Based upon observations of rapidly deepening cy-
clones (Gyakum, 1983a), we assume that the model
atmosphere is gravitationally stable for the large-scale
motion but unstable for the convective-scale motion,
i.e., there exists a conditionally unstable layer in which
cumulus clouds are present. We further assume that
condensation occurs primarily through cumulus con-
vection and neglect other diabatic heatings. As men-
tioned in previous section, the observations suggest that
baroclinic waves organize cumulus convection, and
their rapid developments are often accompanied by
noticeable cumulus latent heat release. We presume
that there exist dynamic and thermodynamic inter-
actions between midlatitude baroclinic wave and cu-
mulus scale motions in the presence of conditionally
unstable layers. The baroclinic waves are heated by
cumulus convection which is, in turn, controlled by
the synoptic scale moisture convergence. A simple pa-
rameterization of this scale interaction can be based
upon Kuo’s (1965, 1974) scheme, where the latent heat
release due to deep convection, is parameterized by

_ gl = HLMIT.(p) — TOW/T
'Db
(T.— T)dp

3

H

(2.2)

where T and # are the environmental temperature and
potential temperature, respectively; 7. is the temper-
ature within the cloud; p, and p, are the pressures at
cloud base and top; L. is the latent heat of condensa-
tion; g is gravity; M, denotes the rate of moisture con-
vergence from the surface to the cloud top, including
horizontal convergence of specific humidity and evap-

oration of water from the lower boundary; b is the
fraction of M, stored in the air to increase the specific
humidity of the environment. For mathematical tract-
ability, we shall further assume that 1) the moisture
convergence is primarily confined to a lower moist
layer, where the specific humidity is a constant g, and
2) the feedback by which the wave field affects the
heating distribution can be neglected, and the vertical
heating profile is then specified empirically by n(p).
With these two additional assumptions, (2.2) becomes

~

H=- "‘;Lo— (Glom) — gEM(p),  (2.33)

where p,, is the pressure at the top of the moist con-
vergence layer, P, the surface pressure, E is the surface
evaporation rate, n(p) must satisfy

1ff?o = 1
Po Jo n(p)dp = 1,
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and

f (T.~ T) 7.dp

&=01-b- (2.3b)

" (1.~ Tydp

Dt

is a nondimensional coefficient, proportional to the
ratio of convective precipitation to the total moisture
convergence into the cumulus cloud ensemble. When
the background relative humidity is large, b is assumed
to be zero. We shall take & ~ 1 for convenience. Equa-
tion (2.3) relates the heating coefficient directly to the
moisture content g, which can be viewed as a measure
of the potential moist energy of the basic zonal flow
and of the heating intensity. In our parameterization,
H does not vanish when «(p,,) > 0, i.e., there is cooling
in the presence of downward motion.

A continuously stratified model will be used, partly
because the CISK solution is sensitive to the vertical
resolution of the model, and partly because a contin-
uous model contains more of the relevant physics in
the CISK parameterization. The motion is confined
between two horizontal boundaries found at p = p,
and p = p,, where p, may be viewed as the pressure at
tropopause or at infinite height (p, = 0), and p, rep-
resents the pressure at the top of the lower Ekman layer.
A schematic representation of the model is shown in
Fig. 1. The vertical velocity is assumed to vanish at the
upper boundary and to match the Ekman pumping
velocity at the lower boundary, i.e.,

w=0, at p=p,

_—Og(—g)lﬂﬁ
©T TR, ax?

where K represents the vertical eddy viscosity coeflicient
and p, represents the density at p,.

(2.4a)

at p=p., (2.4b)

vpper boundary

Py

I
cloud top P,

n

top of the moist layer

_f___w p_of the moist lay yer B
P
! cloud bottom b
Pe

lower boundary

FIG. 1. Schematic representation of the continuously stratified
model. 1, I and IH denote regions below, within and above the cloud,
respectively.
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The system (2.1) with (2.3) can be reduced to a time-
dependent equation for w:

I Fw au 62 62w
Y37 “ dp axdp f 2
aRL.g ?7(17) &
L,—; m), (2.5a
" o rw: o(pm), (2.52)

where we assumed a constant surface evaporation rate,
and where the linear operator

3 3
L= ot "

The lower boundary condition (2.4b) may be rewritten

as 2
e
Lijw+ pog(Kﬂ)) <o 0,

In this formulation, the convective latent heating is
related to the vertical velocity at the top of the moist
convergence layer, w(p,,). It essentially reduces to an
Ekman-CISK scheme for the case of p,, = p.and to a
conventional wave-CISK scheme in the absence of
Ekman layer dynamics. The major feature of interest
in the present formulation is that p,, is treated as a
parameter that is independent of p, and p,, and allowed
to be either above or below the cloud base p,,. Therefore,
w(py), which measures the low level convergence, is,
in general, controlled by (i) Ekman layer pumping, (ii)
geostrophlc forcing (when the zonal flow is baroclinic)
that is proportional to the product of the vertical shear
and horizontal gradient of the vorticity field, and (iii)
convective heating field that partly drives the wave
motion. In so doing, the direct feedback of the latent
heating on the synoptic scale disturbances is included
in our model.

(2.5b)

at p=p.. (2.6)

3. General eigenvalue problem and its solution

We seek normal mode solutions of the form
w = Yp)e**=I + cc.

3.1)

where c.c. denotes the complex conjugate, and ¢ is the
complex phase speed. Substitution of (3.1) into (2.5a)
and the boundary conditions (2.4a), (2.6) leads to

d*@  2(dUjdp) d2

dp2 — ?j_(;;)_-___c EI; — S(p)kZQ Qk2 U(P) Q( m),
3.2)
Q=0, at p=p,, (3.3a)
———-ir—@=0 at p=p (3.3b)
kkU—-¢dp €

where Py, L, V and Qp = (PoV?/f,L?) have been used
to scale the pressure, horizontal length, horizontal ve-
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locity and vertlcal p-ve1001ty, respectively. We have also
assumed U — ¢ # 0, since we are interested in the
unstable modes. The nondimensional numbers found
in (3.2) and (3.3) are

P, 2

the Burger number, S(p) = 9(—?70 ) (3.4a)

. - L

* the nondimensional specific humidity,
RL :
=§=—3, 3.4b
Q q CpﬁZLZ ( ) ‘
and a measure of the Ekman dissipation,

_ poslL E@)‘”

r . ZPOV( 5 ) (3.4¢)

The right-hand side of (3.2) is different from zero
only in the cloud region, since n(p) = 0 outside the
cloud. If the basic state is a continuous flow field, one
must require that perturbation pressure and vertical
velocity be continuous at the upper- and lower-cloud
boundaries. Therefore, at the cloud boundaries, the in-
terfacial dynamic and kinematic boundary conditions
require that

Q is continuous, at p =p,, p,,  (3.53)

aq . . o ‘
——1s continuous, at p = py, p;. . (3.5b)

dp _
Equations (3.2), (3.3a, b) and (3.5a, b) constitute the
eigenvalue problem for the complex phase speed c¢. Be-
fore specifying the basic zonal flow and the heating
profile, we derive the general dispersion equation for
¢ and an expression for the eigenfunction Q(p).
Assume that Q,(p) and Q,(p) are two fundamental
solutions of the Eq. (3.2) when n(p) = 0. We then con-
struct two solutions:

S(D) = [QA (D) -

ir . o
- m [D(p)(p) {(P)0AD)],

A = pI0D) — BpIWD),  (3.6b)

such that fi(p) and f5(p) satisfy the lower- and upper-
boundary conditions (3.3a, b), respectively; in these
expressions, a prime denotes a derivative with respect
to p. The Wronskian is

Wr(fi, ) = h(p)W # 0,
= Q(p)Ap) — WAP)Qy(p).

In terms of the homogeneous solutions fi(p) and
S(p), we arrive at the following dispersion equation
and eigenfunction, which are derived in Appendix A:

» 9()f(2)
Dt Z"V(t)

QD) (p)]

(3.6a)

, (3.7a)
where
(3.7b)

fl(pu)kaz[z /(P dz] 0, (3.8)
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[ f(p), Pe=p=ps,
K2Qfi(pm) > (i)
i) — QIR [f‘(") v
QUp) = A — fAp) . "t(;)fzg) dt] PhZp=p
k*Qf(pm) 7 p()(2)
Tiow) — 01D | Sy
D: =D = Dy,
(3.9)
' where
0: pe = DPm = pb
BN
I= f s LA ~ RV, B.10)

Pb > Dm > Dt

Once the basic state, i.e., U(p), o(p), and the heating
profile n(p) are specified, and the two fundamental so-
lutions of the dry problem, Q,(p) and Q,(p), are ob-
tained, we get an analytical expression for the disper-
sion equation (3.8) and the eigenfunction (3.9).

4. The moist baroclinic wave in the presence of con-
vective heating

a. The dispersion equation and eigenfunction

We now focus our attention on the instability of a
moist baroclinic zonal flow with a conditionally un-
stable layer. For analytical tractability, we assume that
the static stability and the vertical shear of the ba31c
zonal flow are constants, i.e.,

o(p) = o, (4.12)
Up)=1-p, ‘(4.1b)

where the zonal velocity at the ground (p = 1) is as-
sumed to be zero, and the velocity has been scaled by
APy, where Ay is the dimensional vertical shear.
Therefore, the basic state, in the absence of convective
heating, reduces to Eady’s (1949). :

The nondimensional heating profile is specified by

(0, pr<p<p.
12
———— [a(p, — p)(p = D)’
n(p) = < (pb pt)
+(=afpy— PP — D)), DSP<Ds
05 Pulg p < pts
: (4.2)

where the shape parameter g is such that0 < a < 1.
Figure 2 shows the heating profile defined by (4.2) for
different values of a. For a = 0.5, n(p) is symmetric,
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FIG. 2. The vertical heating profile 5{p) defined by Eq. (4.2).

and as g increases from 0 to 1, the location of the max-
imum heating decreases from the upper part of the

cloud to the lower part of the cloud, while the total -

area under the curve 7(p) remains unity.
With the specification of the basic flow (4.1a, b) and
the vertical heating distribution, Eq. (3.2) becomes

d*Q 2 da 2 2 D)
dp? —1+cdp =0k D pm), (4.3)
where
w= Sk, (4.3a)
—p2
S= }:,2_22 . (4.3b)

Two fundamental solutions of (4.3) with n(p) = 0 may
be written as

: 1
Q(p) = _\E e PNl —p—c)— 1], (4.4a)
2(p) = —1}3 PNyl —p— )+ 1] (4.4b)
By using (3.6a, b), we have
(D) = shw(pe — P)’(1 ~p.— )1 —p~0)— 1]
2
+ wlpe = P)chulp. = p) ~ ir-
X [u(1 = p — c)chu(p. — p) — shu(p. — p)], (4.5a)

. BIN WANG AND ALBERT BARCILON

709

and
£Ap) = w(p, — p)chu(p, — p) — [¥*(c — 1 + p,)
X (1 —p—c)+ 1lshy(p, — p). (4.5b)
Define
Ii(p) = f "t(;),fzg) dt, pp<p<py, (4.6a)
o= [ MV a, p<p<pm. @)

[I,(p) and I(p) are given in Appendix B.] Then, the
dispersion equation becomes

A(pw) = QKT + fi(pm)lps) — I(p)]} = 0,  (4.7)
where
0, Pe=pm=pp
1= fpm)ps) — I(Pm)) 4.8)
= fipwIADp) — IDPm))s  Po> D > D1
The eigenfunction is given by
[ /(D). Pe=p> D
0t AP o) ~ )
Up) = — AP — (e}, Ps=> D> D,
ok =P L) ~ oL
_— D> D= Py

When the moisture content g = 0, (4.7) reduces to
filp,) = 0, which recovers Eady’s dispersion equation
if the Ekman dissipation is set to zero. The dispersion
equation (4.7) for a general heating profile (4.2) is a
complex transcendental equation involving logarithmic
functions and infinite power series which can be trun-
cated in numerical calculation because of its fast con-
vergence. This equation is similar to the one obtained
in a previous work and can be solved by iteration
(Wang et al., 1986). The analytical technique employed
here enables us to obtain our results with a significant
reduction in the amount of computation and to study
the instability properties extensively.

b. The characteristics of the instability

Figure 3a, b shows the growth rate and phase speed
as functions of wavenumber k and specific humidity
g, respectively. Points k,, and k. on the ¢ = 0 axis in-
dicate the most unstable and the cutoff wavenumbers
of the Eady problem, respectively. From Fig. 3 several
conclusions can be drawn:

1) The long waves with characteristic length scale
longer than Rossby radius of deformation (k < k,,,) are
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FIG. 3. (a) The growth rate (day™") and (b) the phase speed (m s™') of the wave disturbances
for a general heating profile (4.2), as functions of the wavenumber (wavelength) and the averaged
specific humidity of the moist layer § computed from (4.7). The dashed line shows the preferred
wavenumber. All the parameters have the values listed in section 5 except P, = 0 mb, s = 0.015

/

m?s2 mb2,

not affected appreciably by convective latent heating.
Dramatic increases in the growth rate and phase speed
are mainly found in the short waves with characteristic.
horizontal length scales less than the Rossby radius of
deformation.

2) For a given moisture content g, the instability
spectrum (i.e., the dependence of the growth rate on
the wavenumber) is characterized by a preferred wave-
number (or wavelength) that corresponds to the max-
imum growth rate. The preferred wavelength is a non-
linear function of the moisture content g, as depicted
by the dashed line in Fig. 3a. An optimum value of 4
exists that minimizes the preferred wavelength; we shall
refer to it as the optimum specific humidity, 4. As will
- be seen in Fig. 5, there is another value of g that max-
imizes the growth rates of the most unstable waves.
The later is, in general, slightly larger than the optimum
specific humidity 4.

3) There is a clear boundary between growing and
decaying wave regions which represents the neutral
waves. It is noted that when the moisture content ex-

ceeds its optimum value 4, there exists a minor growing
wave region next to the major unstable region, in which
the maximum growth rate is smaller than that found
in the major unstable region.

The qualitative picture of the moist baroclinic in-
stability associated with cumulus convective heating
shown in Fig. 3 does not change when we vary the
parameters used in the calculation. However, the char-
acteristics of the instability spectrum, i.e., the growth
rate and wavelength of the most unstable mode and
cutoff wavelength, do vary with the basic zonal flow
properties (vertical shear, static stability and rotation
rate) and the vertical heating distribution, n(p). These
dependencies will be examined in the next section. Al-
though the baroclinic forcing contributes to the initi-
ation of the convection, a certain amount of moisture
content, g, is required for the free development of a
feedback process of convection. Therefore, we should
deemphasize the significance of the results obtained
for small values of g in Fig. 3.
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It is important to point out that the optimum specific
humidity § strongly depends upon the static stability
of the basic flow for given 7(p). Table 1 indicates the
relationship between the optimum specific humidity
and the static stability of the zonal flow for a represen-
tative tropospheric heating profile. The optimum spe-
cific humidity in Table 1 is proportional to the static
stability. When the specific humidity reaches its opti-
mum value, the characteristic length scale of the un-
stable mode, L, is significantly smaller than the Rossby
radius of deformation, L = ¢ 2Py /fyL, i.e., the Burger
number S = Lp%/L? » 1. From the nondimensional
quasi-geostrophic w-equation,

Pw [ Pw  dU ¢ 7 (D)
a—pi + Fy =2 3 + Q0 y

p ox?

which was derived from Eq. (2.1a, b) with (2.3), the
basic balance must be between the second term on lhs
and the last term on rhs, i.e., the vertical velocity is
chiefly produced by cumulus latent heating. If we
equate the Burger number S and nondimensional spe-
cific humidity Q [see (3.4a, b)), then

. CpaP?

q R Lc ?
which gives an approximate expression of this propor-
tionality. If we express Q = L,?/L? [see (3.4b)] where
Ly = (gL.R/fy>C,)'"* can be regarded as a characteristic
horizontal length scale associated with cumulus heat-
ing, then the optimum specific humidity makes the
characteristic heating length scale, L,, roughly equal
the Rossby radius of deformation.

The existence of an upper (lower) bound in the
growth rate (wavelength) of the most unstable wave
“was noticed earlier and considered to be a consequence
of Mak’s (1982) parameterization, which is different
from the wave-CISK scheme. In the absence of the
Ekman dynamics and when p,, = p,, as the case in
Fig. 3, the present parameterization is essentially the
same as the traditional wave-CISK treatment. Yet, the
behaviors of the variation with heating intensity for
the growth rate and wavelength of the most unstable
mode are still fundamentally different from those of
conventional, inviscid, tropical wave CISK modes, for
which the growth rate increases with increasing wave-

TABLE 1. The dependence of the optimum specific humidity § on
static stability o for a representative heating profile (p, = 1000 mb,
Dy =300 mb, p, = p,, = 900 mb, p, = 400 mb, 0 < a < 1).

a ] Login
(m?s2 mb™?) (gkg™ (km})
0.015 0.016 1150 .
0.02 0.021 1340
0.03 0.031 1610
0.04 0.041 1900
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number and no finite preferred spatial scale exists
(Hayashi, 1970).

¢. The dynamic nature of the baroclinic wave CISK
mode

In a baroclinic zonal flow, the low-level moisture
convergence is sustained by baroclinic wave forcing
and latent heat release in the absence of Ekman pump-
ing. The unstable mode shown in Fig. 3 is, therefore,

referred to as baroclinic wave CISK mode.

If we now consider a simplified heating profile used
by Mak (1982)

0, outside the cloud

n(p) = 2
py’ — pt

4.9)
D, Dt =< D < Db,

then the dispersion equation (3.8) reduces to

£(pa) - 20 Si(Pm)
R (0 = S (o + ¢ — Dpp+c— 1)

X {(p: + ¢ — D{p(p. + ¢ — 1)chu(py — pu)
+ shu(py — P)) — (Do + ¢ — Dp(py + ¢ — 1)
X chu(p, — pu) + shu(p, — p)1} =0, (4.10)

where fi(p) is defined by (4.5a). The growth rate from
(4.10) is given in Fig. 4, where all the parameters used
in the figure are identical to those in Fig. 3. In general,
the results from both heating profiles are rather similar.
However, the preferred wavenumber and cutoff wave-
number are influenced by the heating profile, especially
near the optimum specific humidity 4. Nevertheless,
the results derived by using a simplified heating profile
do capture the qualitative features reflected in Fig. 3a.
Therefore, we may use the dispersion equation (4.10)
to discuss the qualitative nature of the unstable modes.

When g = 0, the roots of (4.10) give two unstable
(complex conjugate) Eady modes. When g # 0, the
two unstable Eady modes are remarkably modified by
latent heat release, while there are another two modes
that remain neutral. Therefore, the baroclinic wave
CISK mode can be viewed as baroclinic wave inten-
sified by latent heat release. Furthermore, as shall be
seen in the next section, the fundamental dependency
of dry baroclinic instability on the static stability, ro-
tation rate and vertical shear remain qualitatively valid
in the presence of convective latent heating.

Mak (1982) proposed a conceptually different for-
mulation based on the premise that the cooperative
heating feedback is only associated with the baroclin-
ically induced low-level convergence. Therefore, the
scale selection mechanism in his model was believed
to result from the heating not being expressed in terms
of the vertical velocity, per se, as in the usual wave
CISK treatment. This formulation neglected the low-
level convergence directly induced by latent heat release
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FIG. 4. As in Fig. 3a, but for the simplified heating profile (4.9).

and may be inconsistent with the fact that low-level
convergence is partly driven by latent heat. In the
present formulation, the moisture convergence is not
due solely to the rotational part of the wind field, but
is also due to the interactive diabatic heating. Moreover,
we consider the general case in which the top of the
moist layer may be above the cloud base, so that the
direct feedback of the heating on the low-level moisture
convergence is included. The results reveal the existence
of a spatial scale selection, in contrast to the results for
the conventional wave CISK in an ageostrophic model
with no basic flow or with a uniform basic flow. The
present study suggests that, in the presence of baroclinic
instability, the cooperative heating feedback need not
be parameterized only in terms of the dynamically in-
duced low-level convergence so as to ensure an appro-
priate scale selection mechanism in the moist instability
of a baroclinic zonal flow associated with CISK.

As Mak (1983a) noticed, the scale selection is prob-
ably affected, to some extent, by the CISK formulation
itself, especially in layer models. Nevertheless, if the
effect of the conditionally unstable stratification is pa-
rameterized with the assumption that the amount of
heat released is proportional to the vertical velocity at
the top of the moist convergence layer, as used here
and in many other studies, the quasi-geostrophic bal-
ance and baroclinity of the zonal flow are decisive fac-
tors for suppressing the short-scale waves and lead to
a finite preferred wavelength in a continuously stratified
model. As has been pointed out previously, the baro-
clinic wave CISK mode can be regarded as a modified
baroclinic wave, and the wave selection mechanism
seems to be rooted in the baroclinic instability; the
convective latent heating with the present parameter-
ization does not change this property qualitatively.

5. Influential factors controlling instability and possible
mechanism for explosive growth

A series of experiments was carried out to examine
the influences of each physical factor. In all calcula-

tions, unless specified otherwise, the parameters are
gtven the following typical values:

=003 ms ! mb!, vertical shear
& =0.02m?’s?mb?% static stability parameter
Jo=10"4s7", coriolis parameter
K=0m?s™, eddy viscosity coefficient in
the Ekman layer
= 1000 mb, pressure at the lower bound-
ary
Py = 300 mb, pressure at the upper bound-
ary
Py = 900 mb, pressure at the cloud base
pr = 400 mb, pressure at the cloud top
D = 900 mb, pressure at the top of moist
layer
a=0.5, profile parameter.

a. The influences of the static stability, rotation rate
and vertical shear

The curves in Fig. 5 depict the instability character-
1stlcs as a function of 7 for = 0.02 and 0.015 m?s™2
mb~2 Reduced static stability enhanced growth rates
of the most unstable modes for all g. Furthermore, the
optimum specific humidity which minimizes preferred
wavelength was also reduced. In the realistic range of
g (¢ < 0.02), the destabilizing effects of the latent heat
release was significantly enhanced by the reduced static
stability. For example, the ratio of the moist maximum
growth rate (q = (0.01) to the dry maximum growth
rate (7 = 0)is 1.72 for 6 = 0.02 m? s72 b“2 in com-
parison to the value of 2.23 for ¢ = 0.015 m 2672 mby2,
The reduced static stability catalyzes the destabilizing
effect of the latent heat release and induces a dramatic
increase in growth. In a dry baroclinic model (g = 0)
the reduction of static stability from 0.02 to 0.015 m?

2 mb~2 causes an increase in growth rate by 17%,
while the same reduction of static stability induces an
increase in growth rate by about 54% when g = 0.01.
Therefore, the effect of reduced static stability on the
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FIG. 5. The growth rate, wavelength, and phase speed of the most unstable modes, as functions
of averaged specific humidity of the moist layer g for 7 = 0.015 and 0.02 m? s~ mb".‘The general
heating profile (4.2) is used. All other parameters are given the same values as listed in section 5.

instability was intensified by the convective latent heat
release. There exists a mutual cooperative interaction
between the destabilizing effects of reduced static sta-
bility and increased latent heat release.

Table 2 shows how the rotation rate influences the
instability. The ratio of moist maximum growth rate
(¢ = 0.01) to dry maximum growth rate is about the
same (1.73) for the four listed different rotation rates.
In a dry baroclinic Eady model, a faster rotation rate
ensures that the shorter waves are the fastest growing.
This effect remains valid as latent heat is included and

TABLE 2. Variations of the instability characteristics with increasing
rotation rate for dry (7 = 0) and moist (7 = 0.01) cases. All other
parameters are assigned their typical value.

Most unstable mode

. Growth Phase Cutoff
fo Wavelength rate speed  wavelength
g (107s™h (km) (day™) (ms™) (km)
0.0 0.5 7850 0.28 10.5 4830
0.707 5500 0.40 10.5 3930
1.0 3950 0.57 10.5 2510
1.22 3200 0.69 10.5 2090
0.01 0.5 4190 0.49 12.0 2330
0.707° 3000 0.69 12.0 1700
1.0 2170 0.98 119 1190
1.22 1800 1.19 - 119

<1000

in the presence of an Ekman layer. In the present cases,
the destabilizing influence of the increased rotation rate
is rooted in the dry baroclinic instability and is trans-
ferred to the moist baroclinic instability; it is not en-
hanced by the latent heat release. For dry inviscid
baroclinic instability, the growth rate is proportional
to the vertical shear for a given Burger number. With
the parameterized convective latent heating, the growth
rate remains proportional to the vertical shear for a
fixed Burger number, moisture content ¢, and heating
profile. Moreover, the growth rate does not change
when the sign of the vertical shear reverses in both the
dry model and the moist model. This property holds
for an fplane model. In summary, the above findings
are further manifestations that the baroclinic wave
CISK mode is a baroclinic wave strongly modified by
the convective heating.

b. The influence of the vertical heating distribution

*The present cumulus parameterization scheme,
(2.3), applies to the deep precipitating cumulus con-
vection. The total amount of latent heat is controlied
by low-level, large-scale moisture convergence, yet the
height of the cloud top varies from place to place, de-
pending upon the thickness of the conditionally un-
stable layer and upon the environmental moisture
content at mid- and upper-levels, as well.

Table 3 compares the characteristics of the most un-
stable modes for g = 0.01 for p, = 300, 400, 500 mb.
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TABLE 3. Variations of the characteristics of the most unstable
mode with decreasing cloud top for § = 0.01. All other parameters
are assigned their typical values.

Most unstable mode

Pressure at the

cloud top Wavelength Growth rate Phase speed
(mb) (km) . (day™) (msh)
300 2510 0.84 12.0
400 2170 0.98 11.9
500 1650 1.21 11.2

The result shows that the lower cloud top may result
in much stronger growth in shorter waves and slower
wave propagation. In relatively shallow convection, the
cloud layer is relatively thin and the intensity of the
maximum heating is larger than that of the deeper
convection [see Eq. (4.2)], the heating being released
in the lower atmospheric layer. The strong low-level
heating, on one hand, tends to strengthen moisture
convergence into the cloud and stimulate latent heat
release; on the other hand, it tends to lower the steering
level of the unstable mode so as to slow down the wave
propagation. Since the shorter waves have a shallow
vertical scale, they are more readily affected by the en-
hanced low-level heating.

When the cloud top and base are fixed, the shape of
the heating profile is found to change the instability
slightly. Table 4 indicates that the heating with a max-
imum below the cloud center (¢ = 1) has a similar
influence as that of lower cloud top, i.e., it destabilizes
the shorter waves and reduces the propagation speed.

An increase in the location of the upper boundary
(p. smaller) slightly increases the growth rate, in gen-
eral, if other parameters are unchanged. It also increases
the wave speed by raising the steering level for the un-
stable mode.

¢. Deep versus shallow moist convergence layer

-‘Observations show that the conditionally unstable
layer may be close to the ground, i.e., the cloud base
may be lower than the top of the moist convergence
layer. In the present model, we refer to that case as the
“deep moist layer,” while the “shallow moist layer”
has the top of the moist layer below or at cloud base.

TABLE 4. Variations of the characteristics of the most unstable
mode with changing location of the maximum heating. ARl other
parameters are assigned their typical values (7 = 0.01).

Most unstable mode

Wavelength ~ Growth rate

Heating profile ) Phase speed
parameter a (km) (day™) (ms™)
0.0 2030 1.00 12.9
0.5 2170 098 119
1.0 - 1790 1.10 11.0
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In the model with a shallow moist layer, since 1(p,,)
= (, the low-level, large-scale convergence is not di-
rectly affected by latent heating. In the deep moist layer
case, n(pm) # 0, and the convective heating has a direct
feedback on the low-level moisture convergence.

If we assume the cloud base p, = 950 mb, the eddy
viscosity coefficient K = 5 m? s, the lower boundary
De = 950 mb, and all other parameters have the values -
listed earlier, the calculated growth rates for § = 0,
0.005 and 0.01 are shown in Fig. 6. For the same mois-
ture content, the deeper moist layer produces a larger
growth rate and a shorter preferred wavelength. When
the top of the moist layer extends above cloud base,
the instability spectrum retains its single peak feature
for smaller ¢ = 0.005 but exhibits a double peak for ¢
= (.01, with one peak appearing in the wavelength
around 1300 km, beyond which there is a sharp de-
crease in the growth rate with wavenumber. Figure 7
compares the resuits for two inviscid cases for 1) p,
=950 mb and 2) p, = 900 mb, all other parameters
having the values listed earlier. In case 1 the cumulus
heating directly controls the low-level moisture supply
(since p,, <’pp), though the actual depth of the moist
layer is the same as that in case 2. We see that for
smaller g (=0.005), the growth rates in both cases do
not differ appreciably. When ¢ = 0.01, the growth rate
in case 1 has two peaks, and the maximum growth rate
(1.11 day™") is-larger than that in case 2 (0.98 day™!),
while the preferred wavelength in case 1 is much shorter
(1230 km) than that in case 2, which is 2170 km. There
is a sharp decrease in growth rate in the short wave
side of the preferred wavelength. If the moisture content
and the moisture layer depth become large enough, a
singularity will occur for certain wavenumber, because
the denominator in (A7) would tend to zero, and the
vertical velocity at the top of the moist convergence

2.0

Pm=950mb
— - — Pm=900mb
ae—. Pm=850mb
15f b

ke; (dayh)

10F s \ ]
. \
e~ L
Vad ~< N t
.f// > AN ,./ U
/ il \
AN o S\
051 //_/ N\, §=0. ~ / W 1
G .. N N N \-\
pr-- o §=0.005 \ B
=0 N %
BN AN \;
N \ :
0.0 L L e 1 S Sl L

1.0 2.0 30 4.0 5.0 6.0

FIG. 6. The growth rates for the heating profile (4.2) as functions
of wavenumber for different moist layer depth. The top three curves
correspond to averaged specxﬁc humidity ¢ = 0.01. All parameters
have the same values listed in section 5, except K = 5 m? s™'
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FIG. 7. The variations of the growth rate with wavenumber for
cases of 1) P, = 900 mb (solid curves) and 2) P, = 950 mb (dashed
curves). All other parameters have the values listed in section 5.

layer would tend to infinite. This singularity is essen-
tially similar to that found in Charney and Eliassen’s
(1964) model (Mak, 1981) and reflects the limitations
of the present cumulus parameterization scheme.
Nevertheless, the singularity occurs only in an unreal-
istic parameter range.

d. The effect of the Ekman layer

The lower boundary condition of the inviscid inte-
rior region was applied at the top of Ekman layer, p,,
where the vertical velocity is assumed to match Ekman
pumping velocity w.. Because the Ekman layer has a
finite thickness, the vertical velocity at p, is produced
by both baroclinic wave and Ekman pumping. If we
assume the top of the moist layer at p,, = 900 mb and
apply the boundary condition w = w, at 900 mb, we
underestimate the actual vertical velocity at this level,
because we neglect the vertical velocity induced by
baroclinic wave; if we use the lower boundary condition
at 1000 mb (surface), we overestimate the vertical ve-
locity at 900 mb, because we neglect the thickness of
the boundary layer. To include both contributions to
vertical velocity at the top of the moist layer, we apply
the lower boundary condition at 950 mb.

Figure 8 shows how the Ekman layer affects the
growth rates for different moisture contents §. In the
presence of moisture, Ekman layer pumping, on one
hand, produces vortex compression or stretching in
such a way as to weaken the eddy vorticity; on the
other hand, it contributes to the eddy development via
low-level moisture convergence. As the low-level moist
layer contains more moisture, the positive contribution
of the Ekman pumping becomes more prominent. As
shown in Fig. 8, when § increases, the growth rate has
a larger increase in the presence of Ekman pumping
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than in its absence, especially when the Ekman layer
friction is enhanced. For example, the ratios of the
moist maximum growth rate at § = 0.01 over that at
g = 0are 1.72,2.28 and 2.89 for K = 0, 5 and 12 m?
s7!, respectively. Note that in the absence of cumulus
heating, the Ekman layer reduces the maximum growth
rate by nearly a factor of two as K = 12 m? s™!, while
with moderate cumulus heating (¢ = 0.01) the Ek-
man layer increases the maximum growth rate by
about 10%. -

The presence of the Ekman layer dissipation also
slows down the phase speed of wave propagation for
all unstable modes. For ¢ = 0.01, the phase speeds of
the most unstable modes are 11.9, 10.9 and 10.§ ms™"
for K =0, 5 and 12 m? s, respectively.

e. The combined effects and explosivelike growth

The explosive cyclogenesis was defined as a depres-
sion with a deepening rate of at least 24 mb day™;
some extra large deepening rates even reach 60 mb
day™! (Sanders and Gyakum, 1980). The explosive
growth rate is about 2 to 5 times that of the usual dry
baroclinic growth rate.

If we consider the static stability & = 0.02 m? s™2
mb~2, the increases of the maximum growth rate are
about 23%, 72% and 156% of the corresponding dry
one as ¢ = 0.005, 0.01 and 0.015, respectively. (See
Fig. 5.) In general, the averaged specific humidity of
the moist layer in a midlatitude cyclone region is about
5 ~ 10 g kg™'. The increase in maximum growth rate
is, therefore, not large enough to account for the ex-
plosive growth. Our estimate is close to that of Sardie
and Warner (1983), but is substantially smaller than
Mak’s (1982). The apparent reason for the later dis-
agreement is that Mak used a larger heating intensity
coefficient.
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FIG. 8. The growth rates for the heating profile (4.2) as functions
of wavenumber for different Ekman layer friction. Three groups of
curves correspond to ¢ = 0, 0.01 and 0.015, respectively. All other
parameters are the same as those listed in section 5.
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If we use Mak’s héating profile, Eq. (4.9), we find
that his heating intensity is given by

_ 2L, i
(Ps* = PACopo

where p, and p, are the nondimensional pressures at
the cloud base and top, respectively, Using Mak’s pa-
. rameters—p; = 0.9, p, = 0.4 and Py = 1000 mb—we
get e =~ 7.7¢ (K mb™!). Table 5 compares our model
results for ¢ = 0.04 m? s=' mb™? and K = 0 m* 5™
with Mak’s results for the same heating profile and
parameters. When e < 0.2, the results are close. The
discrepancies between the two model results increase
as g or e increases, suggesting that Mak’s CISK for-
mulation, in which the vertical velocity at the top of
the moist convergence layer is sustained only by the
dynamical field, underestimates the destabilizing effect
of the convective heating, especially as g approaches
the optimum value 4. - ‘
As has been discussed, besides the destabilization of
increased moisture content, there are a number of fa-
-vorable factors for rapid development of the distur-
bances, such as reduced static stability, increased ver-
tical shear, higher latitude, shallower convection, and
deeper moist convergence layer with its top above cloud
base. These influential factors are reported to be indeed
pertinent to the rapid growth. For example, in his anal-
ysis of the 18-19 February 1979 storm, Bosart (1981)
pointed out that cyclogenesis was initiated along a
coastal front, a region of enhanced lower-tropospheric
baroclinity due to significant oceanic sensible and latent
heat fluxes which warm, moisten and destabilize the
boundary layer. Sanders and Gyakum (1980) suggested
a cumulus heating profile with a lower tropospheric
peak in the intensifying stage of very strong extratrop-
ical cyclones. Recently, in his partitioning of the total
heating into cumulus and mesoscale components,
Johnson (1984) pointed out that the cumulus com-
ponent produces a heating peak centered near 600 mb
(refer to his Fig. 6), which is similar to our shallower
convection case. The heating profile is probably de-
pendent on the static stability and the moisture profile
in the free atmosphere, which controls the depth of

TABLE 5. The growth rate (107° s~*)/wavelength (km) of the most

unstable modes computed from Mak’s model (estimated from his
Fig. 3) and the present models by use of Mak’s parameters and his
heating profile, Eq. (4.9), (K = 0 m*s™, ¢ = 0.04 m* s mb™?).

B
(K mb™})

0.1 0.2 03 0.4 0.5

Mak’s model 062 078 092 110 1.30

S 5750- © 4600 4000 3400 3050

Presentmodel . 065 087 224 258 - 254

" 5700 3950 1750 2600 3150
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TABLE 6. Characteristics of the most unstable modes for 1) normal
case, 2) shallow convection, 3) reduced static stability, and 4) com-
bination of shallow convection and reduced static stability. § = 0.01;
all other parameters are assigned typical values.

Most unstable mode

Wave- Growth Phase

length rate speed

Cases (km) (day™) (ms™)
L e e 2170, 098 119
2. B2 39(?2‘23 I 1650 1.21 1.2
3.0 Z 3?001 ;“;’12 - 1530 1.47 12.8
4, Pc=300mb 1120 2.01 122

¢ =0015m?s2mb?

convection. In the incipient stage, a relatively dry free
atmosphere in midlatitude would reduce the depth of
convection via the entrainment process; the heating
profile more likely possesses a lower maximum. With
the rapid development, the heat released in the lower
troposphere may further ‘destabilize the upper tropo-
sphere and promote deep convection. )
It is important to point out that the cooperative in-
teraction between favorable factors listed earlier may
create large growth which substantially exceeds the lin-
ear combination of their individual effects. Two illus-
trative examples are given in Tables 6 and 7. Table 6
shows that the reduction of the static stability and the
depth of convection in isolation may cause an addi-
tional 40% and 23% increase, respectively, in the max-
imum growth rate, compared to the normal convective
heating case. However, their joint effect produces an
105% increase in the maximum growth rate, which is

TABLE 7. Characteristics of the most unstable modes for 1) normat
case, 2) deep moist layer, 3) shallow convection, and 4) combinatign
of relatively deep moist layer and shallow convection. ¢ = 0.01, p,
=950 mb, K = 5 m?s7!, p. = 950 mb, other parameters are assigned
their typical values. .

Most unstable mode

S Wavelength Growt.h.v rate Phase speed
Cases (km) (day™) (ms™)

1. P gy 2860 0.6 9.8

2. Pn .'z 3g8 zg' 2240 084 106

3. P ggg mb | 2240 | 070 8.7

4 Pn=900mb e L1s 8.4

7, = 500 mb




1 APRIL 1986

about 3.5 times that of the dry maximum baroclinic
growth rate (0.57 day'). Table 7 compares the results
of the joint effects of shallow convection and deeper
moist layer in the presence of Ekman layer dissipation
with their individual effects. The increase in maximum
growth rate for the combined effect is 74%, which is a
good deal larger than that for shallow convection alone
(6%) or for a deeper moist layer alone (27%) and is
almost 2.9 times the maximum dry baroclinic growth
rate (0.40 day™!). Moreover, the phase speed for the
combined case is slower than the dry case, which is
also a result in line with the observations. For example,
the QFEII storm appears to slow down during its rapid
deepening stage (Gyakum 1983a).

Although the model considers only the bulk effect
of the cumulus convection, the parameters involved
in the model may reflect the indirect impacts of other
related relevant physical processes, for example, the
sensible heating and boundary layer process (fronto-
genesis). The strong upward sensible and latent heat
fluxes are typically largest during the earliest stage of
development of polar lows, i.e., in the region where
the enhanced convection originated but not in the re-
gion of explosive development (Mullen, 1983). There-
fore, as Danard and Elleton (1980) and Bosart (1981)
suggested, surface heating may not be directly respon-
sible for explosive cyclogenesis; instead, it serves to es-
tablish a favorable low-level environment via the warm
and moist boundary layer by increasing the moist con-
tent and the thickness of the moist layer, destabilizing
the large-scale stratification, and building up a stronger
conditionally unstable layer. As shown above, all these
effects will contribute positively to the rapid growth of
the baroclinic wave-CISK modes. Similarly, the dif-
ferential heating between warm ocean current and cold
continent will enhance the baroclinity in the lower tro-
posphere. The latter, in turn, will increase the growth
of the baroclinic wave-CISK mode.

6. Summary and conclusions

A theoretical, linear analysis of the moist instability
of a baroclinic zonal flow with conditionally unstable
stratification in the presence of an Ekman layer friction
is presented. The bulk effect of the cumulus convection
is incorporated into the two-dimensional continuous
model in an fplane with the use of the simplified Kuo’s
scheme and an adjustable heating profile. The vertical
velocity employed in the CISK parameterization is
consistent with Ekman layer pumping, baroclinic wave
forcing, and diabatic heating field. The direct feedback
of the latent heat release on synoptic scale disturbances
is included.

The general dispersion equation and eigenfunction
were derived analytically in terms of the homogeneous
fundamental solutions without specification of the basic
flow properties and heating profile. The analytical so-
lutions were obtained for a zonal flow with constant
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vertical shear and static stability, as well as a represen-
tative heating profile.

The moist unstable mode of a conditionally unstable,
baroclinic zonal flow may be regarded as a modified
baroclinic wave by the bulk effect of convective latent
heating. The fundamental dependences of the baro-
clinic growth rate on the static stability, rotation rate
and vertical shear remain -qualitatively valid for the
moist instability of baroclinic flow associated with
CISK. : : :

Besides being dependent on the Burger number and
the vertical shear, the moist instability under investi-
gation crucially depends on the averaged specific hu-
midity g of the moist convergence layer, which mea-
sures the latent heating intensity and the moist energy
stored in the mean flow. Both available potential en-
ergy, measured by vertical shear, and available moist
energy, measured by g and the depth of the moist con-
vergence layer, are important energy sources for the
moist unstable modes. The behavior of the waves lon-
ger than the Rossby radius of deformation are not ap-
preciably effected by convective heating, while the
waves shorter than the Rossby radius of deformation
are significantly destabilized by the convective heating.
The characteristics of the unstable spectrum, i.e., the
growth rate, and the wavelength of the most unstable
mode are nonlinear functions of the moisture content
g. There exist optimum values of ¢ that minimize the
preferred wavelength and maximize the growth rate. -
These optimum values are strongly dependent on the
static stability of the zonal flow, as well as on the vertical
heating distribution. It is found that the optimum spe-
cific humidity 4 that minimizes the preferred wave-
length for a representative tropospheric heating distri-
bution can be approximately estimated by matching
the Rossby radius of deformation with a length scale
L, = (gL.R/fy>C,)"* determined by moist energy per
unit mass and rotation rate, i.e., g is proportional to
the static stability.

In contrast to the tropical wave CISK, there is a
clear scale selection in the growth rate spectrum of the
wave CISK in baroclinic flow, in which the vertical
shear plays an essential part. If the moisture conver-
gence is primarily confined in the lower layer, the quasi-
geostrophic balance and baroclinity of the basic flow
seem to be enough to suppress short waves and lead
to a finite preferred wavelength. Therefore, with the
present convective heating parameterization, the scale
selection appears to be of the same nature as that found
in a dry baroclinic model.

The results presented in sections 4 and 5 were based
upon the assumptions of constant static stability pa-
rameter g, constant vertical shear, and no g-effect. Mak
(1983b) showed that the instability properties of the
moist Eady model and the moist Charney model are
fundamentally alike and that a more realistic static sta-
bility (say an exponential profile) does not change the
basic features of the instability process either, although
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it can have noticeable quantitative influence upon the
characteristics of the instability. It remains to be in-
vestigated whether the preferred scale is explained by
the baroclinic wave CISK when realistic vertical and
horizontal shears are used. In particular, a constant
shear without S-effect gives spuriously distinct short
wave cutoff.

The destabilizing effect of the latent heat release was
found to be remarkably enhanced when the static sta-
bility of the basic flow is reduced by other processes,
say strong upward oceanic sensible and latent heat
fluxes. Besides the reduced static stability, the following
factors may also have a significant influence on the
maximum growth rate and the preferred wavelength:
1) shallower convection with a lower maximum heating
intensity; 2) a deeper moist layer, especially when the
top of the moist layer extends within the cloud; and 3)
enhanced vertical shear and higher latitude. The co-
existence of several of the mechanisms listed here may
produce explosivelike deepening of the cyclones. The
shallow convection and Ekman layer dissipation slow
down the wave propagation speed.

The model results not only confirm that the cumulus
latent heat release is an essential ingrediént to account
for the rapid growth of the midlatitude cyclones, but
also suggest the important indirect impacts of the strong
sensible heat and moisture fluxes on the surface, as
well as the importance of the enhanced vertical shear.
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APPENDIX A

Derivation of the Dispersion Equation (3.8)
and Eigenfunction (3.10)

The right-hand side of (3.2) vanishes when 5(p) = 0
outside the cloud. In terms of solutions f,(p) and fo(p),
given by (3.6a, b), the eigenfunction can be éxpressed
as

B\ fi(p), Pe=D> Dy
QUp) = < APN(p) + B(DYAD), pp=p=p: (AD)
B, f(p), - Di>p = Py
‘BS/ the method of variation of parameters we can write
) n(@)2(2)
= : + 4,
A(p) = +0k Q(Pm)\f W (t) dt
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(@A)
tWg(D)
where 4 and B, as well as B, , Bin (A.1), are constants

to be determined. By use of the interfacial conditions
(3.5a, b) we have

Bp) = ~0k*0(p,) | di+B, (A2)

B(py) =0 (A3a)
A(p) =0 (A3b)
B, = A(py), (A3c)
- By = B(p,). (A3d)
From (A3a) and (A3b), A, B are determined and
QKU pm) - [P n(O)(0)
A(p) = 4
P =700 b A
Qk*Up,,) (7 n)fi(0)
B(p) = — .
D) = =100 dp i & (A9D)
From (A3c) and (A3d), we obtain
QK*Upm) P n()(0)
B, — = di =0 A5
VTR e v (A3)
L QK*Up,) [ a0
B d A6
2T 0 e o 470 (49

The expression for Q(p,,) depends upon the value
of pp,. We shall discuss two cases:

() pm=>Po '
In this case, the top of the moist convergence layer
is located at or below the cloud base, and from (A1),

Upm) = B\ f{(Dm)-
(i) P,> P, > P,
When the top of the moist convergence layer is lo-
cated within the cloud region, from (Al) it can be
shown that

Ve
= - - AT
Wpw) = BUAP )/(1 2-1). @
where
< [ ) ~ A
) Yo Pm AV Pm

In both cases, i.e., for p, below or within thé cloud,
Q(p,.) can.always be expressed in terms of (A7), pro-
vided we define

Oa De Z Pm Z Db

i (ON

I= L 20 (89)

LAYPm) — O (D)),

Dp > Dm > Ds-
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Using (A7) in (A5), we obtain the dispersion relation

7 n(fa(8)
siton = 0k 1= siom) | SV
by using (A7) in (A6), we get

Si(Pm) f P (0
flp) — QKL Jp tW(2)

so that the eigenfunction (A1) is determined with an
arbitrary multiplicative constant.

] =0; (A9)

B2 = BIQk2

dt, (A10)

APPENDIX B

Expressions for I;(p) and I,(p)

62
= — 5= {Ik(1 — pe — O(p.
1i(p) 2os— ) {lk(1 = pe = )l pe)

— irQyp)My(p; 1) — Tk(1 — pe — OQ(Pe)
— irQup)lap; 1)},

6V2
12(p)=— 3 v_

= [p)(D; 1)

— Qu(p)Ap; W],
where
I(p, ) = e"‘"’*‘“”[(Za —IXp+tc—1+b

bo(pp +c— Yptc— 1) : _
Gre-De=D ]+bz{ln(p+c 1)

+ F[-u(p + ¢ — )]} + bsllnp + F(—up)),
bo=py+c—1—alpy,+ p +2c—2),

bi=by— Qa— 1Xpy+p+c— 1)+;2L-(2a-1),

1. +e—1)(Drve—
b2 = bo c— 1 [pb +p, +2c—2— __(pb (Cl—)‘(pl-) 'l)]
_ . (pb+c—— 1 )(p1+c—l)
(Qa—1) ——————(C ) s
by = €™ Nuc — u + )bo + (2a — 1)c — 1)]

1
X{l—-c—-——f[pb+p,+2c——2

oyt c—p +c— 1)]}
(c—1)

BIN WANG AND ALBERT

BARCILON 719
oo xn
Flx)= ,
) Eln-n!

IL(p;, w) = —L(p; —n).
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