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ABSTRACT

The weakly nonlinear evolutions of the Green and Charney waves are compared for'two regimes: (1) when
internal dissipation is the dominant dissipation; (2) when Ekman friction is the dominant dissipation.

When the Ekman dissipation is dominant, we obtain a large amplitude, equilibrated wave state which depends
upon the initial conditions but not upon the magnitudes of the dissipation; the steady wave features a barotropic
structure, and does not transport heat in the meridional direction. In sharp contrast, when internal dissipation
is dominant, a small amplitude, equilibrated wave state is found, which is independent of the initial conditions
but depends on the magnitude of the internal dissipation. The steady wave exhibits a westward phase tilt and
transports heat poleward by an amount proportional to the internal dissipation.

The presence of a large planetary vorticity gradient stabilizes the finite amplitude evolution of the planetary
waves and leads to a stable equilibrium planetary wave state.

1. Introduction

The different dynamic effects produced by thermal
and mechanical dissipations in a linear analysis of an
extended Charney model were found in a previous
study (Wang, Barcilon, and Howard, 1985; henceforth
denoted by WBH). It is of interest to further investigate
the different roles they play in the finite amplitude evo-
lutions of baroclinic waves.

The magnitudes of the Newtonian cooling and Ek-
man dissipation in quasi-geostrophic motion are pro-
portional to the nondimensional numbers u and §, re-
spectively, which are defined as

1

u=foR0“, (1.1)
12
é= SER—O-, (1.2)

where 74 is the Newtonian cooling time, f; the Coriolis
parameter, Ry, E, and S represent the Rossby number,
Ekman number, and Burger number (S = Lp%/L?
where Lp and L are the radius of deformation and
characteristic horizontal length scale, respectively). The
weakly nonlinear analysis by Wang and Barcilon (1985,
henceforth denoted by WB) considered the evolution
of the most unstable Green mode in the presence of
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an O(A'2) internal dissipation (mainly the Newtonian

cooling) and an O(A) Ekman dissipation, where A < 1

is a measure of the supercritical baroclinity. Physically,

this regime implies that the Newtonian cooling time is
of the same order of magnitude as the baroclinic de-
velopment time scale, and the Ekman dissipation time
scale is much longer than the baroclinic development
time scale. Yet, as shown by (1.1) and (1.2), both the
parameters u and § are dependent of the characteristic
length scale, L, i.e., u increases, while & decreases with
increasing L. If waves of scale shorter than planetary
scale are considered, we expect that Ekman dissipation
to be more important than the internal thermal damp-
ing. Therefore, we propose to reconsider the dynamics
in the parameter region in which Ekman dissipation
is dominant compared to the internal dissipation which
in this paper will be due to Newtonian cooling, i.e., &
= O(A'?) and u = O(A); this study is an extension of
Pedlosky (1979).

For ease of discussion we label the regime where
internal dissipation is dominant, i.e., x = O(A"2) and
6 = O(A), as Regime I, and label the regime where
Ekman dissipation is dominant, i.c., § = O(A"?) and
u = O(4), as Regime II. As shown in section 4, we find
rather different equilibrium wave states in these two
regimes, one resembling a high index flow (Regime I),
and the other resembling a low index flow (Regime II).
In order to facilitate comparison with WB’s results we
develop the analysis in sections 2 and 3 for strongly
unstable Green modes; however, the conclusion, sum-
marized in section 4, regarding the different dynamic



15 JUNE 1986

effects of the Newtonian cooling and Ekman dissipation
are, in principle, equally applicable to the Charney
mode. _

Pedlosky (1979) found that, in the presence of an
O(A'?) Ekman dissipation and in the absence of New-
tonian cooling, the Charney mode with wavelength of
planetary scale exhibited a weak, frictionally induced,
nonlinear instability. When a realistic planetary vor-
ticity gradient is present, these planetary scale waves
(wave two through four) fall in the unstable Green
mode region. Section 5 compares the finite amplitude
dynamics of the Charney mode with that of the Green
mode for a fixed wavelength; the comparison will help
understand the role of a realistic §-effect on the evo-
lution of baroclinic waves.

2. Amplitude equations for the Green modes in re-
gime II

The model used here is the same as the one used by
WAB, except that the minor horizontal diffusion of vor-
ticity is ignored, and the internal dissipation coefficient
u = 0O(4) is assumed to be much smaller than the Ek-
man dissipation coefficient § = O(A!?), i.e., the Ekman
spindown time is of the same order of magnitude as,
while internal dissipation time is much longer than,
the e-folding time of the baroclinic growth. The inter-
ested reader is referred to WB for the details of the

model. After introducing a slow time scale T = A%,

the governing equation for strongly unstable Green
modes, in the presence of Newtonian cooling, becomes

3 3 . 0
12 9 9 _ -
(A 8T+ z c')x)q + (4K — 2KA) I

¥ 9
+ J(¢, q) + u(a—zz - a—z)¢ =0, (2.1)

where

¥ 9 2
g= (622 p + SV )¢, (2.1a)
is the perturbation potential vorticity, K = (k2 + /2
+ 11)'2 is the modified total horizontal wavenumber,
kandl=m+Y%)r,m=0,1,2,- - -, are nondimen-
sional zonal and meridional wavenumbers, respec-
tively. All the boundary conditions for ¢ remain iden-
tical to those used by WB.

The asymptotic solutions obtained by a singular
perturbation technique can be summarized as follows.
To O(€*?), the perturbation streamfunction is

606, 2, T) = e"ze”zl:A(T)z(l g

— A2 é % (-2 Ii’z)] coskx cosly + O(e*?), (2.2)

where ¢ = O(4A) is an expansion parameter that mea-
sures the nonlinearity, and

BIN WANG AND ALBERT BARCILON

1289

p=—;——I€'<0 (2.2a)

denotes the exponential decay rate of the wave ampli-
tude with height. The zonal mean flow can be expressed
as

#,2 1) =2+ J%l (BATYe" + (AP

= |A(0)PYi(2)] cosjy + O(&),  (2.3)
where j = (J— V)r,J =1, 2, 3,- - +; B)(T) satisfies
% - ZJ,%J B;=(rs—G)) _A% (14(T)P - |40)),

2.4)

B{0)=0, J=1,2,3,---.
In (2.3) and (2.4) f(z), G,, and r; are defined by (A1),
(Ada) and (A4b), respectively, in the Appendix; the
evolution of the amplitude A4 is governed by
L4, Kk (|, S
dT? dT A ZAkK,

+ Alx(A(T)? = 14O + 2 xsB)l =0, (2.5)

J=1
where
o K?
S S 2.5
ARG S (2:52)
AI/Z
Cor (2.5b)

" WKE - p)'?

is the imaginary part of the complex phase speed for
inviscid Green modes, the quantities x and x that are
involved in the wave-mean flow interaction term are
respectively given by (AS) and (A6) in the Appendix.

There are two noticeable differences between the
preceding amplitude equations, Regime II, and those
for Regime I (WB). As a major damping factor, the
O(A!”?) Ekman dissipation in Regime II exhibits its
influence on the mean flow correction via the matching
condition, so that the variation of the mean flow is
governed by an infinite set of differential equations for
each Fourier component, and the corresponding dy-
namic system can no longer be cast into a simple Lor-
enz set. Besides, an O(A) Ekman dissipation in Regime
1 does not affect the amplitude equation, yet an O(A)
Newtonian cooling in Regime 1I does by appearing as
an imaginary part of the coefficient of 4 [see (2.5)] in
the wave amplitude equation, implying, as will be
shown shortly, a weakly nonlinear destabilization.

To illustrate the time evolution and study some of
the characteristics of these amplitude equations we
performed numerical calculations, in which, (in 2.3),
we truncated the infinite summations at J = 10; a Mer-
sen scheme with adjustable time step was used to ensure
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an accuracy of 1075, Repeated attempts to find (nu-
merically) limit cycles and chaotic behaviors failed.
Figure 1 shows a typical time evolution of the wave
amplitude in the presence of O(A'?) Ekman dissipation
and O(A) internal dissipation. The wave grows, exhib-
iting a damped vacillation, then reaches an equilibrium
state which describes a large amplitude, steady, prop-
agating wave state that will be studied in greater details
in the next two sections.

The vacillatory behavior occurring during the ap-
proach to steady wave states disappears if the dissipative
time scale is shorter than the baroclinic development
time scale. This is a common feature for both regimes.
In Regime I, a rapid monotonic approach to the steady
wave state would take place when the internal dissi-
pation time scale is shorter than \[3-/_2— times the e-fold-
ing time for baroclinic development (WB). In the Mar-
tian atmosphere, Newtonian cooling time is usually

16 18 20 22 24 26 28 A

FIG. 1. (a) Time history of the wave amplitude in Regime II showing
the approach to steady state with damped oscillation. The parameters
used in calculation are: k = 1.1 (wave two), /= 7/2,6 =0.1, A= 0.1,
2u/A = 0.03. (b) The phase-plane orbit of the solution of (a).
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FIG. 2. The evolution of the amplitude A(7T) showing finite-
amplitude instability induced by the smail Newtonian cooling only.
(k=11,1==/2,A=0.1,2u/A = 0.06, 5 = 0).

comparable to the baroclinic development time
(Barnes, 1984), implying that after a relatively short
period of development, baroclinic waves reach their
steady states. This could be one of the relevant mech-
anisms responsible for the features of Martian circu-
lation, where the weather variations, associated with
travelling baroclinic waves, are much more regular in
terms of the amplitude than those in the Earth’s at-
mosphere (Leovy, 1979). -

If the Ekman dissipation is absent, and for O(A) in-
ternal dissipation Fig. 2 shows the evolution of the wave
amplitude which displays finite~amplitude instability.
WBH showed that in the immediate vicinity of the

_critical points b = 4K, the weak internal dissipation

destabilizes the wave-free zonal flow in the linear dy-
namics. The behavior shown in Fig. 2 indicates that
this destabilization survives in the nonlinear regime,
and leads to catastrophy if we do not introduce Ekman
dissipation or Newtonian cooling on a longer time
scale.

3. Steady wave solutions and their stabilities

Equations (2.4) and (2.5) are suited for numerical
integration. However, it is difficult to use (2.4) and
(2.5) to examine the stability of the steady wave states
analytically. We, therefore, make the transformation

BAT) = BAT) + (AT - [40P)So — G (3.1)

then, the O(¢) mean flow correction becomes
ﬂl(y: z, T) = z [B~J(T)er"z
J=1

+ (AT — 1AO)f(2)] cosiy  (3.2)
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where B,(T) satisfies
dB, J P
?T— A1/2

and f5(z), G, and r;, are defined by (A2), (Ada), and

(A4b), respectively. The corresponding wave amphtude
equation (2.5) becomes

A2
By=($o - Gj)dI l (3.3)

LA, 3Gy, a5
dT* " dT A 2AKK,
+ AX(42 - 40P + T xB) = (3.4)

J=1

where %, xs are given in the Appendix by (A7)
and (A6).

The trivial steady solution 4 = B; = 0 to (3.3) and
(3.4) corresponds to the zonal baroclinic flow of the
original basic state. Let A, B, ~ 7 be the small per-
turbations about that solution. The eigenvalues are
given by

§  [82 KkCY SKZ)]
= - -+
Tia=-3* [4+ A (H 20kK/]
(k — 5/2)*x% _
==t <0, k=34

It can be shown that ReI'; > 0 implying that this equi-
librium solution is always unstable. In the atmospheric
context, that suggests that the original baroclinic mean
zonal flow is always unstable in the presence of a small
amount of Newtonian cooling. This agrees with the
linear theory. As shown by WBH, an O(A) Newtonian
cooling destabilizes and eliminates the inviscid, neutral
modes (also refer to Held et al., 1985). In this regime,
the dissipative role of the Newtonian cooling is rele-
gated to longer time scales ¢ = O(A™!) which are not
accounted for in our amplitude equations.

The presence of the O(A) Newtonian cooling also
eliminates any stationary, steady wave solution, be-
. cause the coefficient of 4 in (3.4) becomes complex.
However, a steady propagating wave solution may exist.
Write

A = R(T)e™D

and converf the amplitude equations (3.3) and (3.4) to

"d*R . dR o\ k*C,
arr v R(dT) A
+ R[i(Rz - Roz) + 2 XJE_]] =0
J=1
d 5\ o2 B0\ _ SKK*CYH _,
(dT+ 5)(R dT) 2kar R .
dB, % R2

d_z:,,— Al/z BJ+(°S°0'— GJ)

=1,2,-- (3.5)
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where R, = |4(0)|. Setting d>R/dT? = dR/dT = dB,/
dT = 0, but letting d6/dT = w, = constant, we find

_ Sku
Ve = 8RZ6A2’
1 k2
2 2 2
R =7 [“"’ T IRR )] +Ro
B, =0. (3.6)

The necessary condition for the existence of a steady
wave solution requires that x > 0. Figure 3 displays
the dependence of X on the wavenumbers k and /,

‘showing that % is positive for the Green modes with

meridional wavenumber / = 7/2, (the gravest mode),
and is small for small k but, for / = 37/2, x becomes
negative for the ultralong waves. This implies that in
the Regime II, the only possible steady planetary waves
are those that possess the longest y-wavelength. How-
ever, in the Regime I, steady planetary waves with
higher y mode (/ = 3w/2) are also possible.

Although, in (3.4), steady propagating wave solutions
are possible, we must test their stability to small per-
turbation. Write

R=R.,+R, L=wR2+L, By=5,
where L = R*d9/dT), and linearize (3.5) about the

steady solution (3.6). For the resulting linearized equa-
tion, exponential solutions of the form

R,L, By~ (R, L, B)eT
are possible if T" satisfies the following algebraic equa-
tions

[1‘2 +30 + 302 - X §°’ + 3%(R2 — Roz)]ﬁ

2we

=0, (3.7a)

0 2 4 6 8

k

F1G. 3. Coefficients % defined by (A7) and x defined by (A5) as
functions of wavenumber k for the Green modes. The solid (dot-
dashed) line is calculated for / = n/2 (I = 37/2).
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, SK* _
2 7
j2
(r e )3, 0, J=1,2,3,+-. (3.7c)
If ,
) n 6
I‘=I‘”=Ajm , J=1,2,3

B, may not be zero, and nontrivial solutions exist.
Therefore, T',is a series of possible eigenvalues. If other
eigenvalues, distinguished from T';, exist, B, must
vanish; using this fact, we obtain from the first two
equations of (3.7) the following cubic equation:

. . k2 2
(T + 5)[r2 + 8T + 302 — f‘”»

SK?

+ 3i(Rez - Roz):l - 2uwekC%1E = (. (38)

Since all T'y; = §j%/(A'?r)) < 0, the stability property
of the steady wave solution is determined by the ei-
genvalues I';, I's, and T4, which are the roots of Eq.
(3.8). It can be shown that all the coefficients of the
powers of T" in (3.8) are positive real numbers, and that
all the roots of (3.8) have negative real parts, indicating
that when the steady wave solutions exist, these are
always stable to small perturbations. In his study of
the evolution of the Charney mode, Pedlosky (1979)
showed that for Boussinesq fluids, the steady solution
for 6 = O(AY2) and p = 0 is stable for small distur-
bances. The result here confirms and extends Pedlos-
ky’s results for the general case.
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4. Different effects of the Newtonian cooling and Ek-
man friction in finite amplitude dynamics -

We now compare the different roles played by the
two dissipative mechanisms we have considered. It can
be seen from (2.2) that Ekman dissipation does not
influence the vertical wave phase tilt. In the presence
of an O(A'?) Ekman dissipation, as in the inviscid case,
the constant phase line tilts westward (eastward) as the
amplitude increases (decreases). When the wave reaches
its equilibrium state, its constant phase line becomes
vertical i.e., when dA4/dT = 0, the equilibrated wave
exhibits a barotropic structure at leading order.

In contrast, the O(A'?) internal dissipation in Re-
gime I generates a time independent, westward phase
tilt proportional to the wave amplitude and to the
Newtonian coefficient, as demonstrated by (5.14) of
WB. Hence the wave may still tilt westward and the
horizontal heat flux may remain poleward as its am-
plitude decreases. When the wave reaches its steady
state amplitude, the vertical wave tilt is described by

— B2 4 B2,2
?=% (1= Ko + Rz Can
z z2(1—1€z)2+‘—1:3(1—21€z)2

where 6, represents the phase of the complex wave am-
plitude at steady state. Since the quantity in the rhs of
(4.1) is always positive, 36,/0z > 0, implying a westward
tilt of the constant phase line. 36,/0z changes from k/
u at the surface to 0 at infinite height. A westward wave
tilt implies that the steady wave transport heat pole-
ward. To maintain the steady wave, conversion of zonal
to eddy available potential energy is required to over-
come the internal dissipation.

The characteristics of the equilibrated Green wave -

!

TABLE 1. The characteristics of the equilibrated Green waves for different dissipative parameter (u and §) setting, R, and i, are the wave
amplitude, and mean flow correction, respectively; f5(z), f;(z), x and X are respectively defined by (A1), (A2), (A5), and (A7).

4 = zero u=0(d) u = O(A?)
. Regime 1
kzc )l/2 (kzcgl - “2)1/2 v
. (RO + X A > Re = 2X A >
& = zero B k C K- ™ )
or - Z Sz2) cosjy, Equilibration does not exist: catastrophe. i, = —=—L2 3 f(2) cosjy,
8 =0(a) : : XA .
No wave t11t, statxonary. Wave tilts westward with height; stationary.
Regime II
2 1/2 2,72 172
(R0+ka) , (R0+ kC;/A)
A X
o, = Sku
_ k2C e " QRsA?
8= O(AR) 2 J(2) cosjy, ii KCA/A ©
4= —x— T 2 cosjy,

No wave tilt; stationary.

No wave tilt; propagate slowly.
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for both Regimes and for five parameter scttings are
summarized in Table 1, where R, and #, are, respec-
tively, the amplitude of the equilibrated Green wave
and mean flow correction at the equilibrium state; Cy;,
%, %, f5(2) and f)(2) are defined by (2.5b), (AS), (A7),
(A1), and (A2), respectively. Notice that, in Table 1, u
was classified into three categories, while é fell only
into two categories. This is because an O(A) Ekman
dissipation, to O(e), does not alter the equilibrated wave
amplitude and the mean flow correction. There are
several noticeable differences between the steady state
where Ekman dissipation is the dominant energy sink,
ie., 6 = O(A!?), and the steady state where internal
dissipation (mainly Newtonian cooling) is the domi-
nant energy sink, i.e., g = O(A'?). The O(A'/?) Ekman
dissipation yields a steady wave solution which depends
on the initial conditions and does not depend on the
magnitude of the dissipation. Since an O(A'?) Ekman
dissipation does not destroy the conservation of po-
tential vorticity, the final equilibrium state retains its
initial memory and carries no information about the
dissipation. On the contrary, internal dissipation erodes
the eddy potential vorticity and leads to an equilibrium
state which, to leading order, does not depend on the
initial amplitude but depends on the magnitude of the
dissipation. The larger the internal dissipation, the
smaller the equilibrium amplitude, and the smaller the
mean flow correction. From (A7) it can be shown that
% is less than x for all wavenumbers (also shown in
Fig. 3), hence for Regime II the steady wave amplitude
R, may be significantly larger than that for the Regime
1. Because of the larger amplitude of the steady waves
found in Regime II, the resulting circulation resembles
a “low-index” circulation, while the steady Regime I
tends to resemble a “‘high-index” circulation. Figures
4a and 4b compare the vertical structures of the equil-
ibrated mean flow for different latitudes and for Re-
gimes I and II, respectively. The largest changes of the
mean flow are found in the middle of the channel in
both regimes. However, in Regime I, where Newtonian
cooling is dominant, the mean flow is increased near
the ground and decreased in the stratosphere, while in
Regime II, where Ekman dissipation is dominant, the
equilibrated mean flow is reduced in both the lower
troposphere and the stratosphere, with the largest re-
ductions found in the stratosphere. A comparison of
u, for Regime I and II with the #, for the inviscid case,
indicates that the presence of a dominant O(A!?) in-
ternal dissipation reduces the amplitude but does not
alter the vertical structure of the mean flow correction,
while the presence of a dominant O(A'/2) Ekman dis-
sipation not only increases the amplitude but also
changes the vertical structure of the mean flow correc-
tion. '

When we combine an O(A!?) Ekman dissipation
and an O(A) Newtonian cooling the nonlinear desta-
bilization of the O(A) Newtonian cooling eliminates
the stationary solution: Only a steady, propagating
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FI1G. 4. The equilibrium mean flow as a function of height for the
Green modes and (a) for the Regime I (k = 1.1,/ = #/2, A= 0.1,
2u/A = 0.2); (b) for the Regime Il (k= 1.1,/ =#/2,6 =0.1,A=0.1,
3u/A = 0.03). The solid, dashed, dot-dashed, and dotted lines are
calculated at y = 0, +£0.25, +0.5, +0.75, respectively.

wave state, given by (3.6), is possible. The propagating
speed of the steady wave, is determined by the ratio of
u to 8, and by the wavenumbers. The inclusion of the
internal dissipation leads to a dissipation-dependent
steady wave amplitude. In both regimes the steady so-
lutions are different from the inviscid steady solution.
Unlike the steady states in Regime I or 11, the inviscid
steady state is unstable to small perturbations.

5. Stabilization of the S-effect on the finite amplitude
dynamics of the planetary waves

The environmental potential vorticity gradient plays
an important role in the stability of a continuous baro-
clinic model. Under representative winter conditions
and in the presence of a representative g-effect, plan-
etary scale waves fall in the unstable Green band (2K
< b < 4K), however, if the S-effect were small or absent
and for a nonzero basic state potential vorticity gra-
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dient arising due to other effects, those waves would
fall into the Charney band (0 < b < 2K).

To understand the role of the g-effect, we need to
compare the Charney and Green mode dynamics for
a fixed wavelength. In this section, we focus our atten-
tion on the strongly unstable Charney mode arising
from the supercritical shear; i.e., replace (4K — 2KA)
in Eq. (2.1) by 2K(1 — A). The asymptotic solution for
the total streamfunction obtained by a similar singular
perturbation technique is

A'” d4
= e 1/2 ,pz| ==
o(x,»,2,T) yz + ¢ '“e [zA(T) i X dT:I
X coskx cosly — e 2 ; [Bje’” + 7(2)
J=1
X (141> = 14(0)1))] sinjy + O(e¥?), (5.1)
where A(T) and BT ) are now governed by
d’A K> d4 . Kk u SK?
- ot 1 tit =
dT* A7pdT ' 2Kp A 2kK
+ AIR(A42 - 140 + T B =0, (5.2)
J=1
dB, _ j% 5 -G [2 2 4PKCp - r,)]. dAl?
dr A, |7 @R+ 8P ) dr
B,0)=0 (5.3)

As before, the wave amplitude equation has complex
coefficients, i.e., in some parameter regime it is capable
of exhibiting nonlinear instability The quantity
JA2), X, X, C; and r, are given by (A3), (A8), (A9),
(A4f) and (A4b), respectively. Equations (5.2) and (5.3)
are the counterpart of (3.3) and (3.4) for the Charney
modes. The steady propagating wave solution now be-
comes

uSk

aR%A7

We =

1 k?
2 2 a
RO =R+ ( we 2Kp)’
7. = (R2 ~ R) T f'i(2) cosjy.
J=1

The necessary condition for the existence of a steady
wave solution is

x > 0.

Figure 5 shows X' as a function of wavenumber &, / for
the Charney modes. Itisseen that X’ <Oas/ = #/2, k
< 1.75, or I = 3x/2, k < 8.40. This is the most prom-
inent difference between Charney and Green modes.
It indicates that, according to our model, steady wave
solutions are possible only for short waves. At 45°N,
k> 1.75 implies that more than three waves are found
along the entire latitude circle. When we take u = 0,
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FIG. §. Coeflicient X’ as a function of wavenumber k for the Charney:
modes. The solid (dot-dashed) line is calculated for!==/2(=3n/
2).

and assume the fluid to be Boussinesq, the above
expressions reduce to those of Pedlosky’s (1979). For
typical winter shear, with the 8-effect, wave two falls
within the unstable Green band, i.e., in the weakly
nonlinear framework this mode possesses finite am-
plitude stability, and the equilibrium state exists. In
the absence of, or for small 8, that wave falls into the

‘Charney band, and does not possess finite amplitude

stability because X’ < 0. Therefore, the g-effect plays a
stabilizing role in the weakly nonlinear dynamics of
the planetary waves, and leads to an asymptotically
stable equllibnum wave state.

By using a 2-layer model, Pedlosky (1981) found
that even a weak (-effect leads to a dramatic change
in the amplitude dynamics; as 8 increases, chaotic be-
havior gives way to more regular steady waves. His
analysis was confined to a small 3-parameter. The result
here shows that B-effect has qualitatively similar effect
on the finite amplitude waves.

If the equilibrium state exists, i.¢., if X' > 0, the ver-
tical structure of the equilibrium mean flow is described
by the summationi of /’(z) at a fixed latitude. Figure
6 depicts this feature for wave six. It is seen that the
existence of the steady Charney mode corrects the ini-
tial mean flow by reducing the shear in the lowest scale
height. As shown in Fig. 4b, the steady Green mode,
that has a'large wave amplitude in the stratosphere,
induces significant reduction of the initial mean shear
both near the ground and in the lower stratosphere.
Therefore, the reductions of the vertical shear induced
by the mean flow corrections of the Charney and the
Green modes, though quite different from each other,
would tend to effectively eliminate their own energy
source since they occur precisely where these waves
draw their energy from the mean flow.
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FIG. 6. The equilibrium mean flow as a function of height for the
Charney modes and Regime I (k = 3.6,/ = w/2, A= 0.1,6 = 0.1,
2u/A = 0.03). The solid, dashed, dot—dashed and dotted lines are
calculated at y = 0, £0.25, +0.5, £0.75, respectively.

6. Concluding remarks

We studied the different dynamic influences of the
internal dissipation (mainly Newtonian cooling) and
Ekman dissipation on the nonlinear evolution and
equilibration by comparing the two dynamic regimes
defined in section 1. In Regime II, when Ekman dis-
sipation, O(A'/?), is dominant over Newtonian cooling,
the nonlinear evolution, on a time scale of O(A™'/?),
leads to a relatively large amplitude steady wave state
which resembles a low index circulation pattern. Since
an O(A!”?) mechanical dissipation in the boundary layer
does not destroy the conservation of the interior po-
tential vorticity, the amplitude of the steady wave de-
pends upon initial condition and does not depend upon
magnitudes of the Ekman dissipation; the steady wave
exhibits a quasi-barotropic structure and does not
transport heat in the meridional direction to the leading
order. In sharp contrast, in Regime I, in the presence
of a dominant internal thermal dissipation, a relatively
small amplitude steady wave state resembling a high
index circulation pattern is found. The steady wave
amplitude is independent of the initial conditions but
depends on the magnitudes of the internal dissipation.
The steady waves in Regime 1 feature a baroclinic
structure and transport heat poleward, the heat flux
being proportional to the intensity of the internal dis-
sipation. An O(A"2) Ekman dissipation was also found
to have a significant impact on the vertical structure
of the mean flow correction.

When in isolation, i.e., in the absence of Ekman
damping, a weak O(u) Newtonian cooling prevents the
nonlinear unstable Green mode from reaching an
equilibrium state. This destabilization does not survive
in the presence of Ekman dissipation. In Regime II,
the O(u) Newtonian cooling also changes the steady
wave propagation by adding a constant eastward phase
speed proportional to u/8.
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When the dominant characteristic dissipative time
scale equals the baroclinic development time scale, the
evolutions of the finite amplitude waves in both re-

.gimes, on the time scale ¢t = O(A™!/?), lead to steady

(propagating or stationary) wave states, which are al-
ways stable to small perturbations. No stable limit cycle
or aperiodic solutions were found in the realistic pa-
rameter ranges that typify atmospheric conditions in
our model. The nonlinear stability of the baroclinic
waves in the present model is found to be associated
with the stabilizing effect of the planetary vorticity gra-
dient (the B-effect). As has been shown in section 5,
the change in structure in the wave amplitude from a
Green to a Charney mode is responsible for negative
values of X/, i.e., the nature of the nonlinear interaction
of a finite amplitude wave with zonal mean flow is
partly dependent of the vertical structure of the wave.
The presence of a planetary vorticity gradient, by shift-
ing these waves into the Green modes and thus chang-
ing the vertical structure, stabilizes the finite amplitude
planetary wave circulation, and leads to an asymptot-
ically stable equilibrium planetary wave state.

Finally, the conclusions presented are derived from
the weakly nonlinear analysis which models wave-
mean flow interactions but does not account for wave-
wave interactions which may be dynamically impor-
tant.
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APPENDIX

Expressions for Vertical Structure Functions.and
Wave-Mean Flow Interaction Coefficients

We denote by f;(z), f5(z), and f}(z) the vertical struc-
ture functions of the Jth component of the mean flow
corrections for the Green mode in Regime I, the Green
mode in Regime II, and the Charney mode in Regime
11, respectively. They are defined by

f12) = =G’ + eP($22 + $1z + &), (Al)
f1(2) = =8’ + e (8,22 + $1z + ), (A2)
o _APRC, o
fid = r s € e (A3)
In (A1) through (A3),
1
Gy == (2pSo + $1 + 212C), (Ada)
J
1 (1, .\
ry= 5 - (— +J2S) < 0, (A4b)
4
12
$, = —RC (Adc)

24 -2p -5
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(2 — 8p)S, 28,

Si= i T (Add)
&2 (4p"1)(‘§°1+2('92

e?o K2 4p2 — Zp — Siz s (A4e)
(_1)J+12j

C,= ]2_—2—17 . (A4f)

The wave-mean flow interaction coefficients x, X,
X, X', and x77, which appeared in the amplitude equa-
tions (2.5), (3.4), and (5.2), are defined by

= —— 4K121 + ___—
X=aME-p) ' J§ =5
X sy = $o= (= DG}, (49)
€k2 (_1)]412
TAR=p G L;—1), (A6
T AR =) P —apy BT ) (A9
X=x- 2 X.’(so—Gj), (A7)
J=1
~y sz{ 212K2 hd (_1)1412
- +
ol @-y E, J(G% - 4l

—412KC, K 2K
[(4p1€ ¥ 59 (K - 2K)]} ., (A8)
ek? 4]2
Xy = (—1y = £ (A9)

PA j(j* — 41, — 2K)°
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In (AS) through (A9),
=.h“’(h“ + 8K1 + 36KK + 96K3h + 120K%),
(A10a)
Ly = —4K(r; — 2R7((r, - 2K)?
+ 2K(r; — 2K) + 2K?], (A10b)
Ly = KR~ [—8oh* + (8, — 2KSYH° — 2, — 2KS,
+ K2 So)h? + 6(K28, — 2K$,)h — 24KS,], (A10c)
h=4p-a. (A10d)
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