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ABSTRACT

Cold season atmospheric observations of vacillation point to a wave-mean flow interaction of baroclinic,
planetary waves with their mean flow, and the observational data show that wave 2 is the largest contributor
to the energetics and the heat flux. To verify this hypothesis we present a weakly nonlinear analysis of the
evolution of a single, most unstable Green mode interacting with mean zonal flow in the presence of internal
and Ekman layer dissipations, the former being larger than the latter.

The derived amplitude equations for the wave and the mean fields transform into a Lorenz set of equations
that admits stable, finite amplitude wave states. No stable limit cycle or aperiodic solutions were found in the
realistic parameter ranges that typify atmospheric winter conditions. When the system is disturbed away from
these stable states, there is a monotonic or vacillatory approach to equilibrium. Damped vacillation occurs when
the internal dissipative time scale is longer than the e-folding time scale of the inviscid, Green mode, a condition
realized in the winter atmosphere. During the vacillation, due to the presence of the internal dissipation the tilt
of the constant phase line may remain westward, and the horizontal heat flux may be poleward throughout
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most of the cycle.

1. Introduction

One of the features of the general circulation of the
atmosphere on time scales of several weeks is the vac-
illation of the mean zonal energy and its associated
eddy activities. Since Namias (1950) found zonal index
oscillation with a periodicity ranging from 3 to 6 weeks,
such fluctuations of various atmospheric variables have
been investigated by many authors. These quasi-peri-
odic variations are well documented in both the tro-
posphere and the stratosphere and in both hemispheres;
they appear to be related to the interaction between
the westerlies and the planetary waves. During cold
seasons, vacillations were found to be most likely linked
to a baroclinic process (Miller, 1974; McGuirk and
Reiter, 1976; McGuirk, 1982), while for non-winter
seasons they seem to involve barotropic exchanges be-
tween zonal and eddy energies (Webster and Keller,
1975). By means of a numerical experiment, Yoden
(1981) demonstrated that the baroclinic transfer may
become prominent when the meridional heating in-
creases. By using time series of simulated data generated
from a hemispheric general circulation model, Hunt
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(1978) also obtained vacillatory behavior, particularly
in the eddy kinetic and available potential energies,
with a period of about 20 days. Apart from atmospheric
observations and numerical simulations, the vacilla-
tions in wave amplitude and wave structure have also
been well documented in laboratory annulus experi-
ments (e.g., Pfeffer et al., 1974).

Theoretical or numerical studies of the physical pro-
cesses or mechanisms capable of explaining various
vacillatory behaviors of the atmospheric flow have been
carried out by Arakawa (1961), Lorenz (1963a), Ped-
losky (1970, 1979), Quinet (1974), and Yoden (1981),
among others. Thus far, the majority of theoretical

. analysis dealing with wave-mean flow interaction has

considered Ekman dissipation with less attention given
to internal thermal dissipation. Pedlosky (1979) studied

‘the weakly nonlinear dynamics of the Charney mode

in the presence of Ekman dissipation and Newtonian
cooling. If we denote by 8, u measures of the Ekman
dissipation and internal dissipation due primarily to
Newtonian cooling, respectively, and if A is a measure
of the supercriticality (A < 1), the cases investigated
by Pedlosky correspond to § = O(AY2), u < A and &
= Q(1), 0 = O(A). Physically, the latter regime dealt
with an Ekman spindown time scale which is much
shorter, and an internal dissipation time scale that is
much longer than the baroclinic development time



1276

scale. For ultralong planetary waves under atmospheric
winter conditions a regime in which the internal dis-
sipation plays a dominant role is more likely to prevail.
Since the planetary waves have their large wave am-
plitude in the upper troposphere and stratosphere and
rather small amplitude near surface, the Ekman dis-
sipation, that is proportional to the vorticity at the top
of Ekman layer, is not an efficient energy sink for these
waves. Besides, the available potential energy of the
planetary wave is much larger than its kinetic energy
and the contribution to the'eddy potential vorticity
due to the thermal field is much larger than that due
to the relative vorticity. Therefore, the internal thermal
dissipation becomes an eflicient energy sink in the dy-
namics of these planetary waves. By using a three-layer
model based upon the Burger equations, one of the
authors (Wang, 1982) found that, when the internal
dissipation exceeds 1/v2 times the e-folding, inviscid
baroclinic time scale, the nonlinear thermal advection
produced damped oscillations of the zonal potential
energy. Yet, his model lacked vorticity advection and
was unable to cope with the intricate vertical structure
of these modes.

The present study pertains to the weakly nonlinear
evolution of the diabatic, transient planetary waves,
their interaction with the zonal mean flow, and the
role played by this interaction in atmospheric vacilla-
tion. For typical winter conditions, the slowly eastward
propagating planetary waves (wave two, three, and
four) may be viewed as the atmospheric counterpart
- of the strongly unstable Green mode (Wang et al., 1985;
hereafter WBH). We propose to extend the linear
Charney model into the weakly nonlinear regime and
examine the dynamics of a single most unstable Green
mode in an effort to verify some of the -observational
findings pertaining to the vacillation of the westerlies
in cold season.

Section 2 deals with the model formulation; the
reader not interested in the asymptotic techniques used
in solving this problem may omit section 3, which
briefly summarizes the results derived by these tech-
niques. Section 4 describes the amplitude equations,
their equilibrium states, the linear stability of these
equilibria, and the behavior of the solution as these
steady states are approached. Finally, possible appli-
cations to atmospheric vacillation are discussed in sec-
tion 5. .

2. The model

We examine the stability of a basic zonal flow with

a constant vertical shear Ay and no meridional varia-’

tion. We assume a basic state density distribution, p;
= p/0) exp(—zs/H) and a constant Brunt-Viisili fre-
quency N, where H denotes the density scale height,
approximated by a constant. The zonal flow, which
extends to infinity in the vertical, is confined to a mid-
latitude B-plane channel of width 2L. The implications
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and limitations of the 8-plane channel approximation
have been discussed by Pedlosky (1979) and WBH. A
planetary scale, wavelike perturbation having a single
zonal wavenumber is presumed to be imposed on the
basic flow. Since the evolution of the planetary waves
is characterized by a longer time scale, diabatic heating
and mechanical dissipations should be included in the
model. We shall assume that the Newtonian cooling
and horizontal turbulent diffusion of the momentum
act as internal dissipations on the potential vorticity
in the interior region (above the frictional Ekman layer)
and express these by means of a Rayleigh term in the
potential vorticity equation. The Ekman layer dissi-
pation is included via the lower boundary condition
for the interior motion. The limitations of these as-
sumptions will be discussed further on.

If we scale Xy, Vs by L, z4 by H, the horizontal ve-
locity by ¥V = A H, t4 by advective time scale L/V, and
the streamfunction ¢4 by LV, the nondimensional po-
tential vorticity equation for the perturbation field ¢,
after multiplication by the Burger number S, takes the
form :

d a 3¢ o
(at * Z&x) tbho -+ I )= w21
- where -
(£ _9 2
7= (622 P )¢> 22

represents the perturbation potential vorticity times the
Burger number
. . N2H?
S=—77
fo°L

b is the basic-state potential vorticity gradient multi-

plied by the Burger number, which will be referred to

as modified -potential vortlclty gradient, and is glven

by

(2.3a)

1
b=1+—-.
A
We took the density scale height as the vertical scale;
so that, in (2.3b), the first term of rhs denotes the mass
convergence effect,
Ao’

B«N’H

(2.3b)

A= (2.30)

is a nondimensional vertical shear that measures the
competitive effects of the baroclinic vortex stretching
vs the B-effect in producing potential vorticity; p is a
nondimensional internal dissipation coeficient

L

- T/;_* ,
where 7 is a typical internal dissipation time. For the
planetary scale motion the thermal field makes the

major contribution to the potential vorticity and the
Newtonian cooling is the dominant contribution to
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the internal dissipation of the potential vorticity field.
We shall regard 7, as Newtonian coohng time in what
follows.

The vertical velocity at the lower boundary is as-
sumed to match the Ekman pumping velocity, and the
lower boundary condition is

2
A Oh K AL Rt
at z=0, (2.4a)
where 6, a measure of the Ekman dissipation, is defined
> N*H (A, \"?
~zri)

A, is the vertical turbulent viscosity coefficient. As

z — o0, the upward energy flux vanishes. This implies
1 .

lim Ps

z—eo V—1
] d¢ a¢> 2] ¢
(525 o aet (e 5) * o)
X dy=0. (2.4b)

At the side walls of the channel the meridional velocity
must vanish, and, for consistency, we must also require
that

Fo ¢
lim — | <2 +
Wy 2X dx=0, at y= =l

-x 0tdy
The linear problem was analyzed in detail by WBH.
Neutral modes are found when

b=b,=2nk, n=1,2,3, -

(2.4¢)

where K is the total horizontal wavenumber modified
by the mass convergence effect, and is defined by

R? = SK* + 1 ! (2.5)
The Charney modes are found for 0 < b < 2K the
Green modes lie in 2K < b < 4K while the Burger
modes are associated with b > 4K but b/K different
from any even integer. To the right of b = b, weak
instabilities exist while to the left of b = b, strong in-
stabilities prevail. To focus our attention on the plan-
etary scale disturbances during winter conditions, we
consider their model counterparts, the strongly unstable

Green modes. More precisely, we rewrite b in the vi-
cinity of b, = 4K as

b=2KQ2 — A), (2.6)
where v
_ (k-1 -\ 1
A 5F >0 A=y @D
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Since (4K — 1)/2K is an O(1) quantity, A is a measure
of the shear supercriticality. WBH showed that the most
unstable, linear Green mode is found when A ~ 0.3.
We introduce a parameter ¢ that measures the wave
amplitude and let A = O(e). The asymptotic expansions
will be expressed in terms of e which is assumed to be
small. The relative importance of the internal dissi-
pation versus Ekman dissipation is given by the ratio
of u to 4:
®_ 1? H ( 2

172
= 2.8
foAu) ’ (28)

6 LD Tx
where L, = NH/f, is the Rossby radius of deformation.
Equation (2.8) indicates that the internal dissipation
may become a major energy sink when the horizontal
length scale increases. This is especially true for the
Green mode which has a large temperature perturba-
tion 1in the upper troposphere or lower stratosphere
with small vorticity fluctuations near the ground.

Therefore, we set ‘

u =02, §=0(4) 2.9)

in view of its dynamical relevance to planetary scale
Green waves during cold seasons. Equation (2.9) im-
plies that the internal dissipative time scale is of the
same order of magnitude as the e-folding time of in-
viscid baroclinic growth, and that the Ekman spindown
time scale is much longer than the baroclinic devel-
opment time scale.

3. Amplitude equations

As shown by Pedlosky (1970), a regular perturbation
expansion is not uniformly valid in time, and a slow
time 7 = A"t must be introduced. Because A < 1 we
are close to the critical point and the fast time will not
enter the problem. Then, near the Green critical pomt
(2.1) becomes

i) i) . . d¢
AV — 4z —+ ) - -
( a7t 25 T#)at @K —2K8) -

+ X, 9)=0. (3.1)

The problem is not uniformly valid in z either, as can
be seen by considering the linear advective operator
(A23/3T + 29/dx + ) which becomes much smaller
than O(1) as z — 0. Therefore, a boundary layer of
thickness O(¢!/?) is needed near z = 0. Thus, the prob-
lem must be solved in terms of an interior solution,
which satisfies the lateral boundary conditions as well
as the condition at z = oo, and a boundary layer so-
lution, which satisfies the lateral conditions as well as
the boundary condition at z = Q. The two solutions
must then be matched (Pedlosky, 1979).
Let

-]

¢ =2 €ppi(x, ¥, 2, T),

n=1

(3.2a)
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g4= 2 g i(x, 3,2, T)

n=1

be the interior solution. We substitute (3.2) into (3.1),
gather like powers of ¢, and obtain a sequence of linear
equations at various orders, the lowest order equation
admits a solution of the form

‘b0 = do = A(Teo(2)W + c.c.

(3.2b)

(3.3)

where the tilde denotes a wave field and c.c. denotes
“complex conjugate”. We have introduced

W=e*>cosly, I= (m+%)7r, m=0,1,2,+--,

¢ol2) = 21 — Re”, p=3-K<0, (33a)
where ¢o(z) is the z-structure of the neutral Green
mode; A(T) is the yet unknown complex amplitude of
the weakly nonlinear Green mode. The solution for
&1, which is bounded at infinity, is

6 = by, z, T) + i LA — 2R2)e” W + cc., (3.4)

where,
AI/Z 9
L=— 7 aT+

and the mean flow correction, ¢,(y, z, T), remains to
be determined.

Within the boundary layer near z = 0, we introduce
a stretched coordinate { = z/¢'/2 and let ¢(x, y, {, T)
be the boundary layer streamfunction. Equation (3.1)
and lower boundary condition (2.4a) can then be ex-
pressed in terms { and ¢. Let

=ebi(%, ), 5, T) + €0ax, 3, §, T) + -

We insert this expansion into the boundary layer equa-
tion and boundary condition at z = 0, collect like pow-
ers of €2, and obtain the ¢;- and ¢,-problems, from
which one finds that the boundary layer solution to
O(é) is

ox, y, 4 T)
= e[(; + ;IE .C)D,(T)W+ c.c. + ¢y, T)] + &2

3‘21]
D, oy

X W+ cc + ¢E(y, T) + Exy, T)} + O(é®). (3.9)

Lz (3.42)

Dy _ a2 1 -
X {[ 2 ¢! 4K)_§ + Dy(T)¢ + % LD,

where ¢,, E,, E;, as well as D,, D, are functions that
do not depend on x and are determined by the match-
ing conditions. Writing (3.2a) along with (3.3) and (3.4)
in terms of { and expanding in powers of ¢/? and
matching with (3.5), we find
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D(T) = A(T),
DAT) = ik(2K — p).LA(T),
él(y, T) = (3,0, T),
i)
CEn 1) = ﬂ (7,0, T),
¢2(x’ b 03 T) = [2K;c2 £ ’CZA A— a¢l (ya 0 T)]

X W+cc + Ez(y, 7). (3.6)

To determine the dependence of the wave amplitude
and mean flow correction on the slow time scale T, we
now investigate the higher order ¢,-problem, given by

a .
e (zq2 + 4K¢y)
X
A .3
- —Lg+22 K;"’i’ — Jbo, ar) ~ K1, do). (B.T)
We write

¢2 = J)Z(y’ Z, T) + $Z(xa Y 2, T):

g =4z, D)+ gy zT), j=1,2,

and perform an x-average of (3.7) to find the gov-
emmg equation for the mean flow correction, i,

= —d¢,/dy,

# 9 @0’
.L'(a 3" 3, + S )u. = 8KIP LA = g cos2ly,
(3.8)
where #, — 0, as z — oo and, from (2.4c),
aul '
—_— = = <4
T 0, at y==#lI. 3.9)

Using (3.5) and the matching result in the boundary
condition of d)z-problem and after performing an
Xx-average, we get,

L 8_ul = —212(.C + —ll'f,—2)lAl2 cos2ly, at z=0,
e’

(3.10)

which constitutes the boundary condition at z = 0 for
the i, field. We also take %, = 0 at T = 0. From (3.8)
and (3.10), the time and spatial dependences separate,
and we can assume a solution of the form

w(zT)= E B(T)f(z) cosjy,  (3.11)

J=1

where j = (J — V), J = 1, 2, - - 50 that the lateral
boundary conditions are automatically satisfied. After
we substitute (3.11) into (3.8), separate the time and
spatial dependences, we obtain the time evolution
equation for B(T),
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d d ‘
(ﬁ + —Aﬁl,i)a = (Zi +2 —A—,E)IAI%. (3.12)
The Appendix gives the solution for the vertical struc-
ture functions f;(2).

Removing the mean flow component from (3.7)
leads to an interior differential equation for the wave
component @(x, ¥, z, T). To eliminate nonuniform-
ities in the asymptotic expansion, we impose the solv-
ability condition to $,-equation, i.e., we multiply the
¢;-equation by ¢o(z)e *“W*/z, where W"‘ is the complex
conjugate of W, and integrate over the entire domain
of the model. Making use of the expression for ¢y(2),
(3.3a), the lower boundary condition (3.6), and further
substituting the mean flow correction (3.11) into the
solvability condition, we finally obtain the governing
equation for the wave amplitude evolution:

d’4 p odd  K*CH— 2
dTZ AI/Z dT A A+ XAB —0, (3.13)
vyhere

Cor = AY/[4K(K — p)}'”?

represents the imaginary part of the phase speed for
the linear, inviscid Green mode, the quantity ¥ is given
by (A3) in the Appendix.

4. The behavior of the dynamic system
a. General remarks

The dependence of the wave amplitude and mean
flow correction on the slow time is governed by (3.12)
and (3.13) with B(0) = 0, A(0) given. In (3.13), the
quantity x measures the nonlinear feedback between
the wave and the mean flow correction. Although the
expression for Y, as given in the Appendix, is compli-
cated, it nevertheless depends only on k, / once we fix
S, e and A. Numerical calculations show that a few
terms of the series provide a very accurate represen-
tation for x. For example, when the lowest and next
to the lowest y-modes are retained, errors of 1% are
found when two and six terms, respectively, are re-
tained. Figure 1 shows the dependence of x on the
wavenumbers k, /. It is seen that x is positive for all
the (Green) modes and it increases as k, / increase. The
positiveness of x implies that the nonlinear feedback
in (3.13) is stabilizing, a feature we shall discuss in
more detail later.

In general, the amplitude A can be complex. Letting

A(T) = R(T)e ™D, we can rewrite (3.12) and (3.13)
as
d’R  2p dR _KCY R
dr: " A 4T A
do\?
+ xRB — R( dT) =0,
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FIG. 1. Coefficient x as a function of wavenumber k for the
Green modes. The solid (dot—dashed) line is calculated for / = #/2
(= 3xn/2).

d’ df dinR _ 2u df

dr? Y27 dT dT A"2 ar =0,
dB u dR :
EY:-FWB—ZRE'T: AI/ZRZ—O' 4.1)

The first integral of the second equation in (4.1) is

dé _ db(0) R*0) p-QuIAIAT.

dT 4T R®

Assume that the mean flow has no correction initially,
i.e.,, B(0) = 0, and the initial amplitude is real, R(0)
= Ry, 6(0) = 0, i.e., A(0) = Ry. The initial condition
for dR/dT and db/dT will be assumed to be given by
linear theory, i.e.,

4.2)

dR(O) _ kC;
dT  A'”
d8(0) _ kCr
0 =

where C; and Cy are the imaginary and the real parts
of the complex phase speed as predicted by linear the-
ory. According to WBH [their (4.6)], in the presence
of internal dissipation, for strongly unstable Green

modes (A > 0, n = 2), we have
A (8K 1) 3
+ 72) =
Cr = 8K(4K T O(AY%) = O(4),

Cr= -7+ Cu+ O InA'") = O(a")
It follows that d6(0)/dT is an O(A'?) quantity, where
dR(0)/dT is O(1). Since d8/dT decays exponentially
[see (4.2)], the last term in the left-hand side of the first
equation in (4.1) is O(A) which is much smaller than

“4)
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' the other terms that are O(1). If we neglect this higher

order quantity initially by assuming d8(0)/dT = 0, then .

6 = 0, and the complex amplitude A remains real. Nu-
merical integration of (4.1) indicates that the influence
of the variation of wave phase, 8, on R(T') is negligible,
though 6(T) does exhibit an out-of-phase vacillation
when compared to R(T).

Based upon the preceding discussion we assume that
A is real. The transformation

r V2y

T=-A—U—2T, X=Al/2AT,

A _
z=-%p y-x+%& (4.5)
I

dr
takes (3.12), (3.13) into the following form

dxX
-‘;,;‘——X+Y

dy

~

=~XZ+rX-Y ;
g X-Y ¢,
dz

Z=XY—Z )

(4.6)

where the only nondimensional parameter entering the

problem is '

: k*C};

r=—,
7

(4.6a)

which measures the ratio of the inviscid growth rate
versus the internal damping rate. Equations (4.6) are
a special case of the Lorenz set of equations (1963b)
for unit Prandtl number, unit aspect ratio, and the
Rayleigh number equals r. Lorenz showed that for large
Rayleigh numbers (i.e., r = 28), the solutions are un-
steady, aperiodic and highly sensitive to the initial con-
ditions. They are therefore unpredictable.

Since application of the Lorenz set of equations to
the real atmosphere required the use of severe trun-
cation in the spectral representation of the model, ef-

forts were made by, e.g., Brindley and Moroz (1980), -
Pedlosky (1980) to show that the amplitude evolution -

equation for weakly nonlinear baroclinic waves in the
presence of small Ekman layer dissipation might pos-
sess similar behaviors as those of the Lorenz set. As
Brindley and Moroz pointed out, in order to fit the
side-wall boundary conditions, a Fourier expansion for
the mean flow correction is needed, and hence the
equations are transformed into an infinite set, which
is obviously not the Lorenz set. In the two-layer or
" Eady model the waves are nondispersive due to the
absence of the basic state potential vorticity gradient,
say the B-effect. Again, if the S-effect were included in
the model, the resultant amplitude equations, for 3
small, become a set of ordinary differential equations
with complex coefficients, and these equations seem
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: to behave differently from the Lorenz equations. Here,

the amplitude equations, derived from a continuously
stratified model with a planetary vorticity gradient, and
with the presence of internal dissipation, can be cast
into the Lorenz system in which r is the only parameter.
However, because of the parameter setting, the behav-
ior of these amplitude equations is quite different from
that of the Lorenz set, as will be shown below.

b. Equilibrium states and their stability

Equations (4.6) possess the trivial solution X = Y
= Z = 0 which corresponds to the wave-free basic state
with a linear shear. A linear perturbation around that
equilibrium state yields a characteristic equation

T+DT?*+2+1-r=0,

which has three real roots if r > 1, with one positive
root(F'=—1+ V;‘). This equilibrium is then unstable.
The condition r > 1 implies that

1/2
k k 4K(K — p))

i.e., in the presence of internal dissipation there exists
a growing, baroclinic Green mode. These results con-
firm those of linear theory.

For r > 1, there are two additional equilibrium so-
lutions given by X, = Y, = +Vr— lL,and Z, = r — 1,
implying that

4, = [(K*Cf — w)/2xL]'",
B, = (k*C1 — u*)/xA. 4.7

A linear stability analysis in the vicinity of these equi-
librium points yields a characteristic equation of the
form

A
C1=—E+C0[=—‘E+(

D +302+(r+ DT+ 2(r— 1) = 0.

This equation has one real, negative root and two com-
plex conjugate roots. It can be shown that all ReI" <0
so that both of these equilibrium points are always sta-
ble to small perturbations. With the use of (4.7) we
can write the equilibrated streamfunction as

272 _ ,2 © .
Vo= —yz— e ECU I S i iniyfi(2) + €7
xA J=1
k*Ch — w2\ oy i ; J
X ('—Z—XA-——) [Z(l K?z) % w(l — 2K2)

X €% coskx cosly + O(¢¥/?). (4.8)

This contains a standing wave term, proportional to
[(k2C3; — 1?)/2xA)? and a rectified mean field term,
proportional to e(k’C3; — u*)/xA. The amplitudes of
both terms depend on the quantity A, a measure of the -
shear supercriticality, and on (k*C%; — u?), a measure
of the competitive effect of the inviscid baroclinic
growth rate vs the internal damping. These amplitudes
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are also inversely proportional to powers of x, a quan-
tity that decreases as k and / decrease. Thus, the steady,
standing wavelike equilibrium states will reach their
largest amplitude when x is small, i.e., for planetary
waves with small k, say wave 2, and with the lowest
y-mode. We then speculate that the planetary waves
play a more important role than the cyclone waves in
the long term variations of the westerlies. Another fea-
ture of interest is that the equilibrium state given by
(4.8) is independent of the initial conditions.

Figure 2 depicts the vertical structure of the mean
flow correction at the equilibrium state for different
latitudes (i.e., different values of y). The largest changes
occur near the central latitude of the channel. At that
latitude the mean velocity increases near the ground
and decreases in the stratosphere so that the vertical
shear of the initial basic state is reduced.

¢. Evolution toward the equilibrium states

With the relaxation of the side wall boundary con-

ditions, for the two layer, f-plane model, Pedlosky

(1971) derived evolution equations of the form
d’R dR

— 2 _ -
7 5~ R+ RR=D)

+ an —

dD
db

where R is the wave amplitude, D is related to the
mean flow correction amplitude, # is a measure of the
Ekman dissipation, and «, 8 are functions of the wave-
" numbers only. In a later paper, Pedlosky (1972) was
able to show that, for small 5, the limit cycle solutions
(either stable or unstable) are possible only for a re-

+ 9D+ BR?*=0 4.9)

)

L
8= -
8- —
7 -
8 — ]
5 |- -
4 - -
3 —
2 - —
1P —
° I S N NN N I o Ll

-6 -8 ~4 -3 =2 =1 0 . .2 .3 Saow

F1G. 2. The mean flow correction for the equilibrium wave state,
AU, as a function of height, z, for wave two. Parameters used in the
calculatxon are f, = 45°, L, = 5500 km, N = 0.017 5™}, A, = 0.0013

s,/ =m/2, u =005, and A 0.28. The solid, dotted, dot-dashed,
and dashed lines are calculated at y = 0, +0.25, £0.50, +£0.75, re-
spectively.
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stricted range of /8, the upper limit of which, deduced
by first-order approximate expansion, was found to be

afB = 2-3E(1)/K(1) = 2.0,
where K(x) and E(x) are the complete elliptic integrals

of the first and second kind, respectively.
If we let
12
)

R=A[-X2
A(kzctz)l —

0 = T(sz(Z)I - ﬂz)”z’
A

S I S
“ B) sz(z” - #2 ’

' (4.10)

we verify thatv substitution of (4.10) into (4.9) yields
our dynamic system, (3.12) and (3.13), provided

a=2, =1,
n = u/(k*C¥ —

In terms of Pedlosky’s criteria for an approximate so-
lution, it is difficult to infer the type of dynamical be-
havior for our system since a/8 = 2. Numerical inte-
gration seems to indicate that there is no stable limit
cycle for values of u ranging between 10~' and 107 -
and for values of the initial wave amplitude, 4y, ranging
from 0.1 to 1.5.

Although perpetual vacillation was not found nu-
merically in our model, a vacillatory behavior may
emerge as the system approaches its steady state. To
understand the nature of the evolution towards the
equilibrium state, let us reconsider the local behavior
of the system (3.12) and (3.13) in the vicinity of the

udH'2, 4.11)

equilibrium state, where B = 242 Writing y, = d4/
dT, y, = A, (3.13) with A real, becomes
dy 2u k*C3 — p?
dfl: = N 37 —%—‘— y2 = 2xp?’,
d}’2
T = y. 4.12)

These equations have the nontrivial steady solution
»® =0, 3,9 = £[(k*C3; — u?)/2xA]"2. Since y, = 4,
only the positive root is physically meaningful. In the -
vicinity of the equilibrium state corresponding to that
root the system (4.12) may be written as

Z—%—AX+ R(X), (4.13)
where
2= () ()
_ k*C3 — u?
A~ _ Al/2 A
1 0
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is the coefficient matrix of the so-called first approxi-
mation equation, which is nonsingular; R(X) denotes
the nonlinear term. For this steady solution (3, 1,*),
the properties of the solution nearby depend upon the
eigenvalue of 4 only. The characteristic equation of 4
is

p K*Ch— i) _

When p = V%kCOI, this characteristic equation pos-
sesses two nonzero real roots indicating that the ap-
proach to equilibrium is monotonic. When

" <m kCOI (4.14)

there are two complex conjugate roots having a negative

real part. The singularity is a stable focus. In a phase -

plane portrait, the solution trajectories spiral about the
steady solution i.e., the approach is oscillatory. The
preceding criterion controls the monotonic or the os-
cillatory approach to the steady state and involves the
competition between the inviscid growth rate kCy; for
baroclinic, unstable Green modes, and the internal
dissipation due to. Newtonian cooling and horizontal
diffusion of momentum. For a typical winter atmo-
sphere, the baroclinic development time for the Green
mode is roughly three times that of the Charney mode
(WBH, 1985); i.e., it is less than one week while the
Newtonian cooling time is about 3-4 weeks, implying
that, in practice, (4.14) is satisfied and the approach to
equilibrium is oscillatory.

To verify the above qualitative conclusions, we in-
tegrated (3.12) and (3.13) numerically by using a
fourth-order Runge-Kutta method with time step AT
= 0.02. Figures 3a, b show a representative damped
oscillatory evolution of the wave amphtude when the
criterion (4.14) is satisfied.

5. Application to atmospheric vacillation

Several observational (Miller, 1974; McGuirk and
Reiter, 1976; McGuirk, 1982), and numerical studies
(Hunt, 1978; Yoden, 1981) suggest that the tropo-
spheric and lower stratospheric vacillation during cold
seasons appears to be linked to baroclinic processes,
involving primarily planetary, ultralong wave-mean
flow interactions. McGuirk’s (1982) recent study sum-
marized some interesting features of the vacillation,
which are:

1) The zonal available potential energy, P, has a
strong and persistent vacillation; the eddy available
potential energy, P, and the kinetic energy, K’, vacillate
in phase, while being precisely out of phase with P.

2) The horizontal heat flux, which is poleward most
of the time during the vacillation cycle, appears to be
in phase with the eddy energy. .
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FIG. 3. (a) The time history of the wave amplitude showing the
damped oscillatory approach to a steady state. The parameters used
in calculation are k = 1.1 (wave two), | = #/2, A = 0.1, and
# = 0.03. (b) The phase plane orbit of the solution of Fig. 3a.

3) The smallest vertical wave-tilt occurs at the max-
imum wave amplitude, while the largest vertical wave-
tilt is found at the minimum wave amlitude; the waves
seldom tilt eastward.

4) Wave two is the dominant vacillating wave com-
ponent which makes the largest contribution to the
eddy energy and to the poleward heat flux.

'5) The vacillation period of P and the heat flux is
centered around 24 days with a variance of five days;
the vacillation period for wave 2 and 3 is about
22-26 days and 19-24 days, respectively.

The present model describes the weakly nonlinear
interaction between a single baroclinic, unstable Green
mode and the mean flow in the presence of dominant
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internal, thermal dissipation. The major results devel-
oped in section 3 are summarized as follows. To
O(€*?), the perturbation streamfunction is

&(x, ¥, z, T) = '?®(z, T)e™ cosly + c.c. + O(¢*?),
;.1

where ® denotes the complex wave amplitude

¥z, T) = e”[A.(T)z(l - R2)

_ifpndd ) — 2R :l
k(A dT+ A1 —2Kz)| (5.2)
and the zonally averaged streamfunction is

W, z, T) = —yz — B(T)
V)
=1 fy_1
(J 2)1r
where f;(2) is defined by (Al). In (5.1) and (5.3) the
time dependent parts 4(7") and B(T) are governed by
- amplitude equations (3.12) and (3.13).

The zonal available potentlal energy in the model
channel, for a unit length in the x-direction, is given

by
oo H T\2
b = bs (%
P fo az f_l dyzs(az)’
where the nondimensional density is p, = e~2
(5.3), we find

5 ps {2
P J; ZS{ + 4eB(T)

X ;2:;1 (—1)’[( - 5) ] ‘zf’}dz +O(). (5.4)

Using (5.1), we can also express the eddy available po-
tential energy and kinetic energy in the same volume

) P'=J- flzs()
)
e[ 516 G

€ J; N pdk? + 1|92 dz + O(¢?),  (5.6)

sin(J - %)wy +O(E), (5.3)

. Using

2, | (5.5)

~
I

where the overbar denotes an x-average.
The energy equations in the present mode} can be
written as
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oP

'5" = —'<P P'> + G

L-pry- kY-,

% = (P Ky~ ¢, (5.7)

with zonal kinetic energy K remaining constant. In
(5.7), G is the generation of the zonal available potential
energy; since we assume that the vertical shear of the
basic flow is constant, we are implying implicitly an
energy source for the zonal flow; at the equilibrium
wave state, G = €, + €;. The conversion from Pto P,
or from the zonal energy to the eddy energy, is given
by

(P-P) = Lﬂo ps HHF(z, T)dz, (5.8)

where HHF(z, T) represents horizontal heat flux per
unit volume at level z and is defined by

''19¢ 3¢
MHFE D= ) soz ax

J
= ¢ gl_c |®]> — ph® + O(e?), (5.9)
S a9z
where ph® is the phase of the complex amplitude
®(z, T). The conversion from P’ to K’ is

(P'*K"y = f ps VHF(z, Tdz, (5.10)
0

where VHF(z, T) denotes vertical heat flux per unit

volume at level z, and may be defined as

1 737
VHF(z, T) = f w Z_f dy
-1

= HHF — (Zu + A2 9 )P’ + O(). (5.11)

aT,
The dissipation due to Newtonian cooling and due to
Ekman layer friction are, respectively,

@ 1 2
- v (9
N
= f 20uP'dz + O(ez),
0

€k = 2ep,0k?| P ,-0. (5.13)

Since & = O(e), and ¢} is order of %, and can be ne-
glected when dealing with energetics valid to O(e).

In (5.9) the quantity d/dz(ph®), represents the ver-
tical wave tilt; when positive, the trough or ridge of the
wave tilts westward with height, and the horizontal heat
flux is poleward, implying conversion from zonal

(5.12)
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available potential energy to eddy available potential

energy. This quantity is also determined by the phase

difference between temperature field and flow field. By
using (5.2), we can show that :

d In]A| )
12 2 1 +
e”[(1 — Kz +

d
py (]?hq?) = (A
K?z?

X A2, N R
k + — —ftAaz_
[(¢0 % 0<p1) + e (A +

p)
#) <P12:|
(5.14)

where the braced-quantity is always positive, R and 6
are the modulus and phase of A. Therefore, in the pres-
ence of O(e"/?) internal dissipation the vertical tilt of
the trough or ridge of the finite amplitude Green mode
vacillates in phase with d4/dT. As long as

1 dA4|

Al/2
4] dT

(5.15)

the wave will tilt westward, and the corresponding hor-
izontal heat flux will be poleward [see (5.9)]. However,
in an inviscid case, or in the case in which the Ekman
dissipation is dominant, the wave tilts westward when
growing and tilts eastward when decaying; correspond-
ingly, the horizontal heat flux reverses its direction ev-
ery half period of vacillation. This symmetric pattern
- of the oscillations of wave tilt and heat flux direction
are at odds with the observations. Unlike Ekman dis-
sipation, the internal dissipation does dissipate the po-
tential vorticity in a continuous model. Therefore, even
in the decaying stage, a portion of wave energy must
be consumed to overcome the dissipation. The direc-
tion of the heat flux and the wave tilt are now biased,
with westward wave tilt and poleward heat flux being
dominant throughout the vacillating cycle. The larger
the internal dissipation, the longer the time span in
which the wave tilts westward and the heat flux is di-
rected poleward.’

Table 1 indicates that for typical cold season at-
mospheric conditions in the troposphere and strato-
sphere, the most unstable Green mode (A = 0.3) is
most likely to be close to wavenumber two around the
latitude circle. This fact may explain why wave two is
the largest contributor to the eddy energy and the heat
flux. The vacillation period had been determined by
numerical integration. When g is small, the vacillation
period can also be estimated if we use the inviscid the-
ory. In that limit, the amplitude equations (3.12) and
(3.13) reduce to those of Pedlosky (1970) and the non-
dimensional period of vacillation is given by

T

. 2V2 K(m?)
V_{R2+ " [1+(1+

Tp= 2xA

k*C3;
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TABLE 1. The wavenumber and vacillation period
for the most unstable Green mode.

Case

1 2 3

Central latitude of the
westerlies (°) 45 40 40

Width of the westerlies (km) 5500 5500 5500
Brunt-Viisild frequency

(107257 7 1.7 1.6
Vertical shear (1073 s71) 3 1.6 1.5
Wavenumber around

latitude circle of the most T

unstable Green mode 2.07 2.03 2.07
Vacillation period (inviscid)

(days) 24.7 26.1 24.3

where x is deﬁnéd by (A3), Ry is the initial amplitudé,
and K(m?) is complete elliptic integral of first kind, the
modulus, m, is given by

- 2k2C3(1 + 2xARGY/K*C) /XA
Re? + K*C3/f1 + (1 + 2xAR/K*C3)' ) xA

The calculated periods are given in Table 1, where the
initial disturbance wave amplitude was assumed to be
1(NoH*\y/ f3). The estimated period for the most un-
stable Green mode is about 3-4 weeks, which is in
qualitative agreement with the observations.

Figure 4a shows the time history of P, P’ and X' for
wave two, when central latitude is at 45°, the width of
the westerlies is 5500 km, the Brunt-Viisili frequency
is 0.017 s7!, the vertical shear is 1.3 X 1073 s7!, and
internal dissipation coefficient is 4 = 0.05. It is seen
that the eddy available potential energy P’ vacillates
almost in phase with the kinetic energy K, but precisely
out of phase with the zonal available potential energy
P. As shown in Fig. 4b, the (P, P") conversion, which
also denotes the total horizontal heat flux, also vacillates
nearly, but not completely, in phase with P'. Further-
more, the poleward heat flux (positive value) dominates
the vacillation cycle, as expected from (5. 15) The
(P', K" conversion was found to be almost in phase
with (P, P'). The mean flow correction is strongest in
the lower stratosphere (z = 3.5H), and at this level it
varies in phase with P, while in the troposphere the -
variation of # is much weaker and tends to be out of
phase with P in lower troposphere (Fig. 4c).

Figure 5 shows the vertical distribution of the hor-
izontal heat flux at different times during one period.
The vertical distribution of the poleward heat flux has
a double-peak feature, one near ground and other in
the lower stratosphere The major extrema of vertical
heat flux are located in the lower troposphere and the
middle stratosphere.

It is noticed that the variation of (P, P"), or heat
flux, is not completely in phase with P’, but leads by a
phase angle less than w/4. A tentative explanatlon of

m
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dissipation term ¢,; () the mean flow correction at ze/H = 3.7, 1.5
and 0.21, where H is the density scale height.

the phase relation among the energy components P,
P', K', and the conversion terms (P, P'), (P, K') are
given below. Initially P is large, the corresponding large
latitudinal temperature gradient sets off the develop-
ment of unstable baroclinic planetary waves. The in-
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crease in baroclinic activity strengthens the poleward
heat flux and enhances the (P, P’} conversion. There-
fore, eddy available potential energy grows, while zonal
available potential energy decreases. The amplifying
wave also stimulates the (P', K conversion, hence K’
also grows at this stage. Note that, the nonlinear in-
teraction between the wave and zonal mean flow causes
the different phase changes between the temperature
field [ph(d®/9z)] and the flow field (ph®), or the vari-
ation of the vertical wave-tilt and the (P, P’ conver-
sion. As a result, the westward wave-tilt, the horizontal
heat flux and the related (P, P’) conversion all reach
their maxima in the growing stage. After its maximum,

P, P") decreases and the wave growth slows down. As
gP, P’) decreases, by the time when (P, P') = (P, K")
+ €, the growth rate of the wave becomes zero, hence
P', K' are maxima, while P reaches a minimum. After
the P, K' maxima, the heat flux is greatly reduced; P
begins to grow at this stage, its generation by diabatic
heating exceeding its loss by the (P, P") conversion
provided (P, P’y > 0. Meanwhile, P', K’ start to de-
crease. Once P reaches its relatively smaller second
maximum, the above process will repeat itself until
final equilibrium is achieved.

6. Discussion and concluding remarks

The dynamic regime, which was examined in the
context of the weakly nonlinear analysis, considered
moderate internal dissipation of O(A'/?), that was as-
sumed to dominate over the Ekman dissipation taken
as O(4Q). 4

When the characteristic dissipative time scale equals
the baroclinic development time scale, the evolution -
of the Green modes eventually leads to steady wave
states, that are always stable to small perturbations. No
stable limit cycle or aperiodic solutions were found in
the realistic parameter ranges that typify atmospheric

z(u)

FIG. 5. Vertical distribution of the poleward heat flux at different

times in a vacillation cycle: (1) T = 5.6; (2) T = 8.8; (3) T = 12.0;
4 T=156and (5) T=19.2.
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winter conditions. The evolution of the system as it
approaches its steady wave state may exhibit a mono-
tonic or a damped oscillatory behavior, depending
upon the relative magnitudes of the inviscid growth
rate and of the internal dissipation. Vacillatory behav-
ior occurs, as long as the characteristic dissipative time
is longer than 1/§g/3 times the e-folding time for baro-
clinic development. For reasonable atmospheric winter
parameters the theory predicts a vacillation period for
the most unstable Green mode (wave two) of about
several weeks.

The present model shows that as the criterion (4.14)

is satisfied, both the amplitude and the phase speed of
the finite amplitude Green mode will undergo damped
- vacillatory behavior. However, the fluctuations of the
phase speed are much weaker than the amplitude fluc-

tuations. The theory also predicts that nonlinear in- -

teraction between the wave and the mean flow causes
different phase variation between the thermal and the
flow fields, and the conversion term from zonal avail-
able to eddy available potential energy leads the eddy
energies by a phase angle less than w/4; the zonal avail-
able potential energy vacillates precisely out of phase
- with the total eddy energy while the eddy available
potential energy is almost in phase with the eddy kinetic
energy; for representative winter tropospheric and
stratospheric conditions, wave two around the latitude
circle is the favorable candidate for the most unstable
Green mode, and may make the largest contribution
to both the total eddy energy and the horizontal heat
flux. Moreover, in the course of its vacillation, the ver-
tical tilt of the constant phase line may remain west-

ward, and the horizontal heat flux may be poleward .

throughout the entire vacillation cycle, as long as (5.15)
is satisfied. These results seem to agree qualitatively
with observations, suggesting the importance of the
mean flow-baroclinic planetary wave interaction in the
vacillation phenomena, that appear to be an inherent
property of the general circulation.

The model is rather idealized when compared to the
real atmosphere. The description of the Rayleigh dis-
sipation of the potential vorticity in Eq. (2.1) is a crucial
assumption. In their nondimensional forms, the New-
tonian cooling and horizontal turbulent wscosxty can
be written as —u(8*/0z> — 3/3z)¢ and —Sup V3¢, re-
spectively, and therefore the scale dependence does not
affect these dissipations in the same manner; also the
model excluded the wave-wave interaction mechanism
and the meridional variations of the basic flow. There
remains the important issue as to how drastically these
limitations would change the preceding results and
predictions. Although we intended to examine only
the free, baroclinic, planetary wave-mean flow inter-
action, it is realized that the excitation of planetary
waves via other mechanisms, as for example, by strong
sensible heating due to relatively warm oceans, the
presence of forcings due to mountains, etc., should also
be considered when.one attempts to model atmospheric
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vacillation. However, we believe that the intrinsic
mechanism of the nonlinear interaction remains a
fundamental ingredient of the vacillation phenomenon.
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APPENDIX

The Expressions for the Function £5(z)
and the Coefficient x

The solution for f3(z) is found to be

1
f/(Z) = — r— (212Cj + 2pé°0 + Sl)e’lz
J
+ (8§22 + 1z + e (Al)
where
Cr=(—1*2jij2—4a?, j= (J - %)w (A2a)
1 1, . 2 | .
rj='2'—(z+jS) s (A2b)
&, = 8KI’C,/(4p* — 2p — Sj?) (A2c)

81 = ~28:K — (8p — DS/(4r — 2p — 5% (A2d)
8o = $/K* — [(4p — DS, + 2e5°2]/(4172 2p - Si»)
(A2e)

and p is defined by (3.3a). :
Coefficient x in (3.13) is defined by

2 =] JA72
x= A(;%k— ) {-41&1 i § (( . 1112)
X @/l = 1)+ sy = $0l} (A9
with
= h7S(h* + 8KM® + 36K2H* + 96K>h + 120K*),
(Ada)
Ly = —4K(r, - 2K)>
X [(ry — 2KY + 2K(ry — 2K) + 2K?], (Adb)
Ly = AW [—Soh* + (81 — 2KS )i — S, — 2KS,
+ K2$o)h? + 6(K2S, — 2K8,)h — 24K%85], (Adc)
C;=—0pSo + &+ 2I°C))jrs, h=4p—1

and C,, r;, §,, &,, & are defined by (A2a)-(A2e).
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