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ABSTRACT

The model presented here extends the Charney model by including Newtonian cooling, Ekman dissipation,
and a linear vertical variation of the stratification parameter. By using an integral representation of the solution
and a Frobenius series expansion, we have shown that the dispersion equation and the vertical structure of the
strongly unstable modes can be well approximated by a second-order transcendental equation and a generalized
Laguerre polynomial multiplied by an exponential function, respectively.

The midlatitude planetary wave 2, 3 and 4 belong to the intermediate scale motion between the Charney
and Burger regimes, and may be viewed as the atmospheric counterpart of the most unstable Green mode. The
wavelength (growth rate) ratio of the most unstable Green mode to most unstable Charney mode is about 2.5
to 3 (1/3 to 2/5) for typical midlatitude winter condition. That mode possesses a constant phase which tilts
westward with height in the troposphere, and features a barotropic structure in the stratosphere; that mode
extends to several density heights before being trapped, and exhibits a major peak in the stratosphere. Its
available potential energy is converted in the lower troposphere, as well as in the stratosphere, and its kinetic
energy is generated in both the middle troposphere and the middle stratosphere, with significant destruction
near the tropopause.

The Newtonian cooling was found to reduce the growth rate over most of the wavelength band especially for
the Burger-Green modes and for the strong instabilities. Nevertheless, in the immediate vicinity of the critical
wavelength small amount of Newtonian cooling has a destabilizing effect. The vertical increase of the static
stability reduces the wavelength of the most unstable modes and affects the growth rate and vertical structure
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of the Green modes.

1. Introduction

Although the planetary waves display a quasi-sta-
tionary character, in part due to mechanical and ther-
mal forcings (Perry, 1967; Holton, 1975) mainly found
in the Northern Hemisphere where topography and
land-sea heat contrasts are significant, there neverthe-
less exists well documented evidence that the winter
circulation, especially in the Southern Hemisphere,
features transient planetary waves characterized by: 1)
a slow eastward propagation of a few meters per second
in excess of the zonally averaged surface wind speed;
2) a westward tilt with height of the constant phase
line, especially in the troposphere, but not in the middie
stratosphere; 3) a maximum wave amplitude in the
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stratosphere (Philpot, 1969; Hartmann, 1976; Leovy
and Webster, 1976; Mechoso and Hartmann, 1982).
These observations suggest that the generating mech-
anisms of these eastward propagating planetary waves
differ from those responsible for the quasi-stationary
waves and suggest a genesis rooted in a baroclinic in-
stability mechanism.

The slowly growing modes found in the longer
wavelength bands were first found by Green (1960)
who calculated their growth rate to be an order of mag-
nitude smaller than those of the Charney modes. Al-
though discounted at first, the practical importance of
the slowly growing Green modes emerged as evidence
of transient planetary waves became available. Recent
numerical studies of baroclinic instability of the more
realistic atmospheric zonal flows at planetary wave scale
(Geisler and Garcia, 1977; Kuo, 1979; Fullmer, 1982)
showed that, in the absence of dissipation, the Green
modes have moderately short doubling time (~ 1 week)
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and exhibit a streamfunction having an oscillating am-
plitude that extends to the stratosphere where it is con-
siderably larger than at the ground.

Quasi-geostrophic motion (Rossby number Ro < 1)
may be classified into two categories (Phillips, 1963):
1) L/R, < 1;2) L/R, ~ 1 (Burger, 1958), where R, is
the radius of the Earth. The first kind of geostrophic
motion, which is referred as the Charney regime, has
a characteristic length scale comparable to the Rossby
radius of deformation, Lp; for midlatitude atmospheric
motions L, ~ 10° km, corresponding to the cyclone
wave scale. Midlatitude planetary waves have charac-
teristic x-scales which are about 2.5 to 3 times larger
than Lp, and Gent (1974) showed how the meridional
shear confines these waves in the north-south direction.

- If we choose two latitudes such that the zonal velocity
at these latitudes is one third of its maximum value in
the westerlies, we find that, in the winter of the North-
ern Hemisphere, the width, L,, of the westerlies cen-
tered about the latitude 8, (~40°N) is around 5000
km. We will take the characteristic length scale L to
be half that value so that 4L is representative of the x-
wavelength for the planetary waves 2, 3 and 4 but not
for wave 1. The latter belongs to the second kind of
quasi-geostrophic motions, which is referred to as the
Burger regime. Since Lp < L < Lg, where Lg = R,
cotanfy, we conclude that the motions for waves 2, 3
and 4 are characterized by the so-called “intermediate”
scale (Charney and Flierl, 1981). Then, if V" ~ 10 m
s!, we find that Ry ~ 0.045 and L/Ls; ~ 0.3, the
smallness of this last ratio justifying the use of the 8-
plane approximation (Appendix B, lists the symbols
used in this paper).

Although Ry, L/Ls are small for both cyclone and
planetary waves, the inverse Burger number, S™! = L%/
Lp? and the @-parameter, L/(LgRy), are O(1) for cy-
clone waves but much larger than unity (~10) for
planetary waves. Because of their horizontal extent, we
anticipate that planetary waves will reach to great
heights and that the vertical variations of density and
static stability will play an important part in their dy-
namics. These waves are also characterized by long
time scales, and diabatic heating and boundary layer
dissipation must be included in the model. As has been
discussed by Wiin-Nielsen (1975), the major diabatic
heating for the large scale, quasi-geostrophic, linear
motion may be expressed in terms of Newtonian cool-
ing form. We shall consider the Newtonian cooling as
a representative diabatic heating process.

Based on the above considerations we propose, in
this paper, to extend the Charney (1947) model by in-
cluding: 1) Newtonian cooling, 2) a linear variation of
N? with z, and 3) Ekman layer dissipation.

Charney (1947) obtained solutions of his model in
terms of hypergeometric functions; the complication
of these functions made numerical computations nec-
essary and slowed down analytical extensions of his
model. Although some efforts were made to simplify
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the exact solutions by Lindzen and Rosenthal (1981),
who used a WKB asymptotic analysis, and by Brans-
come (1983), who used a short-wave expansion and
expansions near the critical neutral points, the effects
of Newtonian cooling were mostly studied analytically
within the context of the much simpler two-layer or
Eady models. The conclusions derived from these
models may be questioned because of their limitations.

_Furthermore, in order to understand what physical

factors control or affect the dynamics of the unstable
waves, it is desirable to obtain a more tractable rep--
resentation of the solution. In what follows we strive
to obtain simplified, yet accurate expressions for the
dispersion relation and the eigenfunctions for the gen-
eralized Charney instability problem.

Our investigation will focus on:

1) the wave selection mechanism, especially in the
planetary wave band, and on the role played by the
linear increase with height of the stability parameter;

2) the effects of Newtonian cooling and Ekman layer
dissipation on the phase speed and growth rate as well
as on the vertical structure of the planetary waves;

3) the vertical structure and the energy conversions
for the strongly unstable Green modes; comparison
will be made with the corresponding quantities of the
Charney modes.

The present investigations of both planetary and cy-
clone waves will serve as a prelude to the study of the
nonlinear dynamics of planetary waves in the presence
of Newtonian cooling and Ekman dissipation (Wang
and Barcilon, 1985).

2. Dynamic equations

Our governing equation is the diabatic quasi-geo-
strophic potential vorticity equation which we write
for a non-Boussinesq fluid having a constant scale
height, H = RTy/g, in the z4 = —H Inp/p, coordinate
on a midlatitude B-plane. The nondimensional gov-
erning equation is equivalent to that found in Pedlosky
(1979) if we take the basic state density as p; = po
X exp[—(D/H)z] in his equation (6.5.18). When mul- .
tiplied by the Burger number S = L,?/L? that equation
takes the form .

(£+%i~%i)
at dxdy dydx
d Y Doy
’ 2 2 7 -2 _T ) ___ T
xI:SV1p+S6y+NaZ(N az) Haz:l
F) . D .
"=N2=-(N2Q)-—=0; (.1
SN0 -50 @D
the boundary conditions are
W
—_— = = +
P 0 at y==+l, (2.2)
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FIG. la. Vertical variations of zonally averaged mean current for
the westerlies of Northern Hemisphere. Solid, dashed and dotted
lines are based on the data from Oort and Rasmusson (1974), Wallace
and Hobbs (1977), and Palmen and Newton (1969), respectively.
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FIG. 1b. Variations of Brunt-Viisild frequency squared, N2 with
height for the Westerlies of Northern (solid line) and Southern (dashed
line) hemisphere during the winter season. Northern and Southern
Hemisphere data were adapted from Kuo (1979) and Hartmann
(1979), respectively.

and, at the ground z = 0,

P W WA

019z Adx 60y3z Oy dxdz
S (Pe\ory _ -
+2R0(D)V¢ =0, (23)
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with the additional requirement that the flux of energy
vanishes as z — co. In these equations we scaled (x, y)
by L, zy by D, time ¢ by the advective time scale L/V,
the geostrophic streamfunction ¥ by LV and the dia-
batic heating rate, Qx, by (H/D)fV?Cp/R where R is
the gas constant and Cp the specific heat at constant
pressure; N = (gd Inf,/dz)'”? is the Brunt-Viisili fre-
quency; Ro = (V/f, L) the Rossby number; 8 = 8oL?/
V denotes the nondimensional -parameter, where £
= 2Q X cosfly/Ra is the meridional gradient of the Co-
riolis parameter; D, = (24,/f,)"? is a measure of the
Ekman layer depth, where A4, is an eddy kinematic
viscosity coefficient.
We will focus on the stability of baroclinic flows,
1.e., we write
v =—yU@2)+ dx, ¥, 21) (2.4)

where ¢(x, y, z, t) is the perturbation. As seen from
Fig. la, below 70 km the zonally averaged flow in the
winter can be approximated reasonably well by a con-
stant vertical shear, though there is an internal jet near
the tropopause. Kuo’s (1979) results suggest ‘that the
sharp change in the zonal flow profile near that level
does not alter the qualitative picture of the instability.
We then choose the nondimensional velocity scale as
V = A& D, A& being the dimensional shear, and confine
our analysis to

U@z) = z (2.5a)
The assumption that N2 is a linearly increasing function
of z is a crude approximation. The fact that in our
model N? increase with height as z increases can be
justified as follows. The Charney and Green modes
have their turning points in the troposphere and
stratosphere, respectively, i.e., above these heights these
modes exhibit exponential decay and are not much
affected by the detailed structure of the basic state. This
is, in part, the motivation for choosing

N? = NoX(1 + az) (2.5b)

where N,? is a constant and @ ~ O(10~!). Another
motivation for such a choice can be found if we con-
sider the static balance of a model, perfect gas atmo-
sphere with a constant but small lapse rate. The re-
sulting expression for N2 can then be approximated by
a linear variation with z. This choice for N? does not
possess a sharp discontinuity at the model tropopause.
(Here we will use the terms troposphere and strato-
sphere to denote the range of heights typically asso-
ciated with these regions.) We conjecture that because
we are dealing with planetary waves of great vertical
extent, the existence of a sharp change in static stability
near the tropopause will not have an appreciable effect
on their dynamics, but the slow change of N? over
great heights will. This conjecture will be checked
a posteriori by comparing some of our findings with
numerical calculations by Geisler and Garcia (1977)
who used realistic static stability profiles. Also, it should
be noted that Grotjahn (1980), in his study on the ef-
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fects of the tropopause on the linear dynamics, found
that, in general, the solutions are sensitive to changes
in the tropopause structure only when they have large
amplitudes in the vicinity of that level or when the
forcing is significantly altered by the tropopause struc-
ture. We will show that the Green modes, which are
free modes, usually attain their minimum amplitude
at the tropopause.

Finally, we model the diabatic rate of heating by
means of a Newtonian cooling,

. 9o
Q=-un+ 3z
where u = L/V74 is the nondimensional Newtonian
cooling coeflicient and 74 is the dimensional Newton-
ian cooling time. For details the reader is referred to
Wang (1984)

After using (2.4), (2. 5a), (2.5b)and (2.5¢) in our gov-
erning system of equation and boundary conditions
and neglecting O(&%) terms we arrive at

(2.5¢)

9 9 ) 62¢ a¢
(at + 26 + J(¢, ))[SOV ¢ + ~—a az]
d¢ aqu a¢)
+ —_
b I + ( 352 3 0 (2.6
with, at z = 0,
d a¢ d¢ 2 9¢ _
(az+"(d” )) 3 ox + 6V + P 0, 2.7
and, as z — oo, the upward energy flux vanishes, i.e.,
| 8, .0 0 3¢ 39)_
tim pdf (5 + 250+ 0 )) -2 40 58] -0,
‘ (2.8)
and, at y = *1,
A
e 0. 2.9)
In these equations
a= %-ﬁ- a, (2.10a)
1 a "y
b=a+—>:+xz+0(az) (2.10b)
A = M /(Bo No™D/fo?) (2.10c)
Ny2D?
So = sz (210d)
No D,
2f0L>\* . (2.10e)

The quantity « reflects the combination of effects of
mass convergence (D/H) and linear increase of N?
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through &. Nondimensional shear A measures the
competitive effects of the baroclinic vortex stretching
vs the B-effect in producing potential vorticity and
constitutes one of the fundamental parameters in this
problem. The quantity b is proportional to the basic
state north—south potential vorticity gradient, while u
and ¢ are measures of the Newtonian cooling and the
Ekman layer dissipation, respectively. The Jacobian

denotes nonlinear terms and will be neglected in this
paper but retained in the weakly nonlinear analysis of
Wang and Barcilon (1985) that builds upon this work.

The linearized version of Eq. (2.6) reduces to the
Charney (1947) problem if « = p = § = 0, and to
Burger’s (1958) equation if @« = u = § = 0 and if we
neglect SyV2¢ compared to 8°¢/dz> — a(d¢/dz). For
waves 2 and 3 we estimate that S;V? ~ K2Sp ~ 0.5,
0.7 respectively which are not small enough to be ne-
glected. Here K is the total horizontal wavenumber. If
SoV? were neglected, not only would we underestimate
the role of the meridional scale and distort the vertical
structure of the unstable waves, but we would alter
appreciably the planetary wave selection mechanism.

The quantity D/H in (2.10a) serves as a tracer of the
mass convergent effect; as D/H = 0, we recover the
Boussinesq approximation. In what follows we will
consider the non-Boussinesq case (set D = H) and dis-
cuss only the Boussinesq results to contrast these with
the non-Boussinesq findings.

3. Exact and approximate normal mode solutions

Let
d(x, ¥, z, 1) = e*2P(z)e™ ™ cosly + c.c.  (3.1)

where /= (m+ Y%)r,m=0,1,2, - - - and c.c. denotes
complex conjugate. Using (3.1) in the linearized version
of (2.6), transforming the independent variable z to £,
we find that the eigenfunction ®(§) satisfies

Ed

i
ez +(—682=0 (3.2a)
with, at § = —o,
v ad « K2 v
— 4+ —= 1—i6— )P = .

(dg + tI)) ( i6 X )@ 0 (3.2b)

and, as £ — oo, i
: He /2504 (3.2¢)

remains bounded. The unfamiliar reader is referred to
Pedlosky (1979, Section 7.8) for the details of the der-
ivation of an equation similar to (3.2a). In (3.2),

t=Kz—o¢ (3.3a)
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is the transformed independent variable, where

% 2 @ &) 2 24 g2
K=|SK +z-——>: , (K*=k*+1% (3.3b)

is the total wavenumber scaled by Ly~ for the Bous-
sinesq fluid (e = & = 0), and will be referred as the
modified total wavenumber,

o= K(c+ ipk™) (3.3¢)

is the eigenvalue proportional to complex phase speed
¢ in the absence of Newtonian cooling. The only pa-
rameter entering (3.2a) is

1 1 ac . K?
7 K,(a + Y iSou k) ; (3.3d)
in the absence of Newtonian cooling, » = 0, and vari-
ations of N2, & = 0, and a = 1. Equation (3.3d) denotes
the basic state potential vorticity gradient divided by
the modified total wavenumber. The last two terms of
(3.3d) are much smaller than the first two terms which
are O(1), since &, Sy, o, p are all small, in general.
Because of its inverse dependence on K, loosely speak-
ing, for a given basic state, » may be viewed as a quan-
tity proportional to the wavelength.

Note that, from (3.3d), the quantity n depends on
the eigenvalue o via the small term &o/AK> In what
follows, we will formally derive the dispersion relation
for . We will then approximate n by an expression
independent of ¢, as done in (4.3). The validity of this
approximation is displayed graphically (in Fig. 5) and
will be discussed later.

If ®,(£), ®,(£) are two linearly independent solutions
of (3.2a) we can write the general solution for ® as

(€, m) = Ci(mPi(E) + Com)PA())  (3.4)

where @,(n) and @,(n) must be chosen so as to satisfy
the upper boundary condition and are given below.
Since ¢ = 0 is a regular singular point of the governing
equation, we use Frobenius power series expansions to
obtain ®,(£) and ®,(£) (see Appendix A) and we render
the logarithm single valued by choosing the branch cut
such that

In£ = In|§| + i argg,
Appendix A gives
Cy(n) = (e — 1)/2wi,
Ci(n) = Co(m)f(m),

-7 < argf < w.

3.5)
where

1
fo) =12~ 1+2y+-+ ¢(3) +r cot(ﬂ) ,
1 2 2
(3.6)
and vy = 0.57721 - - - is Euler’s constant while ¥(x) is

the logarithmic derivative of the Gamma function.
When n =9, = 2nwheren=1,2, - - -
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G(2nm) =0, €,(2n) =1, 3.7)

and we get the neutral solution. We will call %, the
critical points. After substituting (3.4), into the lower
boundary conditions, (3.2b), we obtain the dispersion
relation which we express as

J-1

2 Bid’] =0,
j=0

J
lim[ > 4j0’ + ¢ In(—0)
J—o j=0

(3.8)

where
Ao = @2b0(1 . i(Ssz_l),

Ay = Cy(a; + vby) + iCa, 0Kk,
A; = (—1){C[a(1 — j — idK*k™*) — va;_,]
+ @y[—a; — vby + (1 — j + BK*k N1}, j=2,
(3.9)
Bo = iC0K?k™!,
B; = (—1)7@,[(j + i6K*k Najsy + va)l, j= 1,

a;and b; being given in Appendix A. In principle, from
(3.8) we calculate the complex phase speed,

c=cK\ p, b, ).

To obtain simpler, approximate and more mean-
ingful expressions for the dispersion relation (3.8), and
to test the accuracy of these approximations, we recover
the Charney problem by setting & = u = § = 0, and
we truncate (3.9) by taking J = 10, 3, 2; we refer to
these truncated expressions as the tenth-, third- and
second-order dispersion relations, respectively. Figure
2 shows plots of o versus 5 obtained from these ap-
proximations. The differences between values of ¢ ob-
tained from the tenth- and third-order truncations are
very small for most of values of 5. Also, the second-
order truncation yields accurate results near the critical
points 7., but the errors become slightly larger when
the most unstable modes are considered.

In view of the preceding, for a local analysis near
the critical points, we use the second-order dispersion
relation obtained from (3.8),

1 v 1 n n_
) G- G-

+ (g - ,,)62 In(—0) + iész“{% + af(n)

+ o In(—0) + g @ In(—0)

+ [zf(n) + 1 (3n* — 2)]8} =0 (3.10)
2 4n
where .
v=af2K (3.10a)

and f(n) is given by (3.6). It can be shown that (3.10)
filters out the westward moving neutral modes i.e., the
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0.0; where
(84 ~
4 | pEE—-K<O (3.15)
12 _‘-,‘ —_ 10':’ order ] .
Y - ;“ 4 g:ge' depicts the rate at which unstable wave amplitude de-
Y eseeae. er

T T 4050
“—Charney—-PlN‘—Green—'>4<—Burger—"l
Mode Mode Mode \

FIG. 2. Eigenvalue ¢ = Kc as a function of parameter 3 = (1
+ \'WK (approximately proportional to wavelength) for a non-
Boussinesq fluid. The solid, dashed, and dotted lines represent the
results calculated from tenth-, third-, and second-order truncated
dispersion relations, respectively. For the Green and Burger modes
the tenth- and third-order dispersion equation give the same curves.

Rossby waves, and thus retains the relevant physics as
far as the instability problem is concerned. Equation
(3.10) can be simplified further if we multiply it by
and write

(3.11)

Furthermore, we assume |¢| to be small so that |g|
< 1. After neglecting terms whose order is higher than
O(d*, €d?) we find that, in the vicinity of the critical
points 5. = 2, the second-order dlspersmn relation
takes the form

n =1+ 2e

(n— v)o’2 + (1 - 2—”’;)60 - i + (n — v)eo? In(—0)

2
+16%[2 +a+n02+e(1+na)aln( a)]

(3.12)

The vertical structure of the unstable modes is given
by

B(2) = €“P23(z)

e“C (m®() + o)D) (3.13)

To obtain an approximate expression for ®(z), we use
(3.11) and expand ®,, ®,, €,, €, in powers of e. After
some algebra (Wang, 1984) we obtain

~

~ K s
®(z;2n +2¢) = — e””’“c"“/")(z —cti %)

L, O [zi(z —c+ z%)] +0(e) (3.14)

cays with height, and
=3 o058

denotes the generalized Laguerre polynomial. For the
Charney and Green modes, we take # = 1 and 2 re-
spectively and get

&(z, 2 + 2¢) = Rz — ¢ + ipk")ePr+Re=ink™  O¢),
(3.16a)
B(z;4 + 2¢) = K(z — ¢ + iuk™)

X [1 = K(z — ¢ + ipk~"))eP+Ke=ink™) 1 O(e). (3.16b)

4. Wave selection, strong and weak instabilities

We examine the wave selection mechanism first in
an attempt to understand the role of the variations of
N? with z and the role of the nondimensional shear
when the dissipation mechanisms are absent, i.e.
pu=06=0.

In Fig. 3a, b contours of S'2Kc;, proportional to
the growth rate, and of the phase speed, cg, are dis-
played as functions of the nondimensional shear, A,
and the horizontal wavenumber squared, Sp K2, these
curves are calculated by the third order dispersion
equation for & = 0. All wavenumbers grow except for
the neutral modes found on critical curves 5 = 9, which
divide Fig. 3 into the Charney, Green, Burger regions;
in each of these regions there is a narrow band of rel-
atively large growth rate. We refer to the most unstable
Charney and Green modes by MUCM, MUGM, re-
spectively. The interesting feature is that (see Fig. 4)
the loci of MUCM, MUGM are nearly parallel to the
A-axis, i.e., these regions of maximum growth rates are
approximately described by n = 73, = constant, where
nm ~ 1.35 and 3.35 for MUCM and MUGM, respec-
tively. For the & = O case, the horizontal wavenumbers
of the MUCM and MUGM depend only on the non-
dimensional shear, A, i.e., using (3.3d) we get

1 2 17
nM[(1 "3‘)+)‘+>\2:|, (4.1)

-1/2

S 172 K =
and therefore,

9.2

-0 ,
+_
A(1+3)

where Kyuem, Kmugm are the total wavenumbers of
these modes.

When a # 0, n becomes a weak function of the ei-
genvalue, o, [see expression in (3.3d)] the coefficient
of that quantity being a small number of O(&/AK?3). In

Kmuem 55l | = 4.2)

Kmucm
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FIG. 3. (a) Growth rate S,'/2Kc; and (b) phase speed cx given by
third order dispersion relation for an inviscid non-Boussinesq fluid
as a function of nondimensional shear A and total wave number
squared, SoK*(& = 0). Solid lines are critical curves y = 2 and 4.

view of the smallness of that coefficient, a very useful
approximation consists in dropping that term and

writing
n ~ L (a + ~1—) ;
K A

Fig. 5 tests this approximation. It shows curves for ¢;
versus SoK? in the absence of & (solid line), when the
full dependence on « is retained (dashed line) and when
the approximation (4.3) is made (dotted line). Thus,

(4.3)

B. WANG, A. BARCILON AND L. N. HOWARD

1899

the validity of the above approximation is brought out
graphically by comparing the dotted and dashed lines.
The positions of the neutral and most unstable waves
are practically unaffected by this approximation, ¢;
being slightly larger for the most unstable waves. Using
(4.3) for 5 = 0, we obtain

2 2 2
0« Ny
— 1 — —
Lyivm = 2mn N02H2< 4 )
Bo A2 NoPBPT?
+ + 1
)\* H(201 amy’) + )\ifoz] , (4.4)

where we have assumed that the meridional wave-
number / is set to zero so that k = K. Table 1 shows
the wavelengths for the most unstable Charney modes
for the non-Boussinesq and the Boussinesq cases for
various values of the dimensional shear, Ay, latitude,
6y, and a. We discuss these effects below.

As was shown by Held (1978), the vertical shear A
is one of the most important parameters in the wave
selection. Figure 6 shows the sensitivity of the growth
rate to changes in Ay ; plots of S'/2Kc; versus SoK? are
displayed for two typical values of Ay ; Ax = 2.0 X 1073
s™!, corresponding to tropospheric winter conditions,
and A\x = 1.2 X 1073 s7!, corresponding to a strato-
spheric layer. For large vertical shears, the wavelengths
of both MUCM and MUGM shift to larger values. The
ratio of the growth rate of MUGM to that of MUCM
varies from about 1/3 to 2/5 with the shear decreasing

“from 2.4 X 103 57! t0 1.4 X 1073 57! near 40°N.

The variation in latitude 6, changes the value of 8,
and f; and therefore affects the scale, 8o Ny*D/fy?, by
which A is nondimensionalized [see (2.10)]. The
wavelengths of the most unstable modes increase with
increasing latitude, implying that a faster rotation rate
and a smaller B-effect ensure that the longer waves are
selected as the most unstable waves. If we turn to Fig.
4a, we observe that the MUCM is found for large, while
the MUGM is found for small A. Therefore, given a
value of A,, a smaller 3-effect tends to increase the
growth rate of the MUCM, while reducing that of the
MUGM [recall (2.10c) and Fig. 4a].

When a # 0, the wavelengths for the MUCM be-
come shorter as shown in Table 1. If we turn our at-
tention to Fig. 6 and consider the shift in wavenumber
for the Green modes we observe that the position of
the MUGM when & = 0 almost coincides with the
position of the neutral Green mode when & = 0.1;
therefore, the changes due to the a-effect are more im-
portant at the ultralong wave band. The linear increase
in N? corresponds, roughly, to the inclusion of the tro-
popause (see Green, 1960) and to that of the mass con-
vergence effect (see Table 1). The Boussinesq approx-
imation not only distorts the wave selection substan-
tially, but also reduces the growth rate for most of the
cyclone scale waves, by as much as 1/3 when Ay = 2.0
X 1073571,

Near the critical curves 5. = 2n, the growth rate in-
creases much faster when 5 < 2n than when 5 > 2n
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FIG. 4. As in Fig. 3 but as functions of parameter » and non-dimensional shear A.
Dashed lines in (a) show the loci of the most unstable Charney and Green modes.
(see Fig. 4a). If we let 7 = 2n + 2¢, then ¢ = —0.1 _A— A
_ ; A= (4.5a)
corresponds to an unstable: mode with a growth rate A

2/3 that of the corresponding most unstable mode. We
refer to the instability for which ¢ < O(e > 0) as the
strong (weak) instability. For the strong instability, the
second-order dispersion equation (3.12) and the leading
order vertical structure function (3.16) are very good
approximations.

By use of (4.3) it is easy to find that

e=—(n—r)A 4.5)
where A is a measure of nondimensional shear super-

criticality:
1 v _ (£ w/2) i

¢ = A[—(l ———)+A'/2—i—[1 + AInAl2
2 2n) ~ 2V2n " Van

v

7)

2

n|A|

2

_ |A||: _
a—i'\/;; 1F

Equation (4.6) shows that the growth rate is O(A!?)
for supercritical shear A > 0 (strong instability) and
O(JAJP”) for subcritical shear, A < 0 (weak instability)
in accord with the results of Miles (1964).

(1_

5. The effects of the Newtonian cooling and Ekman
dissipation

By use of the third-order dispersion equation we cal-
culated the complex phase speed in the presence of

and \, = 2nK — «)~! is the critical shear for which
n = 1., and the neutral mode exists. Therefore, ¢ is a
measure of the supercriticality.

If we substitute an asymptotic expansion of the form

o= |A|1/20'| + |Aloy + |A|3/2 ln|A|l/203

+ AP + - - -

into the approximate dispersion equation (3.12), we
obtain

A
4 (1 " 2n
q
+ (1
|3/2 7"(3/2 + l/2)
2V2n

(n—v)

14

+ 1n2n)] , | for A>0;

)]

for

%lnlA]”z(n L)) —

2n

T ilA A<0. (46)

b

Newtonian cooling. Corresponding calculations for the
Ekman dissipation are described in Wang (1984); here
we will content ourselves with a summary of his find-
ings. Figure 7 displays the imaginary part of phase speed
¢; as functions of total wavenumbers and Newtonian
cooling coefficient u. We see that the Newtonian cool-
ing is much more effective in reducing ¢; for the Green
modes than for the Charney modes as expected, since,
for a given u, u/k is much larger for the Green than
for the Charney modes. Thus, the Newtonian cooling
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TABLE 1. The wavelength, in 10° km, of the most unstable Charney mode (Lyyca) as a function of vertical shear A, (1073 s™!), central
latitude 8, (°N), and the rate of linear variation of stability parameter, &, for both Boussinesq and non-Boussinesq models. Lycy increases
with increasing vertical shear and central latitude and decreases when the mass convergence effect, D/H, and the variation of the stability
parameter with height, &, are included.

Boussinesq fluid

Non-Boussinesq fluid

a=0 a=0 a=0.16
Ae (X1073 571 Ae (X103 579 A (X107357H)

bo

(deg) 1.0 1.5 20 2.5 1.0 1.5 2.0 2.5 1.0 1.5 20 2.5
30 3.83 5.23 6.97 8.71 2.65 3.28 3.95 451 2.46 3.02 3.60 401
35 4.22 5.76 7.67 9.59 2.79 3.42 4.07 4.61 2.58 3.13 3.69 4.15
40 4.62 6.30 8.40 10.50 2.92 3.55 4.18 4.69 2.69 3.23 3.77 4.20
45 5.04 6.42 9.17 11.00 3.06 3.70 4.29 4.71 2.80 3.33 3.85 4.26
50 5.51 7.51 10.01 12.51 3.20 3.81 4.40 4.86 291 3.44 3.94 431

should be retained when studying the Green mode dy-
namics and could be omitted when studying the Char-
ney mode dynamics. Although Newtonian cooling
damps the fast growing modes, in the region very close
to the inviscid critical points (y. = 2n) a small amount
of Newtonian cooling tends to produce an weak growth
which essentially bridges the two adjacent unstable re-
gions. In contrast to the weak destabilizing effect of
the small Newtonian cooling on the neutral modes,
Ekman dissipation never has such an effect as found
previously by Card and Barcilon (1982). For both
damping, the wavelength of the most unstable Green
mode does not change with increasing damping; how-
ever, the wavelength of the most unstable Charney
mode was reduced as the Newtonian cooling increases
(see Fig. 7).

A5 &
My s
I
I
1
|
A0F
Gy
.05‘| Charney
: \ Modes
|
I' R
0 i \5 1 1 1 1 1 A
0 10 20 30 40 50 6.0
SoK2

FIG. 5. Imaginary part of phase speed, ¢; vs total wavenumber
squared SpK? when N? is constant with height, i.e., when & = 0 (solid
line), when the full dependence on & is retained (dashed line), and
when the approximation (4.3) is made (dotted line). The calculation
was carried out for J = 10, & = 0.1, Ae = 1.2 X 1073571,

Figure 8 shows a pronounced increase in the east-
ward phase speed of the modes near the critical point
7. = 2 as the Newtonian cooling increases. The presence
of u raises slightly the eastward phase speed of the fast
moving Charney mode, but reduces slightly the east-
ward phase speed of the fast moving Green mode. We
also conclude that the Newtonian cooling will have an
appreciable influence on the group velocity of these
waves.

We consider the local behavior of the solution near
the critical points 7.. In the presence of Newtonian
cooling the quantity € in (3.11) becomes [recall (3.3d)
and (4.5)]

_ . SoK?
e=—(n—v)A—iu WE (5.2)
30
aF N
)
==
N
o N
l/\\
J0H \
| \
! \\
VR
\i
0 ¥, .
0 10 20 30 40 50 60
Sok?

FIG. 6. Plot of growth rate S,'?Kc; against the total wavenumber
squared, SoK?, for two typical values of vertical shear: Ay = 2.0
X 1072 57" (solid line) and ;. = 1.2 X 1073 57" (dashed line), showing
the sensitivity of the growth rate to changes in the vertical shear
(a = 0).
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Fi1G. 7. Contour plot of the imaginary part of phase speed ¢; as a function of total wavenumber
and Newtonian cooling coefficient. The inviscid neutral wavenumbers are around S;K? = 0.3
and 1.50 in the presence of the a-effect (& = 0.16); the small u destabilizes the zonal flow and

eliminates the existence of the neutral modes.

Assume that the eigenvalue, ¢, as well as ¢, 6 are small,
as can be verified a posteriori, then in the vicinity of
the critical points, the second-order dispersion equation
(3.12) can be simplified so as to become

2
oX(n —v) + (r[(l —E)e-i—l%]

NaW
—%(1—157)—0

after we neglect the small terms of O(¢28) and O(es?

(5.3)

20 4
A5
Cr
- 10 r—
) 051 Green Mod.o Charney Mode -
$=0.0
0 1 2 1 i
0 10 20 - 30 40 50

SoK2

FIG. 8. Phase speed cg as a function of total wavenumber for dif-
ferent Newtonian cooling u = 0.15, (dashed line), 0.05 (dotted line),
0.0 (solid line). Inviscid neutral wavenumber is around SoK? = 0.48,
2.30, in the absence of a-effect.

X Ine). The solution of the quadratic in ¢ found in
(5.3) gives at once

IV SN SR B PR YR
’k+21€(n—y){ (1 2n)E L

2 4 2 '

v K K v

+ - 2 -
_[(1 Zn) ) e + 2i6 — X (l Zn)

12
— (n - v)(l — i K?)] } . (54)

Letting & = & = 0 in (5.4), we obtain

C =

|A|l/2 MSOKz 2-1/72 A 172
oS (T
2RVn 2KkA(n — v) |A]
(5.4a)
172 2 2=1/2 1/2
B S A
Tk 2k L \2Rkat— ) 1Al
(5.4b)
when p = 0, (5.4a, b) recover Miles (1964) results.

Equation (5.4b) shows that the Newtonian cooling al-
ways gives rise to a damping term: —u/k, but may also
destabilize the basic flow via the term found under the
square root sign. When 1 > u? > A? i.e., in the regions
very close to the critical points,

M 1 [ SQKZH.
g=—Tt=|ls=—
: k= 2K | 2kKn(n — v)
i.e., the order of ¢, is determined by the second term.
This weak instability is caused by the combined effect
of small Newtonian cooling and very weak shear.
Let u = @ = 0 in (5.3), and after neglecting terms of
O(¢), it can be shown (Wang, 1984) that, when Ekman
dissipation is present,

_ibK? 2(n — u)zsz)
2kK(2 — ,,)[‘ * (l TR ] (56)

1/2
] ~ O@'?) (5.5)
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When § » O(AY?) and A — O,
{—iaKz/kk(z ~ v)
Cc= 0

i.e., there is a damped mode of order § and a neutral
mode. This case is quite different from the one of small
Newtonian cooling given by (5.5) in which the mode
growing has a ¢; of order of 1'/2 and the other is damped.
Therefore, Ekman dissipation is never destabilizing
while Newtonian cooling may be. This behavior can
be contrasted with that of the Eady or the two-layer
models (Holopainen, 1961; Williams and Robinson,
1974; Romea, 1976) having a single, lower Ekman
layer, in which the Ekman dissipation destabilizes part
or all of the wave band which was neutral in its absence.

6. Vertical structures

From (3.16b) we write the modulus of the stream-
function for the Green modes as

2=1/2
|%(z; 4 + 2¢)] = 1%[(2 — P+ (c, - %) ]
2y172 .
X {[1 - K(Z - (,‘R)]2 + I{'z(cl _ %) } eP+Ker (6.1)

where p = (a/2) — K, and |$] — 0 as z — oo.

The structure of the unstable Green mode, calculated
by use of the approximate formula (6.1), is shown in
Fig. 11. Compared to the Charney mode (Fig. 9), the
Green mode has more of an internal wave structure
due to the higher location of its turning point. The
extrema of |®| are the roots of the following quartic in
z

K*z* + 2K(K - p)z” + {p - 3K+ 2K%

£\’ > > Y
X (c, - %) }z’z + z'[l + 2K(K — p)(c, - E) :I

where
Z'=z- CRr.

For strongly unstable Green modes, (¢; — (u/k))* < 1,
one root is approximately given by z; = cg; knowledge
of that root reduces the degree of that quartic by one
and the remaining roots are found to be

Zy == CR + 12"
23 ~ cg + 0.5K!
2 1

Zy =~ Cp — — —=
4 R p 2K

6.2)

It can be shown that |#(z; 4 + 2¢)| reaches maxima at
zz and z, and minima at z,, z,, the absolute minimum
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being found at z, which is near the tropopause. For
typical winter parameters the lower maximum is at
mid-tropospheric levels while the upper maximum is
found in the middle stratosphere for the most unstable
Green mode. The ratio of the moduli at the two max-
ima is given by,

|B(za; 4 + 26)| _ 16K*
|®(z3; 4 + 2¢)]  pPe?

where e = 2.1718- « -,

Equations (6.1) and (6.2) also show that the wave
amplitude depends upon «, K, cg and ¢;. Because |}
< 1, we anticipate that the amplitude is primarily con-
trolled by a, K, especially above the tropopause. The
dependence on « and K is also found in the exponential
[see (6.1)]: Small changes in « and K, like those due
to the presence of & # 0, will have a profound effect
on the vertical structure of the modulus, |®[; in the
case of the Green modes, K and p are much smaller
than their corresponding values in the Charney modes
and the effects of a are more pronounced.

Table 2 shows the role of the linear increase of the
static stability on the Green mode dynamics. In the
calculation we take the central latitude at 40°, the width
of the westerlies is 5000 km, the density scale height is
8 km, the vertical shear is 1.2 m s~! km. We considered
two cases:

1) N2=N2=230X 107*s72
2) N2 = NpX(1 + &z), where Np2 = 2.0 X 1074 572,
a = 0.1.

Below the stratopause (~6 density scale heights), the
vertical averaged Brunt-Viisila frequencies are about
the same in the two cases, to facilitate comparison.
The results, shown in Table 2, demonstrate that the
increase of N? with height favors the selection of a
shorter wave as the most unstable Green mode. Also,
the height of the maximum wave amplitude is consid-
erably increased. .

While, a, K control the amplitude of |®| for larger
values of z, the complex phase speed has a non-negli-
gible influence on the wave structure in the troposphere,
especially near the ground, as can be seen from (6.1).

10,

TaBLE 2. Effects of the increasing static stability
on the Green mode.

— N*=Nj
N?=N? X (1 +0.12)
Wavelength of the most unstable
Green mode (km) 11400 9900
Heights of the maximum
amplitude of the stream-
function modulus (km) for
1) most unstable Green mode
(n=234) 27 34
2) strongly unstable Green
mode (n = 3.8) 32 41
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Thus, Ekman damping and Newtonian cooling will be
felt more dramatically in the lower structure of the
modulus, |®].
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The phase of |®| for the strongly unstable Green
modes can be found from (6.1) and can be expressed
as

phd(z; 4 + 2¢) = 6 + arctanl:

where z' = z — ¢, ¢y = ¢y — u/k, and
0, when the denominator > 0

, when the denominator < 0

D
I

and the numerator > 0
when the denominator < 0
and the numerator < 0.

For eastward moving and amplifying waves ph®
~ arctan(c/cg) — 7 near the ground (as in the Charney
case) while ph® ~ arctan(sinKc 7)+ m as z — oo, which
is larger than the Charney mode phase change by nearly
w (also see Figs. 10 and 12). As seen from Fig. 12, most
of the phase change of the Green mode occurs in the
troposphere and lower stratosphere since, for z > 2,
the phase remains nearly constant indicating that these
modes have a barotropic structure in the stratosphere.
Equation (6.3) reveals that the complex phase speed
controls the structure of these phase changes with
height; the same statement is valid for the Charney
mode.

For completeness, Fig. 9, 10, 11, 12 show the moduh
and phases of temperature and vertlcal velocity per-
turbations.

7. Energetics of the Charney and Green Modes

When the basic state current U varies only with
height, the only source of energy for the growing dis-
turbances is the zonal available potential energy. The
conversion of that energy E, to eddy available potential
energy E, is effected by the northward heat flux, i.e.,

Ps a(b a¢
By Ey) = f f S ox az
= HHF(z)dz a.1)
o S
where the overbar denotes an x-average, and p; = poe™>.

The poleward heat flux per unit mass at a given z-level,
HHF(z), is defined as

8 a
HHF(z) = ai ai)
0B . 0
=ikl & —= — 2kent A, 2_
; ( LB aZ) ~ 9P < (phd).

(7.2)

osKcy[z'(1 — Kz') + KcF] — sinKc;(2Kz' — 1)c)

] . (6.3)

When the phase increases with height, d(ph®)/9z > 0
and the horizontal heat flux is poleward. The generation
of eddy kinetic energy in our model is only due to the
conversion of eddy available potential energy E, to
eddy kinetic energy E;, since a meridional shear in the
basic state is absent. This conversion can be represented
in terms of the vertical heat flux per unit mass at a
given z-level as

0p[d¢ (9, 0\ 99
VHF(z) = f dy [ax (az+zax) 3z 62]

. s 0 .
~ 18 - (phd)
a . 2
- (c, + %)[(52"1") |q>|2( ph@) ] (7.3)

(E, ) = f P VHF(2)dsz.

so that
(7.4

The first term on the right-hand side in (7.3) represents
the HHF and the second term is simply the product
of (¢; + uk™') times the eddy available potential energy.

10

L/H
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FIG. 9. The moduli of geopotential stream function (solid line),
temperature (dotted line), and vertical velocity (dashed line) as func-
tions of height for strongly unstable Charney modes in the presence
of Newtonian cooling and Ekman dissipation calculated by use of
the lowest order solution. (n = 1.8, Ay = 1.2 X 1073 57!, wave 7
around 40°N).
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FIG. 10. As in Fig. 9 except for the phases 85, 8r, 0,,.

Figure 13 shows that, for the strongly unstable Char-
ney modes, the poleward heat flux per unit mass is
large in the lower tropospheric layers with a maximum
at the ground since both the streamfunction modulus
and the slope of the phase tilt reach their maximum
at the ground. However, as can be seen from Fig. 14,
the poleward heat transport for the strongly unstable
Green modes exhibits a significant peak in the middle
stratosphere in accord with similar findings by other
investigators (Kuo, 1979; Fullmer, 1982; Branscome,
1983). This important feature implies that planetary

/M

F1G. 11. The moduli of geopotential streamfunction (solid line),
temperature, (dotted), and vertical velocity (dashed line) as functions
of height for strongly unstable Green modes in the presence of New-
tonian cooling and Ekman dissipation calculated by use of the lowest

A

order solution. (7 = 3.8, Ay = 1.3 X 107357}, & = 0.1, wave 2).
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FIG. 12. As in Fig. 11 except for the phases 04, 87, 6,,.
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waves may play an important part in changing the
mean temperature distribution in the stratosphere. It
also implies that the energy sources for the growing
Green modes come from both the troposphere (near
the ground) and the stratosphere. Nevertheless, the de-
pendence of the stability properties of the Green modes
on the lower boundary is much weaker than for the
Charney modes since the latter extract their eddy en-
ergy exclusively from layers close to the boundary.
Figures 13 and 14 also show the vertical distribution
of vertical heat flux per unit mass, VHF(z), for the

10

Z,/H

——

~

-~

| S T Sy Sy

-4 0 4 8

FIG. 13. Variations of the poleward heat flux vT (dotted line),
vertical heat flux w7 (dashed line), and equatorward potential vorticity
flux —vg (solid line) per unit mass, with height for strongly unstable
Charney modes calculated by use of the lowest order solution. The
dotted line coincides with solid line. ’
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FiG. 14. As in Fig. 13, except for strongly unstable Green modes
(parameters are the same as Fig. 11).

Charney and Green modes. This flux must vanish near
the ground in the absence of Ekman dissipation, but
since we used the lowest approximation for the complex
streamfunction modulus this flux is negative near z
= (. The peak for the Charney modes is in the lower
troposphere (z ~ 3 km) while the Green modes have
a double peak, the major one being in the upper strato-
sphere and the minor one in the middle troposphere.
Another noticeable difference is that, just above the
tropopause, the fluxes of the Green modes are much
larger than the fluxes of the Charney modes, both being
negative. Therefore, the kinetic energy of the Charney
modes is generated mainly in the lower and middle
troposphere while the kinetic energy of the Green
modes is generated in the middle troposphere and
middle stratosphere with significant destruction near
the tropopause.

In the presence of a local energy source provided by
vertical shear of the mean zonal flow, the necessary
condition for the existence of untrapped waves in a
region was given by Holton (1974). In terms of our
model notation that condition is

(z —cr)

SoK?< b .
° e — zI?

(7.5)
For typical winter parameters, and for wave 2, the
above criterion gives, approximately, z < 5.5. Above
5-6 scale heights, the vertical flux of the unstable Green
modes will decrease exponentially.

Finally, the equatorward transport of eddy potential
vorticity is an important quantity to consider because
—p, UG measures the interaction between the mean flow
and the wave field (Lindzen et al., 1980). For both the
Charney and Green modes the maxima are found near
z = 0 (see Figs. 13 and 14) which corresponds to the
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top of the Ekman layer. The numerical calculation
given by Pfeffer (1981) (his Fig. A3) shows that the
winter average distribution of —vg due to heat flux
contribution and due to transient waves has a major
maximum around 850 mb at 30-40°N and a minor
maximum around 400 mb at 50-60°N. Although the
horizontal and the vertical heat fluxes of the Green
modes have their main peaks in the stratosphere, the
potential vorticity flux of these modes, —7gq, is primarily
restricted to the lower troposphere with a minor peak
in the stratosphere. This agrees with the conclusion of
Lindzen et al. (1980), although their analysis, based
on the ideas of overreflection of vertically propagating
generalized Rossby waves, was primarily made for the
Charney modes. -

8. Conclusions and discussions

The present study extends the Charney model for
baroclinic instability by including Newtonian cooling,
Ekman layer dissipation and a linear vertical variation
of the basic stability parameter. The dispersion equa-
tion and the vertical structure of the strongly unstable
modes can be well approximated by a second-order
transcendental equation and a generalized Laguerre
polynomial multiplied by an exponential function, re-
spectively. - These approximate solutions provide us
with a useful tool for the stability analysis and with
more intuitive physical understanding of the factors
controlling the instability. _

For typical midlatitude atmospheric winter param-
eters the slowly eastward propagating planetary wave
2, 3, and 4 may be viewed as the atmospheric coun-
terparts of the most unstable Green mode. It is shown
that the wavelength ratio of the most unstable Green
mode to most unstable Charney mode, which is about
2.5 to 3 for typical midlatitude winter conditions, is
only weakly dependent upon the properties of the basic
flow: vertical shear, stratification, 8-effect, Coriolis pa-
rameter etc. The growth rate ratio of the most unstable
Green mode to the most unstable Charney mode is
the inverse of the corresponding wavelength ratio.
However, the wavelengths of both most unstable modes
may experience significant changes caused by the
changes of the basic state. Stronger vertical shear, faster
rotation rate, and weaker S-effect favor the selection
of longer waves.

Above the midtroposphere, the amplitude of the
strongly unstable waves is mainly controlled by the
total wavenumber and the increasing static stability
parameter, while the supercritical shear, Newtonian
cooling and Ekman dissipation control the amplitude
near the ground and the phase changes with height via
their effect on the complex phase speed. Contrasted
with the trapped Charney modes in the troposphere,
the Green modes have their main peaks in the strato-
sphere and these are an order of magnitude larger than
the minor peaks found in the midtroposphere. The
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total phase change with height for the Green mode is
larger than that of Charney mode by 180°. The tilt of
the constant phase line of the Green modes occurs from
the ground up to the tropopause, but in the stratosphere
the Green mode features a barotropic structure.
Calculations show that poleward and vertical heat
fluxes due to the unstable Green modes display a dou-
ble peak feature. This feature, which is wavenumber
dependent, has its main peak in the stratosphere. The
available potential energy for the growing Green modes
comes from both the troposphere (near the lower
boundary) and the stratosphere. The kinetic energy of
the Green modes is generated in the middle troposphere
and middle stratosphere with significant destruction
near the tropopause. Although the dependence of the
stability properties of the Green modes on the lower
boundary is much weaker than for the Charney modes,
the interaction between the mean flow and the Green
modes is primarily confined to the lower troposphere.
The Newtonian cooling (Ekman dissipation) is an
effective energy sink for Green mode (Charney mode).
Nevertheless, in the immediate vicinity of the inviscid
neutral wavelength, small amounts of Newtonian
cooling combined with super- or subcritical shear have
a weak destabilizing effect and this weak instability
serves as a bridge between adjacent unstable regimes.
On the contrary, small Ekman dissipation produces a
damped wave band between these unstable regimes.
The present model assumes a linear increase of N2
with height. This representation misses the sharp
change of N2 near tropopause and stratopause, but still
gives the general trend of the vertical variation of the
N? below the stratopause. Because of the exponential
decay of the density and of the wave fields above the
turning points, the unrealistic infinite increase of both
U and N? are not expected to influence the present
results appreciably. The vertical increase of the static
stability was found to have an appreciable influence
on the Green mode dynamics: it reduces the wave-
length of the most unstable modes, considerably affects
the growth rate for a given wavenumber, and signifi-
cantly raises the level of maximum wave amplitude.
The above features of the Green modes, though in-
ferred from an idealized analytical model, agree in
many respects with numerical model results and with
observed transient planetary waves. Their growth rate
is smaller but significant compared to that of the cy-

clone scale waves. Their available potential and kinetic -

energy may be generated at much higher altitude. The
exponential decrease of the vertical flux of energy for
the unstable Green modes occurs only after several
scale heights; the dissipative time scale for the Green
modes is longer than that of the Charney modes. Since
they extended to higher altitude, their growth is not
suppressed by the wave mean flow interaction as
quickly as is that of the Charney modes that are re-
stricted to the lower troposphere. Therefore, the Green
modes, by having a longer life time, will play an im-
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portant role in the variation of the general circulation
of the atmosphere on the longer time scales.
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APPENDIX A
Evaluation of €1(n) and Cx(n)
Consider the system given by (3.2), i.e.,

E%+(n—i)¢=0, (A1)
e"®d—0, as £— oo, (A2)
and ,
a{fia% + V@} + (1 —id %)Q =0 (A3)
at £ = —¢. A solution of (A1) can be written as
B(E n) = Cy(mPi(E; ) + Com)BoAE; 1),  (A4)

where &, , are the complementary solutions obtained
by means of the Frobenius method applied at £ = 0;
these are:

&5 1) = > ajfj,
j=1

(£ m) = @1(&; n) In§ + 2 bt/ (AS5)
=0
where ’
a =1, ay= -7/,
a;= (@ —na;-)/[JG— DL j=3
and

b() = _1/17, b1 =0
bj = 1bj2 — by — (2 = Da)/JG ~ D), j= 2.

‘Any solution of (A1) has the form (A4); we shall now

determine particular @, and €, so that (A2)is satisfied;
any solution of (A1) and (A2) will then be a multiple
of this one. Once ® is known it is a simple matter to
substitute it in (A3) and determine the dispersion re-
lation for the eigenvalue o, or for the complex phase
speed c.

Since Equation (A1) has coefficients linear in £, La-
place integral representation of the solution may be
found. Let

1
o) = 5 f_ﬁ P F (p)dp (A6)

where the contour .L in the complex p-plane and the
function F(p) remain to be determined so that (A1)
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and (A2) are satisfied. Using (A6) in (Al) we find that,
after some simple manipulations, (A1) is satisfied if

f eP(p? — 1)[— e k) fi]dp

(r-1
— (P — NFeH =0

Requiring that the integrand and the integrated term
vanish, we obtain

‘ — 1\"2
F(p) = constant - (p? — l)“(;)—-—l) (A7)

+ 1
-1 n/2
(%Tl) e, =0

This last constraint is satisfied if Re£ > 0 and if the
contour approaches —oo along the Rep axis. In general,
n need not be an integer and therefore to make (A7)
unambiguous we must introduce a branch cut. Choose
such a cut from p = —1 to p — —oo0 and from p = 1
to p — +oo so (see Fig. Al) that

and
(A8)

(;;— 1)"/2 Ip - " i(n/2)(61—62)
—] = € , (A9)
+ 1 p+1
where 0 < 6, < 2m and —7 < 0, < . Then,
: -1 /2
P(E) = P Al
®©=5-1 e (p ) 2, @0

and since, from (A2), $e** — 0 as ¢ approaches co we

demand that
Re(p +v) <0 (Al1)

everywhere on the contour .L; this can be done since
v<l.
We determine @,(n) by evaluating (A10) at the reg-

ular singular point £ = 0 where ®,(0, 7) = 0, (0, n)
= by = —1/n. We find at once that
— l 11/2
en=-5§ (1) 27 w2
i

Evaluation of that integral is made easier if we define

1+w

-

Rep

FIG. Al. Integration contour .L in the p-plane.
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and evaluate (A12) in the complex w-plane. We find

| G
Caln) = 5~ (™ = 1), (A13)

which vanishes, as it should, when n = 2n where n is
a positive integer. These values of 5 correspond to the
neutral modes of the Charney problem.
In order to determine @(7), form lijg@’(&; 1) where
£

a prime stands for a ¢-derivative and from (A4) we find
Ci(n) + Cx(m) = g{!&[—@’(f; 1) + Ca(n) Inf]

or

@(n) + C(n)

- EB(}[_@Z In + 5~ J "El’(p_ 1),7/2 ]

=lim[—@2 Ing + 7~ f HIHW1-W)

0

1+w
l—w

w2 dw]
2w

where the path of integration L' is chosen as shown
in Fig. A2. Notice that the requlrement (Al1l) placesa
constraint on R, namely

1+

R > > 3.

(Al14)

After some rnanipulaﬁons the above equation becomes
Ci(n) + Csn)

= lim[ @y Inf + — f
£-0 2 w—Re“

R n/2
+ 6, f eZE/'-X’; dx] (A15)
1 - X

The second term on the right hand side of (A15) is

aw

21 wyn/2
1—w

! f" vz =Lf" W
2mi (=R 1—w 27iJ (| g
1 a0 R-‘n
X(1+—=+ - )aw=C,R"
( w )W ? ,Eon/2—n
(A16)

The third term on the right hand side of (A15) can be
split to ,
+ ! )a'x
1—x
dx

R
dx + @zf ezg“‘"1
. _Z

-1

R /2
_fx
@2f g%/ "(
1 _ 1—-x

R xﬂ/z — I
f
1

1 —x

o (A17)
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FIG. A2. Integration contour £’ in the w-plane.

where
xn/2 @© R

dx = InR — R"? —_—

ﬁ 1 - nzi) (n/2 — n)

M8

R Z (A18)
n

_1S 1
o n 2§ 77/2),

and _
R dx WR-L oy
28/1—-x — —v
¢ j: ¢ 1—x ¢, L %
=€y + @, In§ + @,[In2 — In(R — D], (A19)

where v = 0.57721566- - - is Euler’s constant. Now
substituting (A 16), (A17), (Al8) and (A19)into (A15),
and noticing

In(R—-1)=InR - > R"n,
n=1
and
1

pYE—; =¥l — 9/2) + v,

s
2 2 =)
we finally obtain

Ci(n) = @z(n)'[—l +1n2 + 2y + % +¥(1 - n/2)]

(A20)
where Y(z) is the logarithmic derivative of the gamma
function.

APPENDIX B
List of Symbols

&

Coefficients of the dispersion
equation

eddy kinematic viscosity coeffi-
cient

coefficients of the dispersion
equation

meridional gradient of the basic
state potential vorticity multi-
plied by S.

&

Qo
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@h@Z

C, Cr, Cr

Cp

D

D, = (24./f;)'"
E

P
Ep; Ek

Jo

H = RTy/g
HHF

k

K= (k* + 2”2

>

R

R,
Ry
S, So

V=\D
VHF

& = (d/dz)N?/N}

a =&+ D/H
Bo

v =0.57721- - -
)

A== A\
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coefficients of two linearly inde-
pendent solutions of (3.2a)

complex phase speed of the nor-
mal modes, real and imaginary
parts of ¢

specific heat at constant pressure

vertical length scale

a measure of Ekman layer depth

zonal available potential energy

eddy available potential and ki-
netic energies

Coriolis parameter at latitude 6,.

density scale height

horizontal heat flux

nondimensional x-wavenumber

nondimensional total wavenum-
ber

modified total wavenumber de-
fined by (3.3b)

horizontal length scale

Rossby radius of deformation

characteristic length scale for
Burger motion

wavelength of the most unstable
Charney mode

wavelength of the most unstable
Green mode

nondimensional y-wavenumber

Brunt-Viisild frequency and its
value at the ground

pressure, also decaying exponent
of structure function defined
by (3.15)

diabatic heating rate per unit
mass

gas constant

radius of the Earth

Rossby number

Stratification number and its
valueatz =0

horizontal velocity scale

vertical heat flux

vertical derivative of N%/N3

combination of non-Boussinesq
and a-effects

meridional gradient of Coriolis
parameter at latitude 6,

Euler’s constant

a measure of Ekman layer dissi-
pation

a measure of shear supercritical-
ity

a measure of the deviation of the
parameter 5 from its critical
value 7,

generalized meridional gradient
of basic state potential vorticity
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divided by modified total
wavenumber

n.=2n the critical value of 5 correspond-
ing to neutral modes

% the value of n corresponding to
the most unstablé modes.

N central latitude of fplane

Ax vertical shear of basic zonal flow

A nondimensional shear defined by

(2.10c)

nondimensional inviscid critical
shear corresponding to neutral
modes

w=L/Vry nondimensional Newtonian cool-
. ing coefficient
v = af2K a quantity representing non-
. Boussinesq and a-effects
E=Kz—o¢ a transformed independent vari-
able related to z.

ps = poe PIH . density of the basic state

.= If(c + iﬁ) eigenvalue of the model in terms
k of the complex phase speed ¢

Ty Newtonian cooling time

¢ perturbation stream function

®,, P, two linearly independent solu-

tions of the eigen equation
¢ eigenfunction of the model

d = e*22¢ vertical structure function of the
normal modes

¥ total streamfunction; also loga-
rithmic derivative of the
Gamma function

Q Earth’s rotating rate.
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