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ABSTRACT

Previous examination of changes in global monsoon precipitation over land reveals an overall weakening
over the recent half-century (1950–2000). The present study suggests that this significant change in global
land monsoon precipitation is deducible from the atmosphere’s response to the observed SST variations.
When forced by historical sea surface temperatures covering the same period, the ensemble simulation with
the NCAR Community Atmosphere Model, version 2 (CAM2) model successfully reproduced the weak-
ening tendency of global land monsoon precipitation. This decreasing tendency was mainly caused by the
warming trend over the central-eastern Pacific and the western tropical Indian Ocean. At the interannual
time scale, the global land monsoon precipitation is closely correlated with ENSO. The simulated interan-
nual variation of the global land monsoon index matches well with the observation, indicating that most
monsoon precipitation variations arise from the ocean forcing. There are uncertainties between the GPCP
and the CMAP data in describing the evolution of global ocean monsoon precipitation. There is very little
correspondence between the simulated and the observed global monsoon index over the ocean area.
Uncertainties in the satellite data and model deficiencies in describing the ocean monsoon domain are
partly to blame. Among the components of global monsoon systems, the Asian–Australian monsoon system
has the lowest reproducibility with prescribed SST forcing due to the neglect of air–sea feedback.

1. Introduction

The global monsoon system is a persistent global-
scale overturning of the atmosphere that varies accord-
ing to the time of year (Trenberth et al. 2000). The
dominant monsoon systems in the world are the Asian–
Australian, African, and the American monsoons

(Webster et al. 1998). Although many studies have ad-
dressed the question of recent monsoon changes, pub-
lished results have mostly focused on specific regions of
the world and have used different measures of mon-
soon strength. For instance, the observed all-Indian
precipitation over the past 131 yr does not show glob-
al warming controlling the Indian monsoon trend
(Kripalani et al. 2003). Chase et al. (2003) found that
the monsoonal overturning circulations over the Aus-
tralian Maritime Continent and African regions have
diminished since 1950, but they detected no significant
changes since 1979 in the monsoon circulation accom-
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panying the strongest reported surface warming. In re-
cent decades, a marked summer precipitation change
has been observed in eastern China. Precipitation has
increased over the middle and lower reaches of the
Yangtze River valley, whereas it has decreased over the
middle to lower reaches of the Yellow River valley
(Nitta and Hu 1996; Hu 1997; Hu et al. 2003). This
marked precipitation change is associated with a strong
tropospheric cooling trend over East Asia (Yu et al.
2004). Accompanying this summer cooling, the upper-
level westerly jet stream over East Asia shifts south-
ward and the East Asian summer monsoon weakens,
which results in the tendency toward increased
droughts in northern China and excessive rainfall along
the Yangtze River Valley (Yu and Zhou 2007). Xin et
al. (2006) revealed that during 1958–2000 South China
has undergone a significant decrease in late spring pre-
cipitation since the late 1970s. The 1950–99 time histo-
ries of northern and southern Africa rainfall during
their respective wet seasons are well described by linear
downward trends (Hoerling et al. 2006). A trend to-
ward increased aridity since 1950 has emerged over
southern Africa and a 20% reduction in the climato-
logical February–March–April rainfall has been ob-
served there since 1950, compared with a 35% reduc-
tion over the same period for the Sahel (Hulme 1996).

Considering the coordination among regional mon-
soons brought about by the annual cycle of the solar
heating and the connections in the global divergent cir-
culation necessitated by mass conservation (Trenberth
et al. 2006), it is desirable to examine the monsoon
variability from a global perspective. Previous analyses
of interannual and interdecadal variations suggest that
the global monsoon system does not vary coherently
(e.g., see Webster et al. 1998). A recent examination of
the changes in the global monsoon rainfall over land by
using four sets of rain gauge precipitation datasets com-
piled for the period of 1948–2003 by climate diagnostic
groups around the world found an overall weakening of
the global land monsoon precipitation in the last 56 yr,
primarily due to the weakening of the summer mon-
soon rainfall in the Northern Hemisphere (Wang and
Ding 2006). This observational metric for quantifying
the changes of global monsoon precipitation has pro-
vided a rigorous test for climate models.

Hoerling et al. (2006) found that the spatial patterns,
time history, and seasonality of African rainfall trends
since 1950 are deducible from the atmosphere’s re-
sponse to the known variations of global sea surface
temperatures (SSTs). Drying over the Sahel during
boreal summer is shown to be a response to warming in
the South Atlantic relative to North Atlantic SST;
southern African drying during austral summer is

shown to be a response to Indian Ocean warming.
However, the role of ocean forcing in producing the
changes in the global monsoon precipitation as a whole
has not been investigated. The present study aims to
explore the causes for the decreasing trend of global
land monsoon rainfall by addressing the following ques-
tions: Have significant changes of global land monsoon
rainfall been detected that are likely to be deducible
from the atmosphere’s response to the observed SST
variations? Are the secular drying trends over specific
monsoon regions attributable to common oceanic influ-
ences? Which oceanic SST variations have been the
most relevant to the long-term trend and interannual
variability of the global land monsoon rainfall, respec-
tively? We employ an Atmospheric Model Intercom-
parison Project (AMIP) model approach to gain insight
on these questions and to quantify the robustness of
oceanic impacts on global land monsoon rainfall. In
particular, we examine the global land monsoon rainfall
sensitivity to the observed variations in global SSTs
during the last half of the twentieth century using
ensemble simulations of an atmospheric general
circulation model (AGCM). Our results suggest that
the decreasing tendency of the global land monsoon
precipitation during the last half-century was mainly
caused by the warming trend over the central-eastern
Pacific and the western tropical Indian Ocean. At the
interannual time scale, the global land monsoon pre-
cipitation is closely correlated with ENSO. If global
SSTs are known and prescribed to an AGCM, both the
secular tendency and the interannual variation of the
global land monsoon precipitation are highly reproduc-
ible. Over the Asian–Australian monsoon domain,
however, the reproducibility is lower due to the neglect
of air–sea feedback.

This paper is organized as follows. The model, its
experimental design, the observational data, and the
analyses method are described in section 2. Results are
presented in section 3, including an appraisal of the
model capacity to simulate the climatological global
monsoon rain domain according to the annual precipi-
tation range, and a diagnosis of the AGCM-simulated
rainfall trends over the global land monsoon domain
and a comparison with 52-yr rainfall trends occurring in
combined rain gauge precipitation data. Section 3 also
explores the role of specific SST forcing using the glob-
al SST history since 1950, and we focus on the role of
ocean changes at a long-term trend and the interannual
time scale. The extent to which rainfall changes over
the global ocean monsoon domain are deducible from
the atmosphere’s response to ocean forcing is also ex-
amined in section 3. Concluding remarks including a
discussion are given in section 4.
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2. Model data and analysis method

In this study, we examine the SST-induced changes
in global monsoon precipitation over a 52-yr period
(1949–2000) based on a set of atmospheric climate
model ensembles forced by observed historical SST
data. The model datasets come from the National Cen-
ter for Atmospheric Research (NCAR) Community
Atmosphere Model, version 2.0.1 (CAM2.0.1) global
SST-forced 15-member ensemble simulation. Fifteen
simulation runs were carried out using CAM2.0.1
(hereafter CAM2) and observed SSTs from January
1949 to October 2001 by the NCAR climate variability
working group (more information is available online at
http://www.ccsm.ucar.edu/working_groups/Variability/
index.html). The model is a global primitive equation
spectral model with T42 triangular truncation and 26
vertical levels. (Details of the model are described on-
line at the NCAR Web site: http://www.ccsm.ucar.edu/
models/ccsm2.0.1/cam/camUsersGuide/.) Ensemble
methods are employed in which 15 integrations are be-
gun from different atmospheric initial conditions, but
subjected to identically specified sea surface tempera-
ture conditions. The sea surface temperature boundary
dataset for the CAM2 model was constructed by Hur-
rell et al. (2008). It is a merged product based on the
monthly mean Hadley Centre SST dataset version 1
(HadISST1) and version 2 of the National Oceanic and
Atmospheric Administration (NOAA) weekly opti-
mum interpolation (OI.v2) SST analysis. This dataset is
also used to construct the Niño-3.4 index time series in
the following analysis. The Niño-3.4 index is calculated
as the regional average of SST anomalies over the re-
gion of 5°N–5°S, 170°–120°W. Output of the ensemble
simulation has been used in many studies (e.g., the forc-
ing of El Niño to the southern annular mode; Zhou and
Yu 2004). Note the ensemble simulation driven by the
history of global observed SSTs, namely the AMIP-
type run, is termed as “forcing run.” In addition to the
forcing run, we have also performed a 62-yr control run
forced by climatological SST (hereafter the control
run). The first 10-yr period is discarded as a spinup
process and the output of the remaining 52-yr simula-
tion is used in the analysis.

Three sets of monthly rain gauge precipitation data
for global land surfaces on different degree latitude–
longitude grids compiled by climate diagnostic groups
around the world were used: 1) the dataset compiled by
Delaware University (Delaware) for the period of
1950–99 (Willmott and Matsuura 2001), 2) the dataset
constructed by the Climatic Research Unit (CRU) for
the period of 1900–98 (Hulme et al. 1998; New et al.
1999), and 3) the Precipitation Recconstruction data

over Land (PREC/L) compiled for the period of 1948–
2006 by the Climate Prediction Center (CPC) at the
National Centers for Environmental Prediction
(NCEP; Chen et al. 2002).

Following Wang and Ding (2006), to reduce the un-
certainties arising from differences in data sources and
interpolation algorithms, an ensemble (arithmetic)
mean of the three datasets was calculated over the glob-
al land areas for the period of 1949–2001. To facilitate
analysis, the original data were interpolated onto a 1.0°
longitude by 1.0° latitude grid by using a bilinear inter-
polation technique. In addition, Global Precipitation
Climatology Project (GPCP) data for the period of
1979–2003 (Huffman et al. 1997; Adler et al. 2003), and
the CPC Merged Analysis of Precipitation (CMAP)
data for the same period (Xie and Arkin 1996) were
used to investigate global monsoon trends over ocean
areas during the last 25 yr. In addition, the satellite
precipitation observations from the Special Sensor
Microwave Imager (SSM/I), which extends from 1987
to the present, are also used (Wentz and Spencer 1998).

The monsoon climate is characterized by a rainy
summer and a dry winter. Precipitation is the most fun-
damental variable for determining the monsoon cli-
mate. As in Wang and Ding (2006), the local summer-
minus-winter precipitation, defined as the annual range
(AR), is used in the analyses. Here, summer means
June–August (JJA) in the Northern Hemisphere (NH)
and December–February (DJF) in the Southern Hemi-
sphere (SH). The global monsoon precipitation domain
is defined by the region in which the AR exceeds 180
mm and the local summer monsoon precipitation ex-
ceeds 35% of annual rainfall. Wang and Ding (2006)
proved that this simple definition is in an excellent
agreement with the monsoon domains that have been
previously defined based upon more complex multiple
criteria (Wang and Lin 2002).

Three methods were used to measure the monsoon
precipitation intensity. The first method measured the
global mean intensity. Since the monsoon annual range
is dominated by local summer precipitation, the NH-
averaged JJA monsoon precipitation (i.e., the precipi-
tation falling in the NH land monsoon domain) and the
SH-averaged DJF monsoon precipitation were used to
measure the strength of the NH and SH summer mon-
soon rainfalls, denoted by NHMI and SHMI, respec-
tively. The sum of NHMI and SHMI, which was termed
the global monsoon index (GMI), was used to quantify
the global mean monsoon strength. The second ap-
proach was designed to reveal the coherent pattern of
the change in global monsoon precipitation intensity.
Since the AR varies from year to year, each year’s AR
was defined as the local summer precipitation minus
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the preceding local winter precipitation. The leading
empirical orthogonal function (EOF) pattern of yearly
AR was used to describe the primary spatial variability
of the AR, while the corresponding time coefficient was
used to describe temporal behavior; this was termed the
annual range index (ARI). The third method tested the
statistical significance of the AR trend for each grid
point within the monsoon domain. Both the trend-to-
noise ratio and Mann–Kendall rank statistics (Sneyers
1990) were used to test the significance of linear trends.

3. Results

a. Evaluation on the simulated monsoon domain

Figure 1 shows the global distribution of AR of the
climatological precipitation and the long-term mean for
total annual precipitation based on CMAP data (Xie
and Arkin 1996). The spatial patterns of the annual
range of precipitation and the annual mean precipita-
tion rate all closely resemble those of GPCP data
(Wang and Ding 2006), that is, the major monsoon
rainy regions tend to reside on each side of the equa-
torial perennial rainfall regions and the global monsoon

rainfall differs from that of the global mean precipita-
tion, which tends to be maximized at the equator and is
generally more equatorially symmetric.

Figure 2 shows the spatial distributions of AR of the
climatological precipitation and the annual mean pre-
cipitation rate simulated by the CAM2 model. The
CAM2 model has reasonable performances in simulat-
ing the observed major monsoon rainy regions, which
include the southern African monsoon region, the
South and East Asian monsoon region, the Australian
monsoon region, and the southern American monsoon
region. The simulated annual range of precipitation
over the northern African monsoon regions is weaker
than the observation. The Central American and the
western Pacific monsoon rainfall are weakly simulated
in the model. The observed monsoon rainy regions over
the central tropical South Pacific and the tropical east-
ern Pacific are also weak in the simulation.

In addition, the observed South Pacific convergence
zone appears as a spurious intertropical convergence
zone (ITCZ) precipitation band south of the equator in
the central and eastern Pacific in the CAM2 simulation.
This so-called double ITCZ problem often exists in the
atmospheric GCM and is amplified in the fully coupled

FIG. 1. (a) The climatological mean for the annual range of precipitation, defined by the local summer mean precipitation rate (JJA
in the NH and DJF in the SH) minus the local winter mean precipitation rate. The bold lines delineate the global monsoon domain.
(b) The long-term mean for total annual precipitation. The data used are a blended CMAP data (1979–2003). Units are mm day�1.
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model (Zhang and Wang 2006). The deficiency of the
CAM2 model in producing the observed mon-
soon rainy regions over the central tropical South
Pacific is partly ascribed to the ill-simulated double
ITCZ.

b. Changes in precipitation intensity over the land
monsoon domain

Figure 3 shows the time series of the NHMI, SHMI,
and the GMI derived from the ensemble mean of 15
realizations of the CAM2 simulation, along with the
ensemble mean of three observational datasets. All in-
dices are shown in terms of anomalies relative to cli-
mate mean values. The climate mean values of the
NHMI, SHMI and GMI have nearly the same intensity
of 6.49 mm day�1. The corresponding values of the
simulation are 5.95, 6.88, and 6.41 mm day�1, respec-
tively. The climatological mean monsoon precipitation
is weaker (stronger) than the observation in the North-
ern (Southern) Hemisphere.

It is obvious that the variability of the observations is
larger than that of the simulations. Note that the aver-
age uses more grids (1° � 1° resolution) in observation
than in the simulation (T42, about 2.8° � 2.8° resolu-
tion). Besides the difference in physics, another possi-

bility is the difference in the ensemble means: the ob-
servation is a 3-member average but the simulation is a
15-member average.

The observational time series indicates a decreasing
trend in the NHMI across the entire 50 yr, and particu-
larly before 1980. This decreasing trend is also apparent
in the global monsoon index. The Southern Hemi-
sphere monsoon index, however, shows no significant
trend. The observational decreasing trend in the NHMI
index can be found in the CAM2 simulation. It is
however slightly weaker than the observation. The
simulated trend is �0.36 mm day�1 (50 yr)�1, while
the observational value is �0.59 mm day�1 (50 yr)�1.
The simulated decreasing trend of GMI is comparable
to the observation, with a trend of �0.21 mm day�1

(50 yr)�1 versus the observed value of �0.34 mm day�1

(50 yr)�1. The simulated SHMI index shows no appar-
ent trend (�0.05 mm day�1 (50 yr)�1, which is consis-
tent with the observation [�0.09 mm day�1 (50 yr)�1].
This result shows that the decreasing tendency of the
global land monsoon index in the past decades has oce-
anic origins.

In addition to the decreasing trend, the NHMI also
shows robust interannual variability (Fig. 3a). Similar
variations are seen in the SHMI and GMI time series
(Figs. 3b,c). The correlation coefficients between the

FIG. 2. As in Fig. 1, but for the ensemble mean of 15 realizations of CAM2 forced by observational SST.
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simulation and the observation are 0.38 for the NHMI,
0.22 for the SHMI, and 0.42 for the GMI. After linear
detrending, the correlation coefficients are 0.06, 0.22,
and 0.33, respectively. The correlation coefficient for
the GMI is still statistically significantly at the 5% level,

indicating that most of the monsoon variability arises
from the oceanic forcing. Taking an average of the
NHMI and SHMI shows the prominence of the low-
frequency variability since the high-frequency variabil-
ity is smoothed away.

FIG. 3. Time series of (a) the NH-averaged JJA precipitation, (b) the SH-averaged DJF precipitation, and (c) the
GMI, or the sum of (a) and (b). The data used are the ensemble mean of 15 realizations of the CAM2 model forced
by observational SST and three precipitation datasets (described in the text) for the period of 1949–2001. The curve
marked as “observation” is the mean of the three precipitation datasets. The time series are given as anomalies
relative to the climate mean. Units are mm day�1.
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One typical feature of Fig. 3 is that the simulated
amplitudes of the rainfall indices are in general weaker
than the observation. This difference is not unexpected
as using ensembles improves the correlation as random
variations are reduced during the averaging. Working
with ensembles increases the correlation, but decreases
the amplitude (Zhou and Yu 2006). This is further

manifested in Fig. 4, which shows the time series of the
NHMI, SHMI, and the GMI derived from each indi-
vidual realization of the CAM2 simulation. Spreads are
seen among the simulated time series for different re-
alizations, indicating the impact of internal dynamics of
the atmospheric motion. To quantitatively reveal the
contributions of external SST forcing and internal noise

FIG. 4. As in Fig. 3, but for each single realization of the ensemble simulation. Each thin gray line corresponds
to one realization. The thick black line is for the ensemble average.
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to the simulated monsoon index variation, the widely
used technique of analysis of variance is employed (Li
1999; Zhou and Yu 2006). Analysis on the NHMI index
shows that the internal atmospheric dynamics accounts
for 41% and the external SST forcing accounts for 59%
of the total variance, with a signal-to-noise ratio of 1.19.
For the SHMI time series, the corresponding statistics
are 60% and 40%, respectively, with a signal-to-noise
ratio of 0.81. The forced signal is hence much larger
than the internal noise in the NHMI, while a reverse
condition is found in the SHMI. This is the reason why
the NHMI has a higher reproducibility than the SHMI,
as shown by the correlation coefficient between the ob-
servation and the simulation. For the GMI time series,
the internal atmospheric dynamics accounts for 11%
and the external SST forcing accounts for 89% of the
total variance, with a signal-to-noise ratio of 2.8. Hence
it is highly reproducible.

Figure 5a shows the coherent spatial pattern of the
leading EOF mode of the global land monsoon precipi-
tation AR, which is obtained by analysis of the corre-
lation matrix based on the three-member ensemble
mean precipitation dataset. Figure 5b is the same as
Fig. 5a except for the model result, which is based on
the 15-member ensemble mean CAM2 simulation. The
corresponding observational ARI shows a decreasing
tendency for the entire period examined (Fig. 5c). This
is consistent with the result of Wang and Ding (2006),
which used four-member ensemble mean precipitation
datasets. The variance explained by the leading mode is
comparable to that of Wang and Ding (2006). It is in-
teresting to note that the model results match, nearly
identically, the observation in this decreasing tendency,
with a simulated trend of �1.68 mm day�1 (50 yr)�1

versus the observed trend of �2.19 mm day�1 (50 yr)�1

(Fig. 5c). The time series of the leading principle com-
ponent reasonably matches that of the observation,
with a correlation coefficient of 0.60 between the ob-
served and simulated PCs for the 1950–2000 periods
(Fig. 5c). After linear detrending, the correlation coef-
ficient reduces to 0.46, which is still statistically signif-
icant at the 5% level. Based on Mann–Kendall rank
statistics (Sneyers 1990), the decreasing trend of the
simulated ARI is significantly different from zero at the
99% confidence level. The same conclusion applies to
the observational data.

The decreasing trend of ARI derived from the en-
semble simulation has similar levels of statistical signifi-
cance as the observed counterparts. However, the frac-
tional variance of the leading EOF mode derived from
the ensemble simulation is considerably higher than the
observed counterpart, with 20.9% versus 10.7%. The
result indicates that the ensemble mean produces the

distinguished leading mode and its time evolution well,
but it tends to exaggerate the relevant fractional vari-
ance. This difference might be due to the fact that only
SST forcing was prescribed in the model simulation,
while in nature, the effects of many other forcing fac-
tors such as aerosol, change in solar activity, etc., may
affected SST, and thus have an implicit impact.

The majority of land monsoon regions in observation
show a coherent decreasing trend, with the largest am-
plitude over the North Africa (Fig. 5a). The trends over
South Africa, South and East Asia, and South America
are also robust. The spatial pattern of the leading EOF
mode over the South America monsoon region appears
as zonal positive anomalies. The largest discrepancy be-
tween the observation and the simulation is seen in the
Asian monsoon domain. The observed positive polari-
ties over the South Asian monsoon regions are absent
in the simulation (Fig. 5b), indicating a poor reproduc-
ibility of monsoon rainfall over this domain. The recent
weakening trend of monsoon rainfall over northern
China is only weakly reproduced.

Observational analyses found that the decreasing
trend of global monsoon rainfall intensity has been lev-
eling off since 1980, even though the global mean tem-
perature has experienced the most rapid increase dur-
ing this period (Chase et al. 2003; Yu et al. 2004; Wang
and Ding 2006). As shown in Fig. 5c, the declining trend
of the ARI in the simulation also leveled off since 1980,
suggesting an oceanic driving mechanism might be at
work on the leveling off of the monsoon index.

The ARI indices for different realizations are shown
in Fig. 5d. The ARI index was calculated by projecting
the anomalies of AR for single realization onto the
EOF1 pattern shown in Fig. 5b. Analysis of variance
following Li (1999) shows that the external SST forcing
accounts for 73% of the total variance, while the inter-
nal dynamics of the atmospheric motion accounts for
only 27%. The forced signal is larger than the internal
noise, with a signal-to-noise ratio of 1.63. Working with
ensembles clearly improves the simulation, although
the noise is more robust in mid- and high latitudes than
in low (tropical and subtropical) latitudes (Zhou and
Yu 2004).

The calculation of the signal-to-noise ratio could be
related to the number of ensemble members of the
CAM2 simulation. The change of the signal-to-noise
ratio as a function of sample size is given in Fig. 5e.
When the sample size is less than 7, the signal-to-noise
ratio is increased with the sample size. Starting from a
sample size of 7, if more members of simulation are
considered, the noise is also increased, and thus the
signal-to-noise ratio is decreased. Nevertheless, the am-
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FIG. 5. The spatial pattern of the leading EOF mode of the normalized annual range anomalies over the global continental monsoon
regions in (a) the observation and (b) the CAM2 simulation; (c) the corresponding principle component or ARI. (d) The ARI for each
of 15 realizations of the CAM2 ensemble simulation. (e) Changes of the signal-to-noise ratio for the ARI time series as a function of
sample size. The bold contours in (a) and (b) indicate the boundaries of the monsoon domain. (a) As in Wang and Ding (2006), but
using the combination of three datasets (see text). Each colored line of (d) corresponds to the ARI of one realization.
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plitude of the signal-to-noise ratio change is small, as
evidenced in Fig. 5e.

To confirm the decreasing tendency of the simulated
ARI shown in Fig. 5c is a forced signal, we employ
another widely accepted method to test the effect of
SSTs in the AMIP-type run. We investigate the differ-
ence of the CAM2 simulation between the forcing run
driven by 52-yr historical SST and the control run
forced by the climatological SST. The origin of global
monsoon rainfall variability can be clearly identified in
this comparison. The ARI index of the control run was
calculated by projecting the simulated anomalies onto
the EOF1 pattern shown in Fig. 5b. As shown in Fig. 6a,
no significant long-term trend is seen in the ARI index
time series of the control run. Since the expected long-
term trend of global monsoon rainfall is well captured
in the forcing run, but not in the control run, we are
confident of the effect of SST forcing in triggering this
long-term trend.

We also employ a probability density function (PDF)
approach to compare the roles of natural variation and
external SST forcing. As shown in Fig. 6b, the trend of
global land monsoon rainfall in the forcing run falls
outside the control run’s PDF. This supports the possi-
bility that the land monsoon rainfall trends in the forc-

ing run should not be the consequence of natural vari-
ability. In addition, the drying trend yielded by the forc-
ing run is less than that of the observation (cf. the black
and gray bar in Fig. 6b), suggesting the observed drying
trend might not have been uniquely determined by the
global SSTs.

In addition, the EOF2 mode of observation accounts
for 7.5% of the total variance and mainly reflects an
interannual variation of the global land monsoon rain-
fall, with centers in South Africa and North Australia
(figures not shown here). Further comparison found
little correspondence between the observation and the
simulation in this mode (figures omitted).

Figure 7 presents the statistical significance of the
observed and the simulated AR trend at each grid point
within the land monsoon domain. To facilitate the com-
parison with observational analysis of Wang and Ding
(2006), two methods were used to test the significance
of linear trends: the trend-to-noise ratio, shown in Figs.
7a,c, and Mann–Kendall rank statistics (Sneyers 1990),
illustrated in Figs. 7b,d. The significant spatial patterns
detected by the two methods are consistent. A strong
decreasing trend in monsoon rain intensity was found
for northern Africa, the Bangladesh–northern India–
eastern Tibetan Plateau, northern China, part of central
South America, and the southern part of South Africa.
An increasing trend in monsoon strength was seen over
northwestern Australia, and central China along the
Yangtze River valley (Figs. 7a,b). The decadal shift of
mid–lower Yellow River valley (34°–40°N) drought and
excessive rain in the Yangtze River valley of China has
been reported in many previous observational analyses
(e.g., Hu et al. 2003; Yu et al. 2004; Yu and Zhou 2007).
The simulated features generally matched the observa-
tion. The simulated increasing trend in monsoon rain
intensity over Madagascar is consistent with the obser-
vation. However, the observed decreasing trend over
northern China is not evident in the simulation. The
decreasing monsoon strength seen over northwestern
Australia (Fig. 7) is in contrast to the observation. The
simulated increasing trend over India and the northern
Indochina peninsula is absent in the observation. Thus,
the Asian monsoon rain intensity has the lowest repro-
ducibility with prescribed SST forcing. The internal
noise overlaps the SST-forced signal over these mon-
soon domains.

Over the Asian summer monsoon and Australian
summer monsoon, the monsoon–ocean interaction has
been recognized as a major source of the variability
(Wang et al. 2000; Lau et al. 2004; Wang et al. 2003),
and numerical simulation by 11 AGCMs was shown to
fail in the simulation of the summer precipitation dur-
ing the 1997–98 ENSO events (Wang et al. 2004). A

FIG. 6. (a) The normalized principle component of EOF1 mode
of GCM simulated annual range anomalies over global land mon-
soon regions and (b) the corresponding empirical PDFs of annual
range index trends. The data are from the 52-yr control run of the
CAM2 model forced with climatological SSTs. The trend value
from 15 individual members of the AGCM simulations forced
with the history of global observed SSTs is indicated by the gray
bar. The observed trend value is indicated by the black bar.
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five-AGCM ensemble hindcast experiment for a 21-yr
period confirms that given SST forcing the multimodel
ensemble is unable to predict the summer precipitation
in the Asian monsoon region with useful skill (Wang et
al. 2005). Hence coupled ocean–atmosphere processes

are crucial in the Asian–Australian monsoon regions
where atmospheric feedback on SST is very significant;
thus, treating the monsoon as a slave would result in the
models’ failure (Wang et al. 2005; Wu and Kirtman
2007). The neglect of atmospheric feedback makes the

FIG. 7. Statistical significance of the linear trends in summer monsoon precipitation at each grid point in (a),
(b) the observation and (c), (d) the ensemble of 15 realizations of the CAM2 simulation. Both (a) and (c) are for
trend-to-noise ratio and (b) and (d) are for Mann–Kendal rank statistics.
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forced solution depart from the coupled solution over
part of the Asian–Australian monsoon region, as also
suggested by the model results presented here.

c. The oceanic forcing of precipitation changes over
the land monsoon domain

In addition to the linear trend, the observational ARI
also shows significant interannual to interdecadal vari-
ability (Fig. 5c). After linear detrending, the time series
of the leading principle component of the ensemble
simulation has a correlation coefficient of 0.43 with the
observation, which is statistically significant at the 5%
level, indicating that the interannual variability of the
observational ARI can be partly reproduced by pre-
scribing the observational SST forcing to the CAM2
model.

The power spectra of the time series of the first prin-
ciple component for both the observation and the simu-
lation are shown in Fig. 8. The principle component
(hereinafter PC1) of the observation has double spec-
tral peaks on 2.5 and 3.5 yr, respectively. The 3.5-yr
peak seems more significant than the 2.5-yr peak. The
simultaneous correlation coefficient between the PC1

and the Niño-3.4 index (a measure of ENSO intensity,
which is defined as SST anomalies averaged within the
box of 5°S–5°N, 120°–170°W) reaches �0.43 in the ob-
servation, indicating that the leading mode of the an-
nual range of land monsoon precipitation concurs
with ENSO. The PC1 of the simulation exhibits a single
spectral peak around the center of 4.8 yr; the peak
around 3.0 yr is very weak. The relationship between
the time series of PC1 and the Niño-3.4 index in simu-
lation is comparable to the observation, having a
slightly stronger simultaneous correlation coefficient of
�0.70. A wavelet analysis reveals that the 4.8-yr oscil-
lation is more evident in the post-1970 period (figure
not shown here). The spectra difference between the
observation and simulation is not unexpected, since
only SST forcing was prescribed in the model simula-
tion, while in the real world the observed rainfall varia-
tion was also disturbed by other forcing mechanisms
such as land surface processes acting to supplement the
ocean forcing (see Yang and Lau 2006 for a review).

To further reveal whether the interannual variation
of the ARI significantly relates to ENSO, the spatial
distribution of the correlation coefficient between the
observed JJA SST anomalies and the time series of PC1
is shown in Fig. 9a. To eliminate the contribution from
linear trends, the time series of PC1 has been detrended
before the calculation. The local SST anomalies and the
time series of PC1 are negatively correlated in the
tropical eastern-central Pacific. The correlations are
positive in the western North and South Pacific and the
tropical eastern Indian Ocean. Significant positive cor-
relations are also observed in part of the tropical At-
lantic Ocean. The SST–PC1 correlations in the CAM2
simulation agree well with the observations (Fig. 9b). In
particular, over the tropical eastern-central Pacific the
observed correlation coefficient is about �0.40 while in
the simulation it is about �0.60; over the western South
Pacific, the observed correlation coefficient is beyond
0.25, while in the simulation, it is even higher than 0.4.
They are all statistically significant at the 5% level. The
close resemblance between the observation and the
simulation indicates the dominance of oceanic forcing
in the interannual AR variability. This consistency also
suggests that if tropical SSTs are known and prescribed
to an atmospheric general circulation model, there
would be some predictability of the interannual vari-
ability of the AR.

In addition to the interannual variation, the most
dominant feature of the time series of the principal
component of AR shown in Fig. 5c is the decreasing
tendency in the past decades. The consistency between
the simulation and the observation indicates the driving
mechanism of the oceanic forcing in producing this

FIG. 8. Power spectra of the observed (solid line) and simulated
(dashed line) annual range index represented by the principal
component of leading EOF mode of the normalized annual range
anomalies. The thin line is the red noise power density. A spec-
trum with a peak above the thin line distinguishes it from a red
noise spectrum with a confidence level over 95%.
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trend. Significant warming trends are observed in the
summertime SST anomalies over the central-eastern
tropical Pacific and tropical southern Atlantic; the
warming of the tropical Indian Ocean is spatially amor-
phous and of the same polarity throughout the basin
(Fig. 10a). Following Thompson et al. (2000), the linear
trends are estimated as the slope of a straight line fitted
(in a least squares sense) to the observed SST data at
each grid point based on the reference periods defined.
To reveal which part of the observed oceanic warming
accounts for the decreasing trend of the time series of
AR PC1, the observed SST anomalies trends can be
partitioned into linearly congruent and linearly inde-
pendent components with respect to the AR PC1 time
series. The component of SST trends that is linearly
congruent with the PC1 time series is estimated at each
grid point by regressing values of that grid point’s time
series onto the PC1 time series, and then multiplying
the resulting regression coefficients by the linear trend
in the PC1 time series (Thompson et al. 2000).

Significant warming trends are observed over the
central-eastern tropical Pacific and the tropical Indian
Ocean (Fig. 10b). A close resemblance is found be-
tween the PC1-congruent component and the total
trend over the tropical oceans. It is the warming of the

central-eastern Pacific and the tropical Indian Ocean
that contributes to the decreasing tends of time series of
AR PC1. The warming trend of the western northern
Pacific produces little positive contribution. A moder-
ate contribution from the recent warming of the tropi-
cal South Atlantic is seen. The structural similarity
between the observation and the simulation in the PC1-
congruent components of SST trends is striking (cf.
Figs. 10b,c), although the meridional shape of the cen-
tral-eastern Pacific warming in the simulation is wider
than that of the observation. The amplitude of the
warming over the central-eastern Pacific in the simula-
tion is comparable to that of the observation.

d. Changes of precipitation intensity over the
oceanic monsoon domain

By using the GPCP dataset, Wang and Ding (2006)
found that there was an increasing trend over the oce-
anic summer monsoon region since 1979, while no sig-
nificant trend was detected for the global land monsoon
region during the same period. What about the precipi-
tation change over the oceanic monsoon region in the
CAM2 simulation? To answer this question, anomalies
of the global monsoon indices over the ocean area are

FIG. 9. Distribution of simultaneous correlation coefficients between the time series of the leading
principal component of AR and JJA SST anomalies: (a) observation and (b) simulation. Areas exceed-
ing confidence limit of 5% are shaded.
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shown in Fig. 11a. The global monsoon indices over the
land during the same period are also drawn in Fig. 11b
for comparison. The model results are presented par-
alleling those of the observations.

In addition to the GPCP data, the CMAP dataset
also provides global precipitation measurements over
the last 25 yr, charted on a 2.5° by 2.5° grid (Xie and
Arkin 1996). The climatological, global averaged pre-
cipitation rate is 2.67 mm day�1, with a tiny yearly stan-
dard deviation of 0.04 mm day�1; both are comparable
to the GPCP data, which is 2.61 and 0.03 mm day�1,
respectively (Wang and Ding 2006). The climatological
mean precipitation rate over the land monsoon area

over the last 22 yr (1979–2000) is 6.37 mm day�1 in
merged rain gauge observation, 6.04 mm day�1 in
CMAP data, 6.12 mm day�1 in GPCP data, and 6.34
mm day�1 in the simulation. The corresponding clima-
tological mean value over the ocean monsoon area is
6.54 mm day�1 in GPCP data, 7.77 mm day�1 in CMAP
data, and 7.18 mm day�1 in the simulation. The bias of
the model in simulating the climatological mean mon-
soon precipitation is small, having a value within the
scope of data uncertainties.

It is surprising to see that there is very little corre-
spondence between the simulation and the observation
in the global monsoon index over the ocean area (Fig.

FIG. 10. (a) Linear trends of JJA SST anomalies and the components linearly congruent with the PC1
time series of AR for (b) the observation and (c) the simulation. Areas exceeding the confidence limit
of 5% using the f test are shaded. Units are °C (50 yr)�1.
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11a). The simulated oceanic monsoon index has a cor-
relation coefficient of 0.13 with the index derived from
the GPCP data, which is not statistically significant at
the 5% confidence level. In particular, no apparent in-
creasing trend is seen in the simulated oceanic mon-
soon index (Fig. 11a). This discrepancy might arise
from the uncertainty of observational data. As shown in
Table 1, the correlation between the simulation and the
CMAP observation is even lower (i.e., 0.05). While the
GPCP data shows an increasing trend of 0.55 mm day�1

(50 yr)�1 for the period 1979–2000 in the oceanic mon-
soon index, similar trends cannot be observed in the
CMAP data [the corresponding trend is �1.4 mm day�1

(50 yr)�1].
In addition to the GPCP and CMAP data, the SSM/I

estimates might be the best available precipitation es-
timates over the ocean (Wentz and Spencer 1998) and
should serve as a useful validation of the other data.
Since the SSM/I estimates are only available from 1988
to the present, we show the statistics on the variation of

oceanic monsoon rainfall for the period 1988–2000 in
Table 1 (see the values in parentheses). The oceanic
monsoon index derived from SSM/I is highly correlated
with that of the GPCP data, having a correlation coef-

TABLE 1. Correlation coefficients among the observed and the
simulated oceanic and global monsoon indices during 1979–2000.
The values in parentheses for SSM/I are for the period covering
1988–2000.

GPCP
ocean

CMAP
ocean

Simulated
ocean

GPCP ocean 1.0 0.54 0.13
CMAP ocean 0.54 1.0 0.05
SSM/I (0.63) (0.16) (�0.48)
Simulated ocean 0.13 0.05 1.0

GPCP
global

CMAP
global

Simulated
global

GPCP global 1.0 0.78 0.40
CMAP global 0.78 1.0 0.35
Simulated global 0.40 0.35 1.0

FIG. 11. The GMI over the (a) ocean and (b) land region. The data used are the GPCP data (1979–
2000), CMAP data (1979–2000), SSM/I data (1988–2000), and the ensemble mean of 15 realizations of
CAM2 simulation. Also shown in (b) is the GMI over the land region, derived from the ensemble
land-based rain gauge data. Units are mm day�1.
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ficient of 0.63. The correlation of the two indices de-
rived from the SSM/I and CMAP datasets is extremely
low (i.e., 0.16) and not statistically significant at the 5%
level. Thus the GPCP is probably a more reliable esti-
mate of rainfall than CMAP. The correlation of oceanic
monsoon indices derived from the simulation and
SSM/I data is still poor. Although the data length of
SSM/I is not long enough to accurately estimate a trend,
a comparison with the other data still has the value of
reference. The SSM/I data shows a trend of 0.52 mm
day�1 (50 yr)�1 for the period 1988–99 in the oceanic
monsoon index. This value is larger than that of the
GPCP data, which is 0.39 mm day�1 (50 yr)�1. Thus, the
consistency of different datasets in estimating the oce-
anic monsoon rainfall trends is not satisfactory. The
poor simulation of the ocean monsoon index might
arise from data uncertainties. Nevertheless, discrepan-
cies of the CAM2 model in describing the ocean mon-
soon domain should also have contributions to the low
reproducibility (see Fig. 2a).

In contrast to the global monsoon index over the
ocean area, the global land monsoon indices derived
from two satellite datasets are highly correlated, having
a correlation coefficient of 0.98 (Table 2). The land
monsoon index derived from the GPCP (CMAP) data
has a correlation coefficient of 0.80 (0.84) with the rain
gauge data derived index. The reliability of the satellite
data over the land monsoon area is better than that
over the oceanic monsoon region. Both the CMAP and
the GPCP precipitation are estimates based on satel-
lite data and in situ observations on land (Xie and
Arkin 1996; Huffman et al. 1997; Adler et al. 2003).
Because of different algorithms used to retrieve the
rainfall from the satellite data, there are some distinc-
tive differences between these two datasets over the
ocean regions (Gruber et al. 2000). There is a possibility
that the observational evidence over the oceanic mon-
soon area might not be solid enough for evaluating cli-
mate models, in particular for the long-term variability.
If this is true, great efforts should be devoted to im-
proving the qualities of precipitation products over the
ocean area.

4. Concluding remarks

a. Conclusions

The global monsoon rainfall over land has an overall
weakening trend over the last half-century (1950–2000).
Causes for this observed decreasing tendency are ad-
dressed by analyzing the output of ensemble simula-
tions of the NCAR CAM2 model forced by historical
sea surface temperature. The main results are summa-
rized below.

1) The CAM2 model has reasonable performances in
simulating the observed major monsoon rainy
regions, which include the northern African and
southern African monsoon region, the South and
East Asian monsoon region, the Australian mon-
soon region, and the Central American and
southern American monsoon region except for the
western Pacific rainy region. The deficiency of the
model in producing the rainy regions over the cen-
tral tropical South Pacific is partly ascribed to the
ill-simulated double ITCZ.

2) The significant changes of global land monsoon
rainfall are deducible from the atmosphere’s re-
sponse to the observed SST variations. Since the
signal of external SST forcing is larger than the noise
caused by internal atmospheric dynamics, the obser-
vational decreasing trend in the Northern Hemi-
sphere monsoon index has been reproduced by the
CAM2 simulation. There are significant correlations
between the simulated and the observed global land
monsoon precipitation indices, indicating that most
of the observational land monsoon rainfall variabil-
ity arises from the oceanic forcing.

3) The majority of the land monsoon region shows a
coherent decreasing tendency, with the largest am-
plitude over northern Africa. This typical feature
has been well produced in the ensemble simulation
except for the Asian monsoon rain intensity. The
observed drying trend is attributable to a common
oceanic influence (i.e., the recent warming over the
central-eastern Pacific and the tropical Indian
Ocean).

4) The interannual variation of the ARI significantly
relates to ENSO. The leading mode of the annual
range of land monsoon precipitation concurs with
ENSO. Prescribing the observational SST forcing to
the CAM2 model successfully captures the interan-
nual variation of the ARI, except for some differ-
ences in the spectral peaks.

5) There are uncertainties between the GPCP and
CMAP data in describing the evolution of global
ocean monsoon precipitation. There exists very little

TABLE 2. Correlation coefficients among the observed and the
simulated land monsoon indices during 1979–2000.

Obs
land

GPCP
land

CMAP
land

Simulated
land

Obs land 1.0 0.80 0.84 0.36
GPCP land 0.80 1.0 0.98 0.48
CMAP land 0.84 0.98 1.0 0.52
Simulated land 0.36 0.48 0.52 1.0
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correspondence between the simulated and the ob-
served global monsoon index over the ocean area.
Uncertainties in the satellite data and model defi-
ciencies in describing the ocean monsoon domain
are partly to blame.

b. Discussion

Studying how monsoon rains have changed may pro-
vide insight for understanding future changes. Current
state-of-the-art climate models are imperfect and are
not the real atmosphere. If the presented model results
provide a reliable indication of the behavior of the real
world, then they have implications for the interpreta-
tion of long-term global land monsoon rainfall change.
The evidence from our results suggests the key roles of
SST anomalies in the tropical Pacific and Indian Ocean.
The warming trend across the Indo-Pacific Ocean per-
haps also reflects the eastern Pacific SST forcing on the
Indian Ocean, as in the case of climate variability in
which ENSO forces the Indian Ocean monopole (Klein
et al. 1999; Lau and Nath 2003; Yang et al. 2006). Fur-
ther work to identify and understand the causes of
these SST anomalies will also have implications for pro-
jections of global land monsoon rainfall change, par-
ticularly its response to global warming. In addition,
this analysis focuses on typical summer and winter
monsoon seasons only. During boreal fall the convec-
tion maximum occurs in the eastern Indian Ocean, the
Malay Peninsula and Sumatra, and the southern South
China Sea, hence a large amount of rainfall also falls in
Southeast Asia during this transition season (Chang et
al. 2005). The long-term trend of monsoon rainfall dur-
ing the transition season will be analyzed in a separate
paper.

It is important to acknowledge the limitations of this
study. In particular, we have used a prescribed SST
boundary condition. Several studies have pointed out
that one must be cautious in using AGCM studies with
prescribed SSTs to interpret the influence of the extra-
tropical oceans on climate variability (e.g., Sutton and
Hodson 2007). Recent studies suggested that the mon-
soon simulation strongly depends on the correct air–sea
coupling over the Asian–Australian monsoon region
(Wang et al. 2005; Wu et al. 2006; Wu and Kirtman
2007). In the tropical Indo-western Pacific Ocean re-
gions, SST forcing and atmospheric forcing dominate
alternatively in different seasons. Atmospheric forcing
dominates in the local warm/rainy season (Wu and
Kirtman 2007). The performance of SST-forced simu-
lation is low or poor when atmospheric forcing domi-
nates; coupling an AGCM with an ocean model can
better simulate the Asian summer monsoon climatol-
ogy (Fu et al. 2002). The result of the SST-forced run

presented here is mainly successful at capturing the ob-
served long-term trend of monsoon rainfall over north-
ern and southern Africa, South America, eastern Aus-
tralia, Bangladesh–northern India–eastern Tibetan Pla-
teau, and part of northern China, except for the rainfall
trend over southern Asia, and western Australia (cf.
Figs. 5a,b). With the inclusion of the air–sea feedback,
whether it is possible to correctly simulate the long-
term trend of summer monsoon rainfall over this region
warrants further study. Kim et al. (2008, manuscript
submitted to J. Climate) evaluated the twentieth cen-
tury Coupled Climate Model simulations for the period
of 1951–99 collected from the World Climate Research
Programme’s Coupled Model Intercomparison Project
phase 3 (CMIP3) multimodel dataset. They found that
regardless of the prescribed external forcing, none of
the models is able to faithfully simulate the observed
decreasing tendency in the Northern Hemisphere land
monsoon domain. As an extension of AMIP-type run,
the “partial-coupling” approach may help us to further
understand the mechanism. For this purpose, the lower
boundary conditions surrounding the maritime sites
outside the tropical Pacific are either set to an oceanic
mixed layer model or an oceanic general circulation
model, while observed monthly SST variations are pre-
scribed in the tropical Pacific, as has been done in the
simulation of interannual variability of the Asian–
Australian monsoon (Lau and Nath 2000, 2003, 2006).

Another potential limitation is the definition of mon-
soon domains. The monsoon not only exhibits changes
in rainfall intensity, but also experiences changes in
coverage. The monsoon domains can migrate spatially
over time with changes in internal and external forcing
agents of the coupled system. Since the monsoon index
was calculated as the average of precipitation intensity
falling within the climatological annual range-defined
monsoon region as Wang and Ding (2006), it is unable
to describe the changes of area covered by monsoon
rain. There has been a substantial change in land–sea
thermal contrast over the past 52 yr; the monsoon do-
main should have been affected by the change of ther-
mal contrast. For example, Kitoh et al. (1997) raised an
important issue about an apparent paradox between
the South Asian summer monsoon’s increasing precipi-
tation and its decreasing circulation intensity. This
paradox is explained by the northward shift of the mon-
soon circulation (see also Kitoh 2006 for a review).
Thus, the migration of the monsoon domain might not
be correctly interpretated by simply using an increasing
or reduction of monsoon precipitation. A more robust
analysis approach, which is capable of quantifying the
migration of monsoon domain, needs to be developed.
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One potential caveat of this work is the experimental
design, since only the historical SST variation was pre-
scribed. In nature, however, both natural and anthro-
pogenic forcing agents contribute to the monsoon rain-
fall change (e.g., Meehl and Washington 1993; Yu et al.
2004; Li et al. 2005; Kitoh and Uchiyama 2006; Xin et al.
2006; Yang and Lau 2006). Previous studies have spec-
ulated that man-made absorbing aerosols in remote
populous industrial regions alter regional atmospheric
circulation and cause regional climate change (e.g.,
Qian and Giorgi 1999; Qian et al. 2001). Recent studies
suggested that sulfate and black carbon aerosols have
played a role in forcing the recent changes in monsoon
rains by cooling the surface or reduce the latitudinal
SST gradient (Menon et al. 2002; Lau et al. 2006; Meehl
et al. 2008). However, the responses of climate models
to the inclusion of aerosols are model-dependent. For
example, Menon et al. (2002) suggest that precipitation
trends in China over the past several decades may be
related to the increased Black carbon aerosols. Meehl
et al. (2008) argue that the observed increasing precipi-
tation trends over southern China appear to be associ-
ated with natural variability connected to surface
temperature changes in the northwest Pacific. The in-
clusion of aerosols seems to suppress the simulated in-
creasing trends in Southeast Asia as seen in many gen-
eral circulation model simulations (e.g., Mitchell and
Johns 1997), but not in all (e.g., Roeckner et al. 1999).
A spread is also seen in the surface air temperature
responses to prescribed forcing agents including aero-
sols simulated by 19 coupled models involved in the
CMIP3 project (Zhou and Yu 2006). Nonetheless, our
suggestion of the contribution of tropical ocean warm-
ing to the decreasing tendency of global land monsoon
rainfall does not rule out any other factors. There is a
need to better understand the roles of other forcing
agents including aerosols as potential causes of global
monsoon rainfall variation.

In addition, we have carried out analyses with the
single atmospheric model CAM2. Whether other mod-
els can yield consistent climate responses with respect
to main features reported here warrants further study.
A set of such comparisons will be taken as part of the
Climate Variability and Predictability (CLIVAR) In-
ternational Climate of the Twentieth Century Project
(C20C; Folland et al. 2002). Such multimodel intercom-
parisons should help us to gain insight on the forcing
mechanisms of global monsoon rainfall variation. The
present results provide a useful reference for the future
multimodel assessment of C20C.
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