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[1] Most state-of-the-art climate models have difficulty in the prediction of El Niño-
Southern Oscillation (ENSO) starting from preboreal spring seasons. The causes of
this spring predictability barrier (SPB) remain elusive. With a theoretical ENSO system
model, we investigate this controversial issue by tracing the evolution of conditional
nonlinear optimal perturbation (CNOP) and by analyzing the behavior of initial error
growth. The CNOPs are the errors in the initial states of ENSO events, which have the
biggest impact on the uncertainties at the prediction time under proper physical
constraints. We show that the evolution of CNOP-type errors associated with El Niño
episodes depends remarkably on season with the fastest growth occurring during boreal
spring in the onset phase. There also exist other kinds of initial errors, which have either
somewhat smaller growth rates or neutral ones during spring. However, for La Niña
events, even if initial errors are of CNOP-type, the errors grow without significant
seasonal dependence. These findings suggest that the SPB in this model results from
combined effects of three factors: the annual cycle of the mean state, the structure of
El Niño, and the pattern of the initial errors. On the basis of the error tendency equations
derived from the model, we addressed how the combination of the three factors causes the
SPB and proposed a mechanism responsible for the error growth in the model ENSO
events. Our results help in clarifying the role of the initial error pattern in SPB, which may
provide a clue for explaining why SPB can be eliminated by improving initial conditions.
The results also illustrate a theoretical basis for improving data assimilation in ENSO
prediction.
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1. Introduction

[2] Considerable effort has been invested in understand-
ing and simulating the phenomenon of El Niño-Southern
Oscillation (ENSO) by using models of varying complexity.
These models range from theoretical ones [Wang and
Fang, 1996; Jin, 1997a, 1997b; Wang et al., 1999; Wang,
2001], through the so-called intermediate coupled model
[McCreary and Anderson, 1991; Cane et al., 1986; Suarez
and Schopf, 1988; Battisti and Hirst, 1989; Philander,
1990; McCreary and Anderson, 1991; Kleeman et al.,
1995; Picaut and Delcroix, 1995; Neelin et al., 1998], to
complex coupled general circulation models (CGCMs). Both
intermediate coupled models [e.g., Zebiak and Cane, 1987]
and CGCMs have been used to forecast ENSO. Recently, the
climate forecast system at the National Center for Environ-
mental Prediction [Saha et al., 2006], the seasonal forecast

systems at the European Center for Medium-Range Weather
Forecasts, and the Multimodel Ensemble System at EU
[Palmer et al., 2004] and at Asia-Pacific Economic Cooper-
ation Climate Center have also been developed for seasonal
to interannual climate prediction.
[3] A detailed comparison of ENSO models was given by

Kirtman et al. [2002]. They indicated that it is difficult to
tell which model shows higher forecast capability for the
dynamical and statistical models or intermediate and com-
plex models. To improve ENSO forecast skill, it is neces-
sary to explore the fundamental physics of ENSO for which
a theoretical model is useful. Wang and Fang [1996], Jin
[1997a, 1997b], and others have developed analytical mod-
els to advance the understanding on ENSO physics and
have obtained significant results.
[4] ‘‘Spring predictability barrier’’ (SPB) is a well-known

characteristic of ENSO forecasts. The SPB is referred to a
phenomenon that most ENSO prediction models often
experience an apparent drop in prediction skill across April
and May [Webster and Yang, 1992]. SPBs exist in coupled
and statistical models. In some occasions, the SPB is even
stronger in statistical models than in GCMs [van Oldenborgh
et al., 2005]. Many works have investigated this phenome-
non [Walker, 1924; Webster and Yang, 1992; Webster, 1995;
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Moore and Kleeman, 1996; Samelson and Tziperman, 2001;
McPhaden, 2003, etc.], but debate remains concerning its
cause. One of the possible causes is the rapid seasonal
transition of monsoon circulation during the boreal spring
that perturbs the Pacific basic state when the east-west sea
surface temperature (SST) gradient is the weakest [Webster
and Yang, 1992; Lau and Yang, 1996]. Another notion
proposed byWebster [1995] is that SPB is due to the weakest
ocean-atmosphere coupling during spring in the eastern
Pacific. Other studies argued that SST anomalies in boreal
spring are relatively small, such that these anomalies are
difficult to be detected and forecasted in the presence of
atmospheric and oceanic noises [Xue et al., 1997; Chen et
al., 1995]. Samelson and Tziperman [2001] demonstrated
that SPB is an inherent characteristic of ENSO, whereas
Chen et al. [1995, 2004] suggested that this predictability
barrier could be reduced through improving initialization.
McPhaden [2003] showed that subsurface information has a
winter persistence barrier and that the predictability of
ENSO bestriding spring can be greatly enhanced by incor-
porating this information into the model. In general, the
cause of the SPB remains elusive. There is an urgent need to
further address the problems related to SPB for ENSO.
[5] Understanding of SPB can be gained by studying

the initial error growth. Moore and Kleeman [1996] and
Samelson and Tziperman [2001] have investigated the
seasonal variability of ENSO error growth and explored
the cause of predictability barrier by using linear singular
vector (LSV). Blumenthal [1991], Xue et al. [1997],
Thompson [1998], and Moore and Kleeman [1999] also
used LSV to study ENSO predictability. LSV is one of the
useful tools in predictability studies, but it deals with
sufficiently small initial perturbations and thus is unable
to describe nonlinear evolution of finite-amplitude initial
perturbations [Oortwijin and Barkmeijer, 1995; Mu et al.,
2003].
[6] In this paper, we use conditional nonlinear optimal

perturbation (CNOP) proposed by Mu et al. [2003] (see also
Mu and Zhang, 2006) to study seasonal reliance of the
evolution of finite-amplitude initial errors. The CNOP
represents the initial error that has the biggest effect on
the forecast results at the prediction time. CNOP method has
been applied to study the ENSO precursor [Duan et al.,
2004] and the sensitivity of ocean thermohaline circulation
to finite-amplitude perturbations [Mu et al., 2004], as well
as the passive variability of the thermohaline circulation
[Sun et al., 2005]. The aforementioned studies illustrate that
CNOP is one of the useful tools for predictability study. A
particular appealing aspect is that CNOP describes the
optimal initial perturbation of nonlinear model and reveals
the effect of nonlinearity on predictability.
[7] To facilitate theoretical understanding of essential

dynamics and physics for ENSO predictability, we may
apply CNOP method to a nonlinear ENSO model. The
theoretical one developed by Wang and Fang [1996] may
provide a convenient tool for analyzing the essential physics
of SPB. Burgers et al. [2005] revealed SPB phenomenon
by using the simplest ENSO recharge oscillator model
advanced by Jin [1997a, 1997b], which is linear and consists
of two-variable ordinary differential equations with stochastic
forcing. The model of Wang and Fang [1996] (hereinafter

referred to as WF96) is a nonlinear ENSO model of two-
variable differential equations with self-sustained oscillation
that may also capture the essential physical of SPB. In this
research, we will use WF96 model to investigate SPB with
CNOP approach.
[8] We briefly review the ideas of CNOP in the next

section and introduce the ENSO model in section 3. Sea-
sonality of the initial error growth for ENSO is examined in
section 4. In section 5, we discuss the mechanism of the
seasonal variation for error growth and explain the role of
nonlinearity in error growth. We summarize the conclusions
in section 6 and finally discuss the implication of our results
in section 7.

2. Conditional Nonlinear Optimal Perturbation

[9] Let Mt be the propagator of a nonlinear model from
time 0 to t. u0 is an initial perturbation superimposed on the
basic state U(t), which is a solution to the nonlinear model
and satisfies U(t) = Mt (U0), with U0 being the initial value
of basic state U(t).
[10] For a chosen norm k�k, an initial perturbation u0d is

called CNOP if and only if

J u0dð Þ ¼ max
ku0k�d

Mt U0 þ u0ð Þ �Mt U0ð Þk k; ð1Þ

where ku0k � d is a constraint condition of initial pertur-
bations defined by norm.
[11] CNOP is the initial perturbation whose nonlinear

evolution attains the maximal value of the objective func-
tion J at time t [Mu et al., 2003; Mu and Zhang, 2006].
Nevertheless, there exists a possibility that J attains its local
maximum in a small neighborhood of a point in the phase
space. Such initial perturbation is called local CNOP. CNOP
and local CNOP possess clear physical meanings. For
example, in an anomaly model for ENSO, CNOP (local
CNOP) superimposed on the climatological background
state is most likely to evolve into El Niño (La Niña) event
and acts as the optimal precursors of El Niño (La Niña)
events [Duan et al., 2004]. In this situation, CNOP can be
considered to be the most predictable, meaning that if this
signal related to CNOP is observed in nature, then the
future outcome of the system is fairly certain. For the
CNOPs superimposed on ENSO events, they describe
initial errors that have largest effect on the prediction results
of ENSO.
[12] In this paper, CNOP and local CNOP are computed

by using sequential quadratic programming (SQP) solver
[Powell, 1982], which is used to solve the nonlinear
minimization problems with equality and/or inequality
constraint condition. A brief description of the algorithm
is referred to the study of Mu et al. [2003].

3. The Theoretical ENSO Model

[13] With adequate simplifications supported by observa-
tion, Wang and Fang [1996] distilled Zebiak and Cane’s
[1987] intermediate coupled ocean-atmosphere model to a
highly simplified one. The model consists of two dimen-
sionless ordinary differential equations that describe, res-
pectively, the temporal variations of the anomalous SST T
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and thermocline depth h averaged in the equatorial eastern
Pacific:

dT

dt
¼ a1T � a2hþ

ffiffiffi
2

3

r
T T � a3hð Þ;

dh

dt
¼ b 2h� Tð Þ;

8>><
>>: ð2Þ

where a1 = Tz + Tx � as, a2 = m Tx, a3 = m, b ¼ 2a
p 1�3a2ð Þ, and

p = (1�H1/H)(L0/Ls)
2. For simplicity, the horizontal

advection of temperature is neglected because it is relatively
small compared to the vertical temperature advection and its
effect can be incorporated into the nonlinear terms by
modifying the coefficient m [Wang et al., 1999]. The linear
coefficients a1 and a2 are determined by the basic state
parameters Tx and Tz, which characterize, respectively, the
zonal temperature difference between the equatorial eastern
and western basins and the vertical temperature difference
between the basic state mixed-layer or SST and subsurface-
layer water temperature. Note that these basic state
parameters are time dependent, reflecting the climatological
annual cycle of the basic state. as denotes Newtonian
damping coefficient. a and m are nondimensional coupling
parameters. The parameter a represents an empirical air-sea
coupling coefficient, and m measures the degree of coupling
between thermocline fluctuation and SST. The meanings of
these parameters were listed in Table 1 of WF96; their
typical values were derived empirically from observations
or an intermediate tropical Pacific Ocean model [Wang et
al., 1995] driven by observed climatological monthly mean
solar radiation, surface wind stress, and cloudiness forcing.
[14] The linear terms in the T equation describe the

vertical advection by the anomalous upwelling of the mean
SST (TzT) and the vertical advection by the mean upwelling
of the anomalous SST (Tx (T � mh)), and the Newtonian
damping (�asT). The quadratic term in T equation comes
from the nonlinear temperature advection by anomalous
upwelling of the anomalous temperature. The linear terms in
h equation depict, respectively, the effect of equatorial

waves on thermocline adjustment (2bh) and the effect of
the zonal wind stress forcing via Sverdrup balance (�bT).
The nondimensional parameter b is a nonlinear function of
the air-sea coupling coefficient a and depends on scaling
factors H (150 m, mean thermocline depth), H1 (50 m mean
mixed year depth), L0 (300 km, the oceanic Rossby radius
of deformation), and Ls (338 km, the meridional Ekman
spreading length).
[15] WF96 used this dynamic system model to explain

the cyclic, chaotic, seasonal-dependent evolution of ENSO.
In the presence of the annual cycle, WF96 demonstrated
that the solution of the dynamical system represents a
strange attractor around a stable limit cycle in the phase
plane; the corresponding solution in physical space repre-
sents an interannual oscillation with inherent deterministic
chaos in amplitude and frequency. Furthermore, it was
shown that the model ENSO cycle is phase-locked to the
basic state annual cycle. To study the essential physics of
ENSO predictability, Mu and Duan [2003] and Duan et al.
[2004] utilized it to investigate the error growth for ENSO
and to identify the precursors for ENSO events.
[16] Obviously, WF96 model is a highly simplified ver-

sion of Zebiak and Cane [1987], in which ENSO oscilla-
tion may be much more regular than that in observations
(Figure 1). Nevertheless, the interest of this study is the
seasonality of ENSO predictability and its essential physics.
Furthermore, the main characteristics related to seasonality
shown by previous studies [Webster and Yang, 1992; Moore
and Kleeman, 1996] may be roughly captured in WF96
model (see WF96 and section 4 in this paper). It is therefore
suggested that this theoretical model is acceptable for
exploring the fundamental physics of seasonality of error
growth for ENSO qualitatively.
[17] The steady solution O(0,0) of WF96 model means

that the values of SSTA and thermocline depth anomaly are
zero, which represents the climatological mean equilibrium
state including annual cycle (see Figure 1 of WF96). The
model is integrated numerically by using a fourth-order
Runge-Kutta scheme with dt = 0.01, which represents 1 day.

4. Dynamics of Season-Dependent Error
Evolution for ENSO Events

[18] To understand SPB, it is necessary to investigate the
seasonal dependence of error growth for ENSO events.
Considering that CNOP is the initial error that has biggest
the effect on prediction results, we compute CNOPs of
ENSO events in WF96 model.

4.1. The Calculation of CNOPS of the ENSO Events

[19] Let u0 be an initial error of a predetermined ENSO
event. We adopt equation (1) as the objective function to
compute its CNOP. In this situation, U0 in equation (1)
represents the initial state of the model ENSO, and J
determines the maximum prediction error of ENSO event.
The error evolution is measured by using norm ku(t)k =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT 0Þ2 þ ðh0Þ2

q
, where T 0 and h0 are the errors of SSTA and

thermocline depth anomaly, respectively.
[20] With the above chosen norm, Duan et al. [2004]

have investigated the CNOPs superimposed on annual cycle
in WF96 model. The results demonstrated that for the
annual cycle, regardless of what initial time is, there exist

Figure 1. Time series of anomalous SST (solid line) and
thermocline depth (dashed line) from model integration year
50 to year 64.
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CNOPs and local CNOPs for the different optimization
time intervals. These CNOPs (local CNOPs) have the
robust patterns of negative (positive) SST and positive
(negative) thermocline depth anomalies. They are most
likely to evolve into El Niño (La Niña) events and therefore
provide the optimal precursors of El Niño (La Niña) events
within WF96 model, which agrees with the observations
qualitatively.
[21] Considering the time period during which the ENSO

optimal precursors arise qualitatively in observation [Duan
et al., 2004], we choose El Niño (La Niña) events with
optimal precursors occurring in January (October) to study
the error development aftermath. These El Niño (La Niña)
events are denoted as UJ

E (UJ
L) and UO

E (UO
L), respectively.

El Niño events UJ
E (UO

E) tend to peak about a year later in
December (October). In T-h phase space, the precursors of
these El Niño events can be expressed as (�0.1373, 0.1968)
and (�0.0283,0.2383), respectively, for magnitude of norm
being 0.24; the ones of La Niña events are (0.1511,
�0.1865) and (0.0776, �0.2271), respectively. Details can
be seen in the work of Duan et al. [2004].
[22] Now we compute the CNOPs superimposed on the

model El Niño (La Niña) events, UJ
E (UJ

L) and UO
E (UO

L),
where the time interval length is a year and the constraint is
ku0k � d, with d ranging from 0.01 to 0.05. The results
show that for each basic state El Niño (La Niña) event, there
exists a CNOP, denoted by U0d

E (UJ
L). These CNOP-type

errors robustly perturb SSTA negatively and thermocline
depth anomaly positively at initial time (Figures 2 and 3).
For example, for El Niño eventUJ

E, the CNOPswith d = 0.01,
0.02, 0.03, 0.04, and 0.05 are (�0.0072, 0.0065), (�0.0142,
0.0137), (�0.0206, 0.0218), (�0.0204, 0.03451), and
(�0.0201, 0.0456), respectively, whereas the ones of La
Niña UJ

L are (�0.0071, 0.0069), (�0.0145, 0.0137),
(�0.0227, 0.0198), (�0.0311, 0.0252), and (�0.0396,
0.0308). Furthermore, these CNOP-type errors of El Niño
and La Niña, after about 1–2 months, all evolve to perturb

positively SSTA and thermocline depth anomaly within the
given finite time periods (the figures are not shown).
[23] To compare CNOP of El Niño (La Niña) with LSV,

we investigate the distribution of CNOP and LSV in phase
space (T 0, h0). u0L = (�0.0107, 0.0102) is an LSVof El Niño
UJ

E and is located in quadrant II, which is the fastest
growing perturbation of the tangent linear model (TLM)
of WF96 model with respect to UJ

E. We define the scaled
LSVs,

uE0L ¼
uE0d
�� ��
u0Lk k u0L;

thus

uE0L
�� �� ¼ uE0d

�� �� ¼ d:

[24] This means that the CNOP and the scaled LSVof the
El Niño are of the same magnitude of norm. Figure 2
illustrates them for the different values of d, where A and A0

correspond to the U0d
E and U0L

E with d = 0.05, respectively.
It is readily shown that for the same value of d, when d is
relatively large, for instance, d = 0.04 or 0.05 (i.e., the SSTA
component of the initial error is confined to be smaller than
dimensional 0.08� or 0.1�C), the CNOP U0d

E is quite
different from the scaled LSV U0L

E. With d increasing from
0.01 to 0.05, the LSVs show themselves a beeline, while the
CNOPs shape into a curve. Then the differences between
CNOP and LSV become progressively large with increasing
d. This indicates that the larger the initial error, the more
considerable the differences between CNOP and LSV. Sim-
ilar analysis is performed to the La Niña event UJ

L. The
results show that the CNOPs are different from the
corresponding LSVs although these differences are relatively
small compared to those of El Niño (Figure 3).
[25] We also examine the differences between CNOPs

and LSVs for El Niño events UO
E and La Niña events UO

L,

Figure 2. Phase distribution of CNOPs (solid line) and
corresponding LSVs (dashed line) superimposed on El Niño
event UJ

E. d denotes the magnitude of CNOP and the
corresponding LSV measured by the chosen norm. O0 labeled
by ‘‘El Niño’’ represents the above basic state El Niño event.

Figure 3. Phase distribution of CNOPs (solid line) and
corresponding LSVs (dashed line) superimposed on La
Niña event UJ

L. d is same as that in Figure 1. O0 represents
the La Niña event.
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respectively. Similar results are obtained. The details are
therefore not shown here.

4.2. Seasonal Dependence of Initial Error Growth of
ENSO Events

[26] In the scenario of perfect model, the model ENSO
events, which are obtained by integrating the model with
proper initial conditions, could be considered as a ‘‘hindcast
mode’’ to be predicted with uncertain initial fields. Along
this thinking, Duan and Mu [2005] estimated the predict-
ability of WF96 model by predicting the maximum predict-
able time of model ENSO event. Their results indicated that
the ENSO warm event is hardly predictable through spring
and exhibits the behavior of SPB.
[27] In this section, we will investigate the season-

dependent predictability of model ENSO events by estimat-
ing the uncertainties caused by initial error. A calendar year
is divided into four seasons starting with January to March
(JFM), followed by April to June (AMJ), and so forth. Then
we investigate the slopes of the curve gdðtÞ ¼

uNd tð Þk k
d at

different seasons, where uNd(t) represents the nonlinear
evolution of CNOP for ENSO. The slope of gd(t) is denoted
by k and indicates the growth tendency of CNOP normal-
ized by d at different seasons. A positive (negative) value of

k corresponds to an increase (decrease) of the errors, and
the larger the absolute value of k, the faster the increase
(decrease) of the errors.
[28] Tables 1 and 2 show the slopes of gd(t) for El Niño

event UO
E and La Niña event UO

L. Here, the values of k
related to LSV-L are the slopes of the curve gLðtÞ ¼

uL tð Þk k
u0Lk k at

different seasons; u0L and uL (t) represent the LSV of El
Niño (or La Niña) and its linear evolution. Note that for any
constant c, initial error cu0L is also an LSV due to the
linearity; its linear evolution can be expressed as ckuL(t)k. It
is easily derived that the curve gL(t) is independent of the
constant c, whose slopes at each season are therefore
invariant for the different LSVs.
[29] From Table 1, it is demonstrated that the largest

growth of CNOP occurs during AMJ season (boreal spring)
for the El Niño UO

E. Although the largest error growth of El
Niño during AMJ is also shown by LSV and TLM, the
nonlinear growth of CNOP is different from the linear
counterpart of LSV. Moreover, with the magnitude of initial
errors increasing from 0.01 to 0.05, the differences between
the results of CNOP and LSV become more and more
considerable. The implication is that within this simple
model, nonlinearity plays an important role in the predict-
ability of El Niño UO

E for the large initial errors. It enhances

aggressively the error growth of El Niño and increases the
uncertainties of El Niño forecast bestriding AMJ season.
For La Niña event UO

L, the results shown in Table 2
demonstrate that the seasonal dependence of error evolution
is less prominent than that of El Niño. In addition, nonlin-
earity is trivially important in error growth of La Niña over
the whole interval of d.
[30] We also investigate the slopes k of large ensemble of

initial errors, including LSV in the domain ku0k � d with
different values of d. The results suggest that not all initial
errors can give rise to such prominent season-dependent
evolution as those of the CNOPs of El Niño. To show the
results, we list in Table 1 the slopes of some representatives
of initial errors u0, which are PE

1: (0.0201, 0.0456), PE
2:

(0.0396,�0.0308),PE
3: (�0.0396,�0.0308), andPE

4: (�0.0021,
�0.0499). As a sufficient comparison, we also give the
results of season-dependent evolution of LSV in nonlinear
model (see the ‘‘LSV-N’’ in Tables 1 and 2). These initial
errors are of the norm magnitude of 0.05. Comparisons
between the CNOP and the large ensemble of initial errors
(including LSV) demonstrate that CNOP most likely
induces the prominent seasonal variation of error evolution
for El Niño. The remaining initial errors including LSV
either have somewhat smaller slopes or have neutral ones
during AMJ. In particular, the growth of initial error PE

4 in
AMJ is even less than that in October to December (OND)
season.
[31] The seasonal variations of the CNOPs of the El Niño

(La Niña) events UJ
E (UJ

L) are also investigated (Tables 3
and 4). The results are similar to those of UO

E (UO
L): the

CNOP of El Niño exhibits a prominent season variation,
while that of La Niña displays a less prominent one.
However, in this case, nonlinearity plays a minor role in
the error growths of El Niño during AMJ season. The LSV
growth for El Niño during spring is trivially smaller than the
CNOP growth for El Niño.

Table 1. The Values of k Corresponding to El Niño Event UE
O

d OND JFM AMJ JAS

0.01 1.4028 2.8391 6.5385 0.6932
0.03 1.3908 2.8636 8.2698 1.9113
0.05 1.3788 2.8863 10.1690 3.8327
LSV-L 1.4084 2.8264 6.2295 0.6898
LSV-N 1.4083 2.8618 8.8971 2.0312

P1
E

1.0871 1.0988 5.9867 1.5473

P2
E

1.3658 2.7866 4.7889 0.9804

P3
E

1.1180 0.8400 2.4800 �0.2879

P4
E

1.3567 1.0978 1.2087 0.0059

Table 2. The Values of k Corresponding to La Niña Event UL
O

d OND JFM AMJ JAS

0.01 1.5847 2.3371 1.2026 0.8932
0.03 1.5738 2.3712 1.2977 0.9113
0.05 1.5628 2.4051 1.4104 0.9327
LSV-L 1.5982 2.3264 1.1954 0.8398
LSV-N 1.5813 2.3436 1.3920 0.8722

P1
L

1.0800 0.4580 0.2180 0.1089

P2
E

1.6520 1.7180 0.3440 0.4832

P3
E

1.0802 0.4587 0.2089 0.1188

Table 3. The Values of k Corresponding to El Niño Event UE
J

d JFM AMJ JAS OND

0.01 1.2051 4.1555 2.2042 0.0981
0.03 1.2059 4.1736 2.3686 0.3781
0.05 1.2068 4.1875 2.5377 0.8190
LSV-L 1.2047 4.1450 1.9793 0.0842
LSV-N 1.2044 4.1477 2.5223 0.6318

P1
E

1.2028 4.1211 2.1316 0.0361

P2
E

1.3969 2.8839 2.0363 �0.3212

P3
E

1.4049 2.9854 1.1142 �0.9764

P4
E

1.5035 1.4871 1.1036 0.0056
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[32] Quite a few authors, i.e., Moore and Kleeman
[1996], Chen et al. [1997], etc., studied the role of clima-
tological mean state in the error growth of ENSO predic-
tions. The CNOP-type errors are novel ones, and the effect
of climatological background state on their evolutions is
investigated by two kinds of experiments. First, we shift
the phase of annual cycle forward by 6 months. Then the
northern fall becomes the most unstable season, and the
warming tends to start in November. In this case, we find
out that the largest error growth of El Niño appears in the
OND season and phase-locks to the annual cycle. Second, we
study the case of climatological background state being an
annual mean state instead of an annual cycle. It is shown that
the CNOP growth for El Niño has no obvious seasonal
dependence. For simplicity, we only report the results of
these experiments and do not show the details.
[33] The above results demonstrate that CNOPs of two

types of El Niño events show prominent season-dependent
evolutions with maximum error growth occurring during
AMJ season on the onset phase of them. Different initial
uncertainties of ENSO may induce varying degrees of
seasonal variation of the error evolution. CNOP of El Niño
has the potential to induce the pronounced seasonal vari-
ability. Especially, in the season-dependent error evolution
of El Niño UO

E, the spring growth of CNOP is significantly
larger than those of LSVs for the finite amplitude of initial
errors. The other initial errors have either less prominent
season-dependent evolution or neutral ones. However, for
the La Niña events, even if the initial error is taken to be the
type of CNOPs, the error evolution displays a less promi-
nent seasonal dependence. The above analysis distinguishes
not only the differences of the season-dependent error
evolutions of El Niño and La Niña events but also the
distinct characteristics of season-dependent evolutions of
different-type initial errors of El Niño. Furthermore, it also
identifies the role of climatological annual cycle in SPB. To
sum up, the largest error growth of ENSO results from the
combined effect of these three factors. The nonlinearity
within WF96 model enhances largely the error growth of
some El Niño events and increases the uncertainty of ENSO
prediction bestriding spring. CNOP stands for the initial
error that induces the most prominent seasonality of error
growth for El Niño.

5. The Mechanism Responsible for Error Growth
and SPB of ENSO Events

[34] In this section, we will explain why the largest error
growth of El Niño occurs during the AMJ season and how

the nonlinearity increases the uncertainties of ENSO fore-
cast bestriding AMJ.

5.1. The Mechanism Causing the Largest Error
Growth of ENSO Warm Event During AMJ Season

[35] Let (T, h) and (T + T0, h + h0) be the solutions of the
WF96 model. By subtracting dT

dt
and dh

dt
from

dðTþT 0Þ
dt

and
dðhþh0Þ

dt
, respectively, we obtain the governing equations of

(T 0, h0)

dT 0

dt
¼ A1T

0 � A2h
0 þ

ffiffiffi
2

3

r
T 0 T 0 � a3h

0ð Þ

dh0

dt
¼ b 2h0 � T 0ð Þ;

8>><
>>: ð3Þ

where A1 = a1 +
ffiffi
2
3

q
(2T�a3h), A2 = a2 +

ffiffi
2
3

q
a3T, and a3

and b are the same as those in equation (2). If (T, h) are
assumed to be a ‘‘true state’’ (basic state) to be predicted,
(T 0, h0) can be understood as the uncertainty superimposed
on ‘‘true state’’. Then equation (3) describes the evolution
of the uncertainty. To study the predictability of El Niño or
La Niña, we suppose that the ‘‘true state’’ is the above El
Niño or La Niña events. One of the steady solutions in
equation (3) is the origin in phase space and represents El
Niño or La Niña events in which the errors of both SSTA
and h are zero.
[36] From equation (3), we derive the tendency equations

of error evolution (the details are in Appendix)

S ¼ 1

2

d T 02 þ h02ð Þ
dt

¼ C þ E þ P

where

C ¼ a1T
02 � a2T

0h0 þ bh0ð2h0 � T 0Þ; ð4Þ

E ¼
ffiffiffi
2

3

r
2T � a3hð ÞT 02 �

ffiffiffi
2

3

r
a3T

 !
T 0h0; ð5Þ

P ¼
ffiffiffi
2

3

r
T 02 T 0 � a3h

0ð Þ: ð6Þ

The values of S are reflected proportionally by the slopes k
in Tables 1, 2, 3, and 4. In fact, the slopes k are equivalent
to the mean values of S/d in each season (d is referred to
section 4), from which we know that the time-dependent S
exhibits prominent seasonal variation when El Niño and its
CNOPs are applied to S.S can be divided into three parts: C,
E, and P. The term C includes the model coefficients a1 and
a2, which are linked with the climatological mean state in
WF96 model. It is conceivable that C denotes the effects of
climatological mean state on the error evolution of ENSO.
Similarly, since the expression E is embedded with T and h,
it can be understood as the effect of ENSO event on its
uncertainties. The term P is also associated with the error of
ENSO and reflects the role of the nonlinearity in error
evolution. Note that the magnitudes of C, E, and P depend
on the initial error pattern. Thus S shows that the error

Table 4. The Values of k Corresponding to La Niña Event UL
J

d JFM AMJ JAS OND

0.01 1.6569 2.7077 0.1402 1.1249
0.03 1.6604 2.7139 0.1429 1.1669
0.05 1.6638 2.7251 0.1642 1.2086
LSV-L 1.6532 2.7040 0.1412 1.1047
LSV-N 1.6568 2.7189 0.1517 1.1347

P1
E

1.6638 2.7104 0.1028 1.3026

P2
E

1.6461 2.6693 �0.2542 �0.0003

P3
E

1.6258 2.6133 �0.2346 �1.0036
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growth of ENSO not only depends on the climatological
mean state but also depends on the ENSO events them-
selves and their initial error pattern. Furthermore, non-
linearity is also an important factor in controlling error
evolution. Then with what manner the CNOP growth
depends on these factors?
[37] The numerical results in section 4.2 demonstrate that

the nonlinearity enhances the CNOP growth of El Niño
during AMJ at the onset of El Niño. This indicates that the
nonlinear term h(T 0, h 0) = T 0(T 0�a3h 0) in equation (3) is
positive during AMJ (the theoretical analysis can be seen in
section 5.2). Section 4.1 shows that bothT 0and h0 components
of CNOP-type error develop to be positive after 1–2 months,
so T 0(t) and h0(t) during AMJ are both positive for model
El Niño, UJ

E and UO
E. Then the inequality T 0>a3h

0 holds.
Furthermore, Duan et al. [2004] demonstrated that during
the same period, the El Niño was also enhanced by the non-
linearity. The nonlinear term in WF96 model T(T�a3h) > 0
and then the inequality T > a3h holds with T(t) > 0 and h(t) > 0
during AMJ. By these conditions, it is proved that all of C, E,
and P are positive during AMJ for the above El Niño events
and their CNOPs (see the Appendix). Furthermore, the
largest values of C and E arise in AMJ season (Figure 4).
This implies that the conditions of both climatological mean
state and El Niño event during AMJ are most favorable for
the CNOP growth.
[38] For the term P > 0, it indicates that the nonlinear

temperature advection for El Niño amplifies the evolution of
the CNOP-type error during spring. It should be pointed out
that the figure of P related to CNOP resembles that of the
nonlinear term in equation (3) (shown in Figure 7) except
for its magnitude (the figure is therefore omitted). There-
fore, we obtain that although P is positive during spring and
enhances the error growth, its magnitude is not the largest
during spring and does not play the dominant role in
seasonality of ENSO predictability. Nevertheless, the effect
of nonlinearity on error growth cannot be neglected since it
amplifies the error growth of El Niño during AMJ, which
will be discussed in detail in section 5.2.

[39] Therefore, it is derived that the spring strongest
ocean-atmospheric coupled instability of climatological
mean state and the weakest persistence of El Niño play
the most important role in seasonal variation of CNOP
growth.
[40] To investigate the dependence of SPB on the initial

error patterns, we plot E and C of the tendency S in Figure 5
for the initial error P4 (�0.0021, �0.0499) of El Niño UO

E in
section 4. It shows that E and C become quite small
compared with those of CNOP. In this case, the combined
effect of climatological mean state and El Niño event cannot
make S of P4 to be the largest during AMJ. Besides, we
have also found out that the magnitude of P related to P4 is
relatively small during spring compared with that of CNOP.
These suggest that the largest error growth of El Niño is also
closely related to the type of the initial error.

5.2. The Role of the Nonlinearity in Error Growth of
El Niño

[41] It follows from the above sections that CNOP growth
of El Niño UO

E during AMJ season is substantially larger
than the corresponding LSV growth for large-amplitude
initial uncertainties. This suggests that the nonlinearity
plays an important role in error growth of some El Niño
events. As for the La Niña events, the growth of CNOP
during AMJ is only moderately larger than that of LSV, and
the effect of nonlinearity on error growth of La Niña is
negligible. To make these much clear, we analyze theoret-
ically the role of nonlinearity in ENSO predictability.
[42] Equation (3) has two characteristic lines given by

dT 0

dt
¼ 0 and dh0

dt
¼ 0, i.e.,

h0 ¼
A1 �

ffiffiffi
2

3

r
T 0

 !
T 0

A2 þ a3

ffiffiffi
2

3

r
T 0

¼ f T 0ð Þ; or; T 0 ¼ f �1 h0ð Þ

h0 ¼ 1

2
T 0:

Figure 4. Magnitudes of C and E related to CNOP of El
Niño UO

E, where the magnitude of CNOP measured by
norm is 0.05. The rectangle marks the period of boreal
spring.

Figure 5. Magnitudes of C and E related to initial error P4

(�0.0021, �0.0499) of El Niño UO
E, where the magnitude

of P4 is the same as that of CNOP in Figure 4. The rectangle
marks the period of boreal spring.
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These two lines partition the phase plot of T0(t) and h0(t) into
three parts (see Figure 6). Besides, we note that T0 equation
in equation (3) characterizes the nonlinearity. In addition, it
can be rewritten as follows:

dT 0

dt
¼ A1T

0 � A2h
0 þ hðT 0; h0Þ; ð7Þ

where h (T 0,h0) =
ffiffi
2
3

q
T 0 (T 0�a3h0) and represents the nonlinear

temperature advection. On the line T 0 = a3h
0, equation (7)

becomes a linear one. To facilitate the discussion, we plot this

line in Figure 6 too.
[43] It is shown from Figure 6 that when the CNOP-type

error for El Niño develops to the period of a, its SSTA
component T 0(t) > 0 and satisfies a3h

0 < T 0< 2h0. This makes
h(T 0, h0) > 0. From equation (7), it is derived that the larger
the nonlinear term h(T 0, h0), the larger the error growth of
SSTA. Besides, during the period of a, the variations of T 0

and h0 tend to be a positive feedback. Therefore, when T 0

becomes large, h0 and then the error E tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT 0Þ2 þ ðh0Þ2

q

also increase. Consequently, the larger the nonlinear term,
the larger the error growth for El Niño. If the nonlinear
effect is ignored in equation (7), the error growth will be
smaller than that with positive nonlinear term. Thus we
have explained why the nonlinearity enhances the error
growth of El Niño event. Figure 7 demonstrates that the
larger the CNOP-type errors, the larger the nonlinear term,
and then the stronger the effects of the nonlinearity on the
spring error growth of El Niño.
[44] As for the CNOP-type error of La Niña, for the

different amplitudes of initial uncertainties, although the
nonlinear term is also larger than zero during AMJ, it is
always quite small and even negligible (Figure 8). In this
case, nonlinearity plays a minor role. This interprets why
the CNOP growth of La Niña during spring does not differ
significantly from the corresponding LSV growth.
[45] The importance of nonlinearity in error growth for El

Niño can also be observed from the relationship of three
parts in tendency S. We have tested that all of C, E, and P
are positive during spring and have the relationship of E >
P > C for CNOP of El Niño. Obviously, P is not small. This
implies that the effect of nonlinearity on El Niño predict-
ability is important although it does not play the dominant
role in SPB.

6. Conclusion

[46] Seasonal variability of ENSO predictability and the
related spring predictability barrier (SPB) problem were
studied by analyzing the properties of initial error growth
of El Niño and La Niña events in a theoretical ENSO model.
The results show that the largest growth rate of the condi-
tional nonlinear optimal perturbation (CNOP) for El Niño
occurs during April-May-June, which coincides with the
time of the predictability barrier of many ENSO predictions.
With increasing magnitude of CNOPs, the amplitude of
spring error growth for El Niño becomes progressively
large. Although the largest error growth of El Niño during

Figure 6. Schematic diagram showing the phase of CNOP
evolution for ENSO warm event.

Figure 7. Magnitudes of nonlinear term in equation (3) with
El Niño UO

E, which is obtained by integrating equation (3)
with the CNOPs of UO

E being initial values. d indicates the
magnitudes of CNOP in terms of the chosen norm.

Figure 8. Magnitudes of nonlinear term in equation (3)
with La NiñaUO

L, which is gained by integrating equation (3)
with the CNOPs ofUO

L being initial values. d is the same as in
Figure 7.

D10113 MU ET AL.: EL NIÑO PREDICTABILITY DYNAMICS

8 of 10

D10113



AMJ is also shown through linear singular vector (LSV),
the CNOP growth is significantly larger than that of the
LSV for large-amplitude initial perturbations in model El
Niño events. This implies that the nonlinearity plays an
important role in error evolution of ENSO warm event.
Nonlinearity related to temperature advection enhances
spring error growth of El Niño and increases the forecast
uncertainties of ENSO bestriding spring.
[47] Furthermore, we compared the seasonal variations of

the CNOP growth for ENSO with those of a large ensemble
of initial errors chosen randomly from a constrained initial
domain. It is demonstrated that not all initial errors tend to
induce prominent season-dependent evolution; it is the
CNOP superimposed on an El Niño condition that yields
such phenomenon. However, for the La Niña events, even if
the initial errors are taken to be of the types of CNOPs, their
evolutions do not exhibit notable seasonal dependence.
[48] The role of climatological annual cycle in SPB was

also examined, which demonstrates that the largest error
growth in El Niño is robustly phase-locked to the phase of
annual cycle.
[49] In summary, the SPB may result from the combined

effect of three factors: the climatological annual cycle, the
El Niño event itself, and the initial error pattern. CNOP-type
error represents the initial error pattern that most likely
induces the SPB for El Niño. There exist other kinds of
initial error patterns that do not show apparent seasonal
variation in error growth. We conceive that if the initial error
is not of the CNOP-type, the ENSO prediction could be less
uncertain. It is therefore suggested that if a data assimilation
method could filter CNOP-type initial errors, then ENSO
predictability could be improved.

7. Discussion

[50] A large body of previous studies investigated SPB for
ENSO. Moore and Kleeman [1996], Chen et al. [1997], and
van Oldenborgh et al. [1999] demonstrated the roles of both
the phase of the climatological basic state and that of the El
Niño in SPB. Then Goswami et al. [1997], van Oldenborgh
et al. [1999], and Fan et al. [2000] pointed out the impor-
tance of the initial fields in SPB [see also Tang et al., 2003].
Our results suggest that the combined effects of the above
three factors give rise to the SPB.
[51] Recently, Galanti et al. [2002] and Burgers et al.

[2005] investigated the linear error growth of ENSO caused
by two different kinds of linear coupled instability. Our
results demonstrate that nonlinearity can amplify the linear
error growth for some El Niño events and increases the
uncertainties of ENSO forecast bestriding boreal spring. We
also find out that CNOP is superior to LSV in describing the
initial error growth that induces prominent SPB for El Niño.
Other types of initial errors have either relatively weak
season-dependent evolution or neutral ones.
[52] It is of importance to realize that the results were

derived from a simple theoretical model, which is a highly
simplified version of Zebiak and Cane [1987], and the
complex aspects of ENSO cannot be fully described. Only
two variables were retained in the equations, of which the
dynamics was simplified considerably. Consequently,
CNOPs of WF96 model cannot give a spatial picture of
initial error, while Xue et al. [1997] and Blumenthal [1991]

presented the initial error spatial structure by solving LSVof
the model of Zebiak and Cane [1987]. The nonlinear term
is also a highly parameterized form of nonlinear advection
in the eastern Pacific. Furthermore, WF96 model only
describes the variation of equatorial eastern Pacific and
cannot identify the roles of the uncertainties in the central
and western Pacific in ENSO predictability. Nevertheless,
considering other additional studies that emphasized the
important effects of the uncertainties in the eastern Pacific
(see the discussion in the study of Samelson and Tziperman
[2001]), the results obtained by using WF96 model is also
instrumental for understanding ENSO predictability.
[53] Considering the limit of the adopted model, it would

be desirable to use more complex coupled ones to carry out
further studies. The role of atmospheric variability related to
westerly wind events or MJO in limiting ENSO predict-
ability is another area of interest. The uncertainties caused
by stochastic forcing can be understood as a kind of model
error. The influence of stochastic forcing on ENSO predict-
ability is still elusive [Flügel et al., 2004; Zavala-Garay et
al., 2004], which deserves future studies.

Appendix A: Properties of the Terms in Tendency
Equation S

[54] By multiplying T 0 and h0 equations in equation (3)
with T 0 and h0, respectively, it becomes

T 0 dT
0

dt
¼ T 0ðA1T

0 � A2h
0 þ

ffiffiffi
2

3

r
T 0ðT 0 � a3h

0ÞÞ;

h0
dh0

dt
¼ bh0 2h0 � T 0ð Þ:

8>><
>>:

Then we derive S = 1
2
d
ðT 02þh02Þ

dt
= C + E + P, which are defined

in equations (3)–(5).

A1. The Proof of E > 0 During AMJ

[55] By applying spring conditions T > 0, T 0 > 0, T > a3h,
and T 0 > a3h

0 in section 5.1 to

E ¼
ffiffi
2
3

q
2T � a3hð ÞT 02 �

ffiffi
2
3

q
a3T

� �
T 0h0

¼
ffiffi
2
3

q
2T � a3hð ÞT 0 T 0 � a3T

2T�a3h
h0

h i
;

we can obtain that

E >

ffiffiffi
2

3

r
ð2T � TÞT 0 T 0 � a3T

2T � T
h0

� �
¼

ffiffiffi
2

3

r
TT 0ðT 0 � a3h

0Þ > 0:

A2. The Proof of P > 0 During AMJ

[56] From the condition T 0 > a3h
0, it is easily derived that

P =
ffiffi
2
3

q
T 02 (T 0 � a3h

0 ) > 0.

A3. The Proof of C > 0 During AMJ

[57] According to the typical values of the parameters
listed in Table 1 of WF96, we know that a1 
 0 and a2 < 0
during AMJ. Furthermore, the evolutions of T 0 and h0 for El
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Niño tend to be a positive feedback during AMJ. It implies
that when dT 0

dt
> 0 and dh0

dt
> 0, then 2h0 > T 0 holds [see

h0 equation in equation (3)]. Upon these facts and the spring
conditions T 0 > 0 and h0 > 0, we obtain that

C ¼ a1T
02 � a2T

0h0 þ bh0ð2h0 � T 0Þ > 0:
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