
Impact of Atmosphere–Ocean Coupling on the Predictability of Monsoon
Intraseasonal Oscillations*

XIOUHUA FU

IPRC, SOEST, University of Hawaii at Manoa, Honolulu, Hawaii

BIN WANG

IPRC, and Department of Meteorology, SOEST, University of Hawaii at Manoa, Honolulu, Hawaii

DUANE E. WALISER

JPL, California Institute of Technology, Pasadena, California

LI TAO

IPRC, SOEST, University of Hawaii at Manoa, Honolulu, Hawaii

(Manuscript received 25 July 2005, in final form 19 April 2006)

ABSTRACT

The impact of air–sea coupling on the predictability of monsoon intraseasonal oscillations (MISO) has
been investigated with an atmosphere–ocean coupled model and its atmospheric component. From a 15-yr
coupled control run, 20 MISO events are selected. A series of twin perturbation experiments have been
conducted for all the selected events using both the coupled model and the atmosphere-only model. Two
complementary measures are used to quantify the MISO predictability: (i) the ratio of signal-to-forecast
error and (ii) the spatial anomaly correlation coefficient (ACC).

In the coupled model, the MISO predictability is generally higher over the Indian sector than that over
the western Pacific with a maximum of 35 days in the eastern equatorial Indian Ocean. Air–sea coupling
significantly improves the predictability in almost the entire Asian–western Pacific region. The mean
predictability of the MISO-related rainfall over its active area (10°S–30°N, 60°–160°E) reaches about 24
days in the coupled model and is about 17 days in the atmosphere-only model. This result suggests that
including an interactive ocean allows the MISO predictability of an atmosphere-only model to be extended
by about a week. The extended predictability is primarily due to the coupled model capturing the two-way
interactions between the MISO and underlying sea surface. The MISO forces a coherent intraseasonal SST
response in underlying ocean that in return exerts an external control on the future evolutions of the MISO.

The break phase of the MISO is more predictable than the active phase in both the atmosphere-only
model and the coupled model as revealed in the observations. Air–sea coupling appears to extend the MISO
predictability uniformly regardless of the active or break phases.

1. Introduction

Intraseasonal variability is a dominant mode of the
Asian–western Pacific summer monsoon (Yasunari

1980; Lau and Chan 1986; Wang and Rui 1990; Waliser
et al. 2003b). This monsoon intraseasonal oscillation
(MISO) constantly regulates the onset (retreat) and ac-
tive (break) phases of the summer monsoon, and thus
strongly influences the weather-sensitive socioeco-
nomic activities (e.g., agriculture) in this area (Webster
et al. 1998; Gadgil and Rao 2000). The Asian–western
Pacific region is also one of the most vulnerable areas
around the world to the impacts of climate-related
natural disasters. About 80% of these natural disasters
are caused by extreme hydrometeorological events
(e.g., flood, drought, etc.; IFRC 2000). These extreme
events are also modulated by intraseasonal variability
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(Goswami and Ajayamohan 2001; Goswami et al. 2003;
Jones et al. 2004). If we could provide useful forecast of
this intraseasonal variability with lead times of several
weeks, it will help the managements of weather-
sensitive socioeconomic activities and reduce the dam-
age caused by extreme events. In this study, we will
explore the predictability of the MISO in a hybrid at-
mosphere–ocean coupled model and assess the impacts
of air–sea coupling on the MISO predictability.

In an intuitive sense, the predictability of a specific
atmospheric phenomenon has to be proportional to its
own lifetime (Van den Dool and Saha 1990). The re-
current nature of the MISO suggests that, in principle,
the useful prediction skill of rainfall associated with the
MISO could be exploited by various models for lead
times of a month or longer. Some statistical predictive
models of the Intraseasonal Oscillation (ISO) have in-
dicated useful skill out to about 15–25-day lead time
(Waliser et al. 1999a; Lo and Hendon 2000; Mo 2001;
Goswami and Xavier 2003; and Webster and Hoyos
2004). For dynamical models, the pioneer studies of
Krishnamurti et al. (1990, 1992) suggested that the use-
ful forecast skill of the flow fields associated with the
MISO could reach 20–30 days for a few special events.
From the historical view in the progress of weather
forecast (Kalnay 2003), we learned that both statistical
and dynamical models significantly contribute to the
improvement of forecast. Dynamical models, on the
other hand, show greater potential to be improved and
offer more opportunities to advance our understand-
ings of the related physical processes.

Waliser et al. (2003b,c) first systematically examined
the potential predictability of the ISO [both the MISO
in boreal summer and Madden–Julian oscillation
(MJO) in boreal winter] using the National Aeronau-
tics and Space Administration (NASA) Goddard Labo-
ratory for Atmospheres (GLA) AGCM with a series of
twin-perturbation experiments. An objective signal-to-
error measure was used to quantify the predictability of
the ISO. They concluded that the limit of predictability
for the model’s ISO extends out to about 25 days for
200-hPa velocity potential and to about 15 days for
rainfall. Recently, Liess et al. (2005) found that the
upper limit of rainfall predictability associated with the
MISO in the ECHAM5 AGCM could reach one month
in some specific regions over the Asian–western Pacific
domain. With the National Centers for Environmental
Prediction (NCEP) forecast model, Reichler and Roads
(2005) found that the predictability of the 200-hPa ve-
locity potential in the Tropics reaches about 4 weeks,
but almost no predictability for model rainfall when
same measure is used. These studies tend to suggest
that the potential predictability of some dynamic fields

associated with the ISO in the state-of-the-art AGCMs
could reach about one month. However, the predict-
ability of the ISO-related rainfall is much shorter and
varies considerably among different models.

Further, in an operational setting, the potential pre-
dictability of dynamical models will be shortened by the
errors existing in the initial and boundary conditions
and the weaknesses of models in representing the struc-
tures, intensity, and propagation of the ISO (Chen and
Alpert 1990; Lau and Chang 1992; Hendon et al. 2000;
Seo et al. 2005). The predictive skill of the boreal winter
ISO in an old version (Hendon et al. 2000; Jones et al.
2000) and a latest version (Seo et al. 2005) of the NCEP
forecast model is only about 7–10 days for the related
dynamic fields when SSTs are fixed on climatology. The
relative short forecast skill is largely related to the mod-
el’s deficiencies in maintaining the large-scale circula-
tions and representing the propagations of the ISO.
Apparently, in order to improve the prediction of the
ISO in dynamic models, we need to further improve the
model representations of the ISO and explore better
ways to set up the initial and boundary conditions.

On intraseasonal time scale, in addition to the initial
conditions (Krishnamurti et al. 1992), boundary condi-
tions (e.g., the intraseasonally varying SSTs) probably
also play very important role on the ISO prediction
(Reichler and Roads 2005). However, in an operational
setting, the intraseasonal SST fluctuations are not
known a priori. Thus, an atmosphere–ocean coupled
model is needed to generate an interactive SST for the
forecast system. In fact, most previous studies have sup-
ported the notion that air–sea coupling can significantly
improve the simulation of tropical ISO compared to
atmosphere-only models (Flatau et al. 1997; Wang and
Xie 1998; Waliser et al. 1999b; Kemball-Cook et al.
2002; Fu et al. 2003; Inness and Slingo 2003; Matthews
2004; among others). The exception of Hendon (2000)
is largely attributed to errors in the model’s mean state
and an associated failure of the model to simulate a
correct relationship between ISO-driven surface latent
heat flux and rainfall anomalies. Based on the afore-
mentioned findings, we will address the following ques-
tion in this study: Could the predictability of tropical
ISO in an atmosphere-only model be improved by in-
cluding active air–sea coupling? We expect a positive
answer to this question for two reasons. First, by im-
proving the simulation of the basic ISO characteristics,
namely those related to spatial structure and evolution,
intensity, propagation speed, and seasonality. Second,
the intraseasonal SST fluctuations lead the ISO-related
convection by about 10 days in both the coupled model
(Fu et al. 2003; Zheng et al. 2004) and the observations
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(Arakawa and Kitoh 2004); this relationship is not
present in the atmosphere-only model. In other words,
the intraseasonal SST fluctuations in the coupled sys-
tem may provide a memory to extend the predictability
of the ISO. This hypothesis will be examined in the
following study.

In section 2, we introduce the hybrid atmosphere–
ocean coupled model and briefly validate the simulated
MISO with the satellite observations from the Tropical
Rainfall Measuring Mission (TRMM) Microwave Im-
ager (TMI). (TMI data are acquired from Remote
Sensing Systems available online at http://www.ssmi.
com/tmi/tmi_browse.html.)

Section 3 describes the framework to conduct the
ensemble experiments and the methods to quantify the
predictability of the MISO, which basically follow those
used in Waliser et al. (2003b,c). Section 4 presents the
MISO predictability in the coupled model and the por-
tion contributed by air–sea coupling. Section 5 exam-
ines the dependence of the MISO predictability on the
active and break phases. Section 6 discusses some issues
raised from current study. The last section summaries
our major findings and identify several future research
directions.

2. Model

a. Model description

The hybrid coupled atmosphere–ocean model com-
bines the ECHAM4 atmospheric general circulation
model (AGCM; Roeckner et al. 1996) and an interme-
diate ocean model (Wang et al. 1995; Fu and Wang
2001). The details of this hybrid coupled model and its
simulations of the tropical Asian–Pacific climate can be
found in Fu and Wang (2004b) and X. Fu et al. (2006,
unpublished manuscript; available at http://www.soest.
hawaii.edu/�xfu/HcGCM.pdf). For the convenience of
readers, a brief description of the coupled model is
given in the following.

The atmospheric model is a T30 version of ECHAM4
with horizontal resolution of about 3.75° and 19 vertical
levels extending from the surface to 10 hPa. Its land
surface scheme is a modified bucket model with im-
proved parameterization of rainfall runoff (Dumenil
and Todini 1992). The cumulus parameterization is a
modified version of the mass flux scheme developed by
Tiedtke (1989). The improved version replaces the
original moisture-convergence closure scheme with
convective available potential energy (CAPE) closure
(Nordeng 1994). The radiation scheme is a modified
version of the European Centre for Medium-Range
Weather Forecasts (ECMWF) scheme. Two- and six-

band intervals are used in the solar and terrestrial part
of the spectrum, respectively.

The ocean component of this hybrid-coupled model
is a tropical upper ocean model with intermediate com-
plexity. It was originally developed by Wang et al.
(1995) and later improved by Fu and Wang (2001). The
ocean model comprises a mixed layer, in which the tem-
perature and velocity are vertically uniform, and a ther-
mocline layer in which temperature decreases linearly
from the mixed-layer base to the thermocline base.
Both layers have variable depths. The deep ocean be-
neath the thermocline base is motionless with a con-
stant reference temperature. This ocean model com-
bines the mixed-layer physics of Gaspar (1988) and the
upper ocean dynamics of McCreary and Yu (1992). It
reasonably simulates the annual cycles of sea surface
temperature, upper ocean currents, and mixed layer
depth in the tropical Pacific (Fu and Wang 2001).

The ECHAM4 AGCM was coupled with the inter-
mediate ocean model in the tropical Indian and Pacific
Oceans (30°S–30°N) without heat flux correction [ex-
cept that the SSTs in the north–south open boundaries
have been relaxed to the observed climatologic
monthly mean as in Fu and Wang (2001)]. Outside the
coupling region, the underlying sea surface tempera-
ture is specified as the climatological monthly mean
SST from the Second Atmospheric Model Intercom-
parison Project (AMIP II) experiment (Taylor et al.
2000). In the tropical Indian and Pacific Oceans, atmo-
spheric component exchanges information with ocean
component once per day. The atmosphere provides
daily mean surface winds and heat fluxes to the ocean
model. The latter provides daily mean SST back to the
former. Prior to carrying out the forecast experiments,
a 21-yr coupled integration was conducted. The output
from the last 15-yr of integration will be referred to as
the control run.

b. The MISO simulated in the coupled model

This hybrid coupled atmosphere–ocean model rea-
sonably simulates the climatology and interannual vari-
ability in the tropical Asian–Pacific sector (X. Fu et al.
2006, unpublished manuscript). It also shows reason-
able skill to reproduce the major observational charac-
teristics of the MISO in the Asian–western Pacific sec-
tor, such as the location of major active centers, sea-
sonal variations in amplitude, dominant periods and
spatial–temporal evolutions. Those characteristics have
been validated in our previous studies (Fu et al. 2003;
Fu and Wang 2004a,b; X. Fu et al. 2006, unpublished
manuscript).

Figure 1 further compares the regressed rainfall and
SST fluctuations associated with the MISO in the TMI
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FIG. 1. The regressed space–time evolutions of intraseasonal SST (contour interval: 0.02°C) and rainfall
(shaded; mm day�1) anomalies associated with the MISO from TMI observations and the coupled model with
respect to the rainfall time series averaged in the eastern Indian Ocean (5°S–5°N, 80°–100°E) at (a), (b) –4;
(c), (d) –2; (e), (f) 0; (g), (h) �2; and (i), (j) �4 pentads.
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observations (1998–2003) and the coupled model. The
filtered rainfall (only 20–90-day variability is retained)
over the eastern equatorial Indian Ocean (EIO; 5°S–
5°N, 80°–100°E) is used as the reference time series for
the regression. At 4 pentads before the rainfall peaks in
the EIO (Figs. 1a,b), the dry phase prevails in the entire
equatorial Indian Ocean and Maritime Continent with
a rainy belt around 15°N in both the observations and
the coupled model. The positive SST anomalies start to
form in the equatorial Indian Ocean associated with
reduced convection. The negative SST anomalies, ow-
ing to enhanced convection, appear in the northern side
of the dry zone. Both the internal dynamics (Jiang et al.
2004) and SST anomalies (Fu et al. 2003) play a role in
leading to the disturbances moving northeastward
(Figs. 1c,d). When the dry zones move off the equator,
the MISO-related convection initiates and intensifies in
the equatorial Indian Ocean (Fig. 1c–f). The positive
SST anomalies start to form in the northeast side of the
wet zone and help the convection moving northeast-
ward (Figs. 1g–j). The simulated rain-belt in the north-
ern Indian Ocean (Fig. 1h) is weaker and moves slower
than the observed (Fig. 1g).

Overall, the patterns of rainfall and SST anomalies
between the observations and the simulations are simi-
lar except that the magnitude of rainfall and SST per-
turbations in the simulation is slightly smaller than their
counterparts in the TMI observations and the simulated
enhanced/suppressed rainfall belts tend to be more zon-
ally oriented. The simulated spatial patterns in the
western Pacific are also not as coherent as in the ob-
servations. On the other hand, this hybrid-coupled
model produces robust intraseasonal variability in the
equatorial Indian Ocean (see also Figs. 7a–e), where
almost all atmosphere-only GCMs participating in the
Climate Variability and Predictability (CLIVAR)/
Asian–Australian monsoon intercomparison project
considerably underestimate the intraseasonal variabil-
ity (Waliser et al. 2003a).

3. Methods

To quantify the predictability of the MISO in a
model, a large ensemble of forecasts is needed. There
are two methods that have been used to generate the
ensemble forecasts: 1) conducting a small number of
perturbation experiments for many MISO events (Wa-
liser et al. 2003b; Reichler and Roads 2005), and 2)
performing a large number of ensembles for a few
events (Tracton and Kalnay 1993; Liess et al. 2005).
Because our major purpose is to assess the differences
of the predictability between a coupled system and an
atmosphere-only system, including many MISO events
probably better justifies the differences. Therefore, the

twin-perturbation method (Lorenz 1982; Waliser et al.
2003b) for many MISO events has been used in this
study to generate a pool of ensemble forecasts.

a. Experimental designs

Figure 2 shows the 15-yr filtered rainfall time series
averaged in the EIO during boreal summer (May–
October). Two criteria have been used to select the
target MISO events: first, the magnitude of rainfall fluc-
tuations should be larger than 4 mm day�1; second, the
candidate event should exhibit four distinct phases of
evolution (i.e., break, break-to-active, active, and ac-
tive-to-break). Based on these criteria, 20 MISO events
were identified from the 15-yr control run. Except for
year 16 (see Fig. 2), all other years have at least one
event being selected.

For the selected 20 MISO events, a series of forecasts
were conducted, with two perturbed forecasts started
from each event’s four individual phases (the number
of total forecasts, N � 2 � 4 � 20 � 160). The initial
conditions are perturbed by adding day-to-day root-
mean-square (RMS) differences of four prognostic
variables (u, v, T, q) onto the original initial conditions
as in Waliser et al. (2003b). The details to produce these
perturbed initial conditions can be found in Waliser’s
paper. Started from these perturbed initial conditions,
the twin forecasts were conducted with the coupled
model and the atmosphere-only model. In the coupled
forecasts, the coupled system generates its own SST as
boundary condition to force the atmosphere. In the at-
mosphere-only system, the smoothed SST from the
coupled control run has been used as boundary forcing.
In this case, the smoothing means that the intraseasonal
variability (20–90 days) in the SST of the coupled con-
trol run was removed to exclude the intraseasonal in-
formation from the underlying boundary. In this way,
the interannual variations in the SST remain the same
between the coupled and uncoupled forecasts. The dif-
ferences of the MISO predictability between these two
systems are then attributed to the impact of air–sea
coupling.

As in Waliser et al. (2003b), all perturbed forecasts
have been integrated for 90 days. To extract the in-
traseasonal variability and distinguish its predictability
from weather fluctuations, 120-day output from the
control run before the initial condition has been con-
catenated to the 90-day forecast. Then bandpass filter-
ing has been used to the 210-day time series to extract
the 20–90-day intraseasonal signals.

b. Measures of MISO predictability

Two complementary measures (Hollingsworth et al.
1980) are used to quantify the MISO rainfall predict-
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ability for both the coupled system and the atmosphere-
only system. One is the ratio of signal-to-forecast error
(Waliser et al. 2003b). The other is the anomaly corre-
lation coefficient (Miyakoda et al. 1972; Hollingsworth
et al. 1980).

In the first measure, the signal of a given MISO event
is defined as the variance of intraseasonal variability of
the coupled control run averaged within a sliding win-
dow (with a time span of 50 days) that is large enough
to encompass an MISO event (Goswami and Xavier
2003; Waliser et al. 2003b). The forecast error of a given
event is defined as the variance of the difference be-
tween the perturbed forecast and the coupled control
case. The MISO predictability in days is defined as the
time when the signal and forecast error intersect. Be-
cause both the signal and forecast error are calculated
at individual grids, this method gives a geographic dis-
tribution of the predictability. On the other hand, the
ACC measures the pattern similarity of two fields over
a given domain. Because the MISO exhibits coherent
spatial–temporal evolutions in the Asian–western Pa-
cific region (Fig. 1), the ACC gives a measure comple-
mentary to the pointwise signal-to-forecast error. The
predictability is then defined as the time when the ACC
drops to a given correlation value. To get a reasonable
ACC criterion, the rainfall spatial patterns of a selected
MISO event and its forecast at different lead times are
compared in Fig. 3. The pattern correlation coefficients

have been calculated between the targets and forecasts.
For this particular case, even at day 30 the forecast (Fig.
3j) still looks skillful compared to the target (Fig. 3i).
The corresponding pattern correlation coefficient is
about 0.43 at this time. Based on this result and previ-
ous study (Reichler and Roads 2005), the ACC crite-
rion is set to 0.5 in the following analysis.

4. Impact of air–sea coupling on the MISO
predictability

To assess the impact of air–sea coupling on the MISO
predictability, a series of forecasts have been conducted
for all selected events started from four reference
phases using both the coupled model and the atmo-
sphere-only model. Starting the forecasts from different
MISO phases provide an opportunity to estimate the
dependence of predictability on initial atmospheric
states. The four reference phases are determined from
the daily time series of the filtered rainfall averaged in
the EIO. Phase 1 (break phase) is identified as the day
when the rainfall anomaly in the EIO reaches a mini-
mum. Phase 2 (break-to-active) corresponds to the day
when the rainfall anomaly crosses zero from negative to
positive. Phase 3 is the peak active phase and phase 4
represents the transition day from active to break
phase. Figure 4 shows the composite spatial patterns of
rainfall and SST anomalies associated with different
phases from the control run averaged for all selected

FIG. 2. The filtered rainfall time series averaged in the eastern Indian Ocean (5°S–5°N,
80°–100°E) from the last 15-yr coupled control run. The 20 MISO events selected to assess the
model predictability are highlighted.
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FIG. 3. The space–time evolutions of filtered rainfall anomalies (20–90 days) for one MISO event selected
from (left) the coupled control run and (right) one coupled forecast. The forecast days are shown in the small
boxes of the left panels. The correlation coefficients between the left and right panels are given in the small
boxes of the right panels. The contour interval is 5 mm day�1.
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events. Generally speaking, the composite phase 1, 2, 3,
and 4 correspond to the �4, �2, 0, and �2 pentads in
the regression analysis, respectively (Fig. 1).

a. MISO predictability measured by the
signal-to-error ratio

The signals and forecast errors of all the selected
MISO events at their associated four phases have been
calculated at individual grid points. Figure 5 shows the
signals and forecast errors averaged over the EIO as
function of forecast days at each phase in both the
coupled model and the atmosphere-only model. For all
phases, the signals don’t change much as forecast time
increases, but the forecast errors grow steadily. In the
coupled system, the MISO predictability, defined as the
time when forecast error intersects with the signal, is
about 29, 35, 33, and 22 days, respectively, for phase 1
to 4 (Figs. 5a–d).1 In the atmosphere-only model, the

forecast errors grow considerably faster than their
counterparts in the coupled system. The corresponding
predictability in the atmosphere-only model is about
17, 17, 26, and 18 days from phase 1 to 4. In general, the
predictability of the coupled model is systematically
higher than that of the atmosphere-only model. In this
particular region, the forecasts started from phase 3
(active) have longer predictability than those started
from phase 1 (break). This predictability difference be-
tween two specific phases is more outstanding in the
atmosphere-only model than that in the coupled model.
We will come back to this point later.

To get an overall view of the MISO predictability in
its most active region, the signals and errors of all fore-
casts for four phases have been averaged over the tropi-
cal Asian–western Pacific domain (AWP; 10°S–30°N,
60°–160°E). The averaged MISO predictability of all
four phases in the AWP domain is about 24 days for the
coupled system and 17 days for the atmosphere-only
system (Fig. 6). This difference suggests that the air–sea
coupling acts to extend the MISO predictability by
about a week in the AWP region. This result somewhat

1 The nonzero errors before the start of forecasts are due to the
use of filtering.

FIG. 4. Composite rainfall (shaded; mm day�1) and SST (contour interval: 0.05°C) anomalies for all selected MISO events at
(a) phase 1, (b) phase 2, (c) phase 3, and (d) phase 4.
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confirms previous hypothesis (Waliser et al. 2003b; Fu
and Wang 2004b): “if the interaction between the con-
vection and large-scale circulations (purely internal at-
mospheric dynamics) can give a useful MISO predic-
tion of about 15 days, a coupled system might extend
the predictability to about one month.”

Figure 7 presents the geographic distributions of sig-
nals and errors averaged for all coupled forecasts in the
Asian–western Pacific region at lead times of 5, 10, 15,
20, and 30 days. At all lead times, the spatial pattern
and magnitude of the MISO signals are almost the same
(Figs. 7a–e) although the amplitude in the Bay of Ben-
gal shows slightly decaying as forecast time increases.
The model reasonably captures the major observed
MISO action centers in this domain [Corresponding ob-
servations can be found in Fig. 2 of Waliser et al.
(2003a) and Fu and Wang (2004b)]. Strong variability is
reproduced in the Bay of Bengal, eastern Arabian Sea,
equatorial India Ocean, South China Sea, and western

North Pacific (WNP). However, the simulation in the
western Pacific is not as coherent as in the observations
probably due to the systematic error in the model mean
state. The model simulated a zonal rainbelt around
15°N (figure not shown) in boreal summer over the
WNP, contrast to the observed northwest–southeast-
tilted rainbelt. The forecast errors grow gradually as the
lead-time increases (Figs. 7f–j). At forecast day 5, only
a few spots corresponding to the MISO action centers
have error variance larger than 10 (mm day�1). When
time goes on, the errors tend to grow faster in the west-
ern Pacific than in the Indian Ocean. This also seems
true in the NASA GLA model (Fig. 11 of Waliser et al.
2003b). The faster error growth in the western Pacific
may be related to the rapid development of synoptic
disturbances, which tend to grow fast in this region ow-
ing to the peculiar basic states (Lau and Lau 1990; Tam
and Li 2006). At forecast day 20 (Figs. 7d,i), the mag-
nitude of errors in the western Pacific becomes similar

FIG. 5. The rainfall signals and forecast errors (mm day�1)2 as function of lead time averaged in the eastern
Indian Ocean (5°S–5°N, 80°–100°E) for all selected MISO events when the forecasts start from (a) phase 1, (b) phase
2, (c) phase 3, and (d) phase 4 using the atmosphere–ocean coupled model (CPL) and the atmosphere-only model
(ATM). The thin dotted lines show the 95% confidence limits for the signals and errors with a Student’s t test.
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to the signals. At day 30 (Figs. 7e,j), the errors grow
beyond the signals over most of the western Pacific
region. However, in the eastern Indian Ocean the sig-
nals are still significantly larger than the forecast errors.

In Figs. 5 and 6, we have assessed the domain-mean
MISO predictability and summarized the overall im-
pact of air–sea coupling. As implied from the spatial
inhomogeneity of the signals and forecast errors in the
Asian–western Pacific region (Fig. 7), the MISO pre-
dictability also shows considerably inhomogeneous dis-
tributions in the above area (Fig. 8). If the forecasts
start from phase 1, the predictability is longer than 25
days in the Southeast Asia around 15°N, equatorial
western Indian Ocean, the WNP, and southern Mari-
time Continent (Fig. 8a). Referring back to the rainfall
anomaly pattern at the initial state (Fig. 4a), the posi-
tive rainfall region around 15°N has relatively longer
predictability compared to the dry zone in the eastern
Indian Ocean. When started from phase 2 (Fig. 4b), a
large area from the equatorial Indian Ocean to the
Maritime Continent has predictability longer than 25
days (Fig. 8b). It suggests that once an active phase is
initiated in the western equatorial Indian Ocean with
significant positive SST anomaly presenting in the cen-
tral-eastern Indian Ocean (Fig. 4b), the eastward
propagation of the MISO is well predictable in this hy-
brid coupled model. If started from phase 3, the most
predictable region is also in the equatorial Indian
Ocean and Maritime Continent (Fig. 8c) primarily as-
sociated with positive rainfall anomalies (Fig. 4c).
Started from phase 4, the areas with predictability
longer than 25 days are relatively scattered (Fig. 8d).
The above results tend to suggest that the predictability
is longer when the forecasts are started from active

phase than that started from break phase. This is con-
sistent with what was found in Figs. 5a,c.

Figure 9 shows the averaged predictability for all four
phases (Fig. 8) in the coupled model and its differences
with the atmosphere-only model in the tropical Asian–
western Pacific region. In the coupled model (Fig. 9a),
the area with mean predictability longer than 25 days is
primarily confined in the Indian sector and Maritime
Continent. The predictability in the western Pacific is
relatively lower with a value of about 20 days. The
relatively low predictability in the WNP is likely due to
two things: (i) the signals are underestimated in the
WNP and (ii) the errors grow relatively faster there
(Fig. 7). The area of highest predictability (longer than
35 days) is in the eastern equatorial Indian Ocean. Air–
sea coupling improves the MISO predictability over al-
most the entire Asian–western Pacific region (Fig. 9b),
particularly in the northeast Indian Ocean and the
WNP. The maximum extension of the MISO predict-
ability by air–sea coupling reaches about 15 days in the
eastern Indian Ocean.

b. MISO predictability measured by anomaly
correlation coefficient

As demonstrated in previous studies (e.g., Hollings-
worth et al. 1980; Waliser et al. 2003b,c), the ratio of
signal-to-error is a useful measure of synoptic weather
and ISO predictability. On the other hand, this method
also bears some uncertainties: for example, the way to
define the signal. To assess the uncertainties to some
degree, an alternative approach for quantifying MISO
predictability is also used. In the following analysis, the
anonymous correlation coefficient (Miyakota et al.
1972) is calculated in the AWP region (10°S–30°N, 60°–
160°E). It is the same area used to define the domain-
mean signals and errors in Fig. 6.

Figure 10 shows the averaged ACC of all selected
events at individual phases and four-phase mean for
both the coupled forecasts and atmosphere-only fore-
casts. One common feature at all phases is that the
ACC of the coupled model is systematically larger than
that of the atmosphere-only model. If the forecast skill
is measured as the day when the ACC drops to 0.5 as
defined before, the resultant MISO predictability is
very similar with that measured by signal-to-error ratio
(Fig. 6). The mean MISO predictability averaged for all
phases (Fig. 10e) is about 22 days in the coupled model
and about 17 days in the atmosphere-only model. This
result further confirms that the coupled model could
better track the space–time evolutions of the selected
MISO events in the AWP region compared to the at-
mosphere-only model.

FIG. 6. Same as Fig. 5 except averaged in the Asian–western
Pacific region (10°S–30°N, 60°–160°E) for all four phases.
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FIG. 7. The spatial distributions of rainfall signals and forecast errors (mm day�1)2 in the coupled model at
lead times of (a), (f) 5 days; (b), (g) 10 days; (c), (h) 15 days; (d), (i) 20 days; and (e), (j) 30 days.
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5. Dependence of MISO predictability on active
and break phases

Goswami and Xavier (2003) have estimated the so-
called intrinsic predictability of the MISO from the
time series of 23-yr observed rainfall intraseasonal
variations in the Indian subcontinent. Through quanti-
fying the spreads of the MISO evolutions started from
the active phase and break phase, they suggested that
the predictability is longer when forecasts started from
the active phase than from the break phase. Because
the active (break) phase usually will evolve into break
(active) phase, Goswami and Xavier also suggested that
the monsoon break phase is more predictable than the
monsoon active phase. Waliser et al. (2003b,c) and Seo
et al. (2005), respectively, have used NASA GLA and
NCEP AGCMs to reach very similar conclusion for
both the MISO and MJO as Goswami and Xavier re-
vealed from the observations. In this section, we are
going to examine the dependence of the MISO predict-
ability on the initial atmospheric conditions and final
atmospheric states in both the atmosphere-only and
coupled models.

First, the signal-to-error ratio of individual forecast
on each grid point over the AWP region (10°S–30°N,

60°–160°E) was binned as functions of initial rainfall
anomalies and forecast days. Therefore, any depen-
dence of the MISO predictability on geographic loca-
tion and phase has been averaged out. The results from
the coupled model and atmosphere-only model are
shown in Figs. 11a,b. In both systems, the signal-to-
error ratio is larger when the forecasts started from
active phase than that from break phase. This is con-
sistent with what implied in previous figures (e.g., Figs.
5 and 8). The minimum predictability occurs when fore-
casts start from transition phase (with rainfall anoma-
lies near zero). To explore the possible impact of air–
sea coupling on predictability dependence, the results
from the coupled system (Fig. 11a) have been redrawn
as contours onto the results of the atmosphere-only sys-
tem (Fig. 11b). It turns out that air–sea coupling tends
to extend the MISO predictability uniformly regardless
the starting phases of the forecasts.

Figure 12 shows an analogous diagram but binned as
functions of forecast days and final atmospheric states
(represented by rainfall anomalies). Apparently, break
phase is more predictable than active phase in both the
coupled system and atmosphere-only system. This is
consistent with what found by Waliser et al. (2003b,c)
and Goswami and Xavier (2003). For extreme dry cases

FIG. 8. The spatial distributions of the MISO-related rainfall predictability in days for the coupled model as
forecasts start from (a) phase 1, (b) phase 2, (c) phase 3, and (d) phase 4.
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(e.g., rainfall anomaly as �6 mm day�1), even at 35
days, the averaged signals are still larger than the av-
eraged forecast errors. For extreme wet phase (with
rainfall anomaly as �6 mm day�1), the averaged pre-
dictability is only about 20 days (Fig. 12a). As illus-
trated in Fig. 11b, Fig. 12b further demonstrates that
air–sea coupling almost uniformly extends the MISO
predictability of the atmosphere-only model.

The above results suggest that, after averaging out
the dependences on geographic location and phase, the
MISO predictability shows distinctive asymmetry for
active phase and break phase in both the atmosphere-
only model and coupled model. If forecasts start from
active phase, the predictability is relatively higher (Fig.
11). Because active phase usually evolves into break
phase, this is consistent with the result presented in Fig.
12 in which break phase is more predictable than active
phase.

6. Discussions

The main objective of this study is to assess possible
impact of air–sea coupling on the MISO predictability.
The results presented in previous sections have dem-
onstrated that including an interactive ocean signifi-

cantly improves the MISO predictability of an atmo-
sphere-only model. However, a few interesting ques-
tions emerged, for example: 1) Why does air–sea
coupling improve the MISO predictability? 2) Why is
the MISO predictability higher for break phase than for
active phase? A brief discussion of these questions is
given here in order to stimulate future in-depth re-
search.

a. Why does air–sea coupling improve the MISO
predictability?

In our previous studies (Fu et al. 2003; Fu and Wang
2004a,b), we have shown that this hybrid coupled
model produces much more realistic MISO simulation
(e.g., the intensity of the propagating modes and the
rainfall–SST relationship) compared to the atmo-
sphere-only model. The better simulation is due to the
coupled model capturing the two-way interactions be-
tween the MISO and underlying ocean, which most
likely operate in the real world (Stephens et al. 2004).
The surface heat flux anomalies associated with MISO
convection produce positive SST anomalies in its
propagating direction (Shinoda et al. 1998; Sengupta
and Ravichandran 2001; Fu et al. 2003). These positive
SST anomalies warm up and moisten the atmospheric

FIG. 9. The spatial distributions of the MISO-related rainfall predictability in days averaged
for all four phases (a) from the CPL, and (b) the difference (only the region with significance
higher than 95% is shown) between the coupled model and the atmosphere-only model
(CPL–ATM). The contour interval is (a) 10 days and (b) 5 days.
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boundary layer (Lau and Sui 1997; Fu et al. 2003, 2006),
thus destabilizing the troposphere and providing an ex-
ternal forcing to the MISO evolutions and propaga-
tions. In this predictability study, the initial conditions
(both the mean states and MISO signals) are the same
for both the coupled experiments and atmosphere-only
experiments. As mentioned before, in the coupled fore-
casts both the internal atmospheric dynamics and un-
derlying SST anomalies work together to govern the
evolutions and propagations of the MISO. While in the
atmosphere-only forecasts, the MISO evolutions are
only governed by internal atmospheric dynamics (Lau
and Chan 1986; Wang 1988; Jiang et al. 2004). The ad-
ditional external forcing offered by intraseasonal SST
anomalies in the coupled model is the key factor to
extend the MISO predictability of an atmosphere-only
model.

b. Why is the MISO predictability higher for break
phase than for active phase?

Figures 5a,c give a hint about the possible reason.
The forecasts in Fig. 5a (Fig. 5c), respectively, represent
the break-to-active (active-to-break) evolutions of the
MISO in the EIO. The forecast errors grow much faster
during break-to-active transition (Fig. 5a) than during
active-to-break transition (Fig. 5c), which is particularly
clear for the atmosphere-only forecasts. The different
behaviors of error growth in these two periods may be
related to the different processes controlling these tran-
sitions (Goswami and Xavier 2003; Waliser et al.
2003b,c). The transition from break to active is gov-
erned by fast-growing convective instability. On the
other hand, the transition from active to break is gov-
erned by the large-scale overturning circulation (Gos-

FIG. 10. The MISO-related rainfall predictability as measured by ACC over the Asian–
western Pacific region (10°S–30°N, 60°–160°E) when forecasts start from (a) phase 1, (b)
phase 2, (c) phase 3, (d) phase 4, and (e) all four phases with the CPL and ATM. The thin
dotted lines give the 95% confidence limits for the respective variables using a Students t test.
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wami and Xavier 2003). When a small perturbation is
introduced in the break phase (Fig. 5a), it grows slowly
first but rapidly later when convective instability be-
comes active. If a small perturbation is introduced in
the active phase (Fig. 5c), it grows fast initially but be-
comes flattened later. Different error growth regimes
during these two transition periods result in the break
phase being more predictable than the active phase.

7. Conclusions

Many previous studies have shown that air–sea cou-
pling can improve the simulations of tropical intrasea-
sonal oscillations in one-way or the other (Flatau et al.

1997; Waliser et al. 1999b; Kemball-Cook et al. 2002; Fu
et al., 2003; Inness and Slingo 2003; A. G. Marshall and
O. Alves 2006, personal communication; and among
others). In this study, we extended previous work to
assess in what degree air–sea coupling can impact the
predictability of Monsoon Intraseasonal Oscillations
(MISO). Our results indicate that including an interac-
tive ocean significantly extends the MISO predictability
of an atmosphere-only model (Figs. 5, 6, 9, 10). The
break phase of the MISO has much higher predictabil-
ity than the active phase in both the atmosphere-only
and coupled models. The possible reasons have been
discussed in the above section.

In this study, a hybrid atmosphere–ocean coupled
model is used (Fu and Wang 2004b; X. Fu et al. 2006,

FIG. 11. Predictability ratio of signal-to-forecast errors binned
as functions of initial rainfall anomalies and forecast days over the
Asian–western Pacific region (10°S–30°N, 60°–160°E) for (a) the
CPL and (b) the ATM. The area with predictability ratio larger
than one is shaded. The results from the coupled model (a) have
been redrawn on (b) as contours.

FIG. 12. Same as Fig. 11 but binned as functions of final rainfall
anomalies and forecast days.
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unpublished manuscript). It reasonably simulates the
major observed characteristics of the MISO over the
Asian–western Pacific region, particularly in the Indian
sector (Fig. 1, see also the validations in Fu et al. 2003;
Fu and Wang 2004b; X. Fu et al. 2006, unpublished
manuscript). To assess the model predictability of the
MISO, 20 intraseasonal events during boreal summer
have been selected from a 15-yr control run (Fig. 2).
Four phases (i.e., break, break-to-active, active, and ac-
tive-to-break) are defined for individual MISO events
based on the rainfall time series at the eastern Indian
Ocean (5°S–5°N, 80°–100°E). A series of twin pertur-
bation forecasts have been conducted for each phase of
all selected MISO events using both the coupled model
and the atmosphere-only model. Two complementary
measures are used to quantify the MISO predictability:
(i) the ratio of signal-to-forecast error, and (ii) the spa-
tial anomaly correlation coefficient (ACC).

When measured with the ratio of signal-to-forecast
error, the predictability in the tropical Indian sector is
generally higher than that in the western North Pacific
(Fig. 9a). The relatively lower predictability in the
WNP is probably due to two reasons. First, the MISO
variability (i.e., the signal) in this region is underesti-
mated (Figs. 7a–e). Second, the forecast errors tend to
grow faster in the WNP (Figs. 7f–j) probably owing to
the intrinsic instability (Lau and Lau 1990). Air–sea
coupling extends the MISO predictability almost over
the entire Asian–western Pacific domain (Fig. 9b). Av-
eraged over this area (10°S–30°N, 60°–160°E), the pre-
dictability of the MISO-related rainfall reaches about
24 days in the coupled model and is about 17 days in the
atmosphere-only model (Fig. 6). Very similar conclu-
sion was obtained when measured with the anomaly
correlation coefficient (Fig. 10). These results suggest
that air–sea coupling is able to extend the predictability
of the MISO-related rainfall by about a week in its most
active domain.

The predictability of the MISO is phase dependent in
both the atmosphere-only model and the coupled
model (Figs. 11, 12). The predictability is higher when
forecasts start from active phase than that from break
phase (Fig. 11), the result of which is that the break
phase of the MISO is more predictable than the active
phase (Fig. 12). This is consistent with what found from
previous observational and modeling studies (Goswami
and Xavier 2003; Waliser et al. 2003a,b). Air–sea cou-
pling almost uniformly extends the predictability of the
MISO for all phases (Figs. 11b, 12b).

Because both the coupled forecasts and atmosphere-
only forecasts have same initial conditions, the exten-
sion of MISO predictability in the coupled case can
only come from the intraseasonal SST anomalies, which

have been removed from the atmosphere-only fore-
casts. The almost uniform enhancement of MISO pre-
dictability by air–sea coupling (Figs. 11b, 12b) suggests
that both the positive and negative intraseasonal SST
anomalies play equally important role. The positive
SST anomalies destabilize the atmosphere ahead of the
convection. At the same time, the negative SST anoma-
lies stabilize the atmosphere below the convection.
Both processes help the MISO-related convection
propagate northeastward.

In this study, we only assessed the impact of air–sea
coupling on the MISO predictability in boreal summer.
Further experiments could be conducted to estimate
the impact of air–sea coupling on the MJO predictabil-
ity in boreal winter. Most experiments we have done in
current study consider only two scenarios: fully atmo-
sphere–ocean coupled model and atmosphere-only
model forced with smoothed SST. To thoroughly un-
derstand the impacts of underlying boundary condi-
tions on the MISO predictability, a few more sensitivity
experiments should be conducted: for example, using
daily SST or damped persistent SST to force the atmo-
spheric model and introducing a simple oceanic mixed
layer into the atmospheric model. Our future research
will address these issues.
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