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ABSTRACT

Meteorological and geophysical phenomena involve multiple-scale processes. Here the spatiotemporal

wavelet transform (STWT) is applied to detect significant, nonstationary, wave propagation signals from

a time–space domain. One of the major advantages of the STWT is the capability to localize the wave

properties in both space and time, which facilitates the study of interactions among multiple-scale distur-

bances by providing relevant information about energy concentration at a given time and space. The global

wavelet spectrum (scalogram) of the STWT, which gives an integrated view of the spectrum as wavenumber

and frequency, provides a lucid picture of the spectral power distribution that is consistent with the result

obtained from the Fourier-based space–time power spectrum. The STWT has also the capability of re-

construction and thus can be used as a spatiotemporal wave filter.

The STWT analysis is applied to analyze the multiscale structure of the Madden–Julian oscillation (MJO)

studied by Nakazawa. All types of convectively coupled equatorial waves were identified. The analysis results

reveal the structural differences between the MJO and Kelvin waves and their different relationships with the

embedded westward propagating inertio-gravity (WIG) waves: for the Kelvin wave the enhanced activity of

the WIG waves coincides with the most active convective area, whereas for the MJO the enhanced WIG

waves occur to the east of the MJO convective center. In addition, the WIG waves in the MJO have shorter

wavelengths and periods, but those in the Kelvin waves have longer wavelengths and periods. This difference

may hold a key to understanding the propagation speed difference between the MJO and Kelvin waves. The

possible ‘‘upscale feedback’’ of the WIG waves on the MJO and Kelvin waves is also discussed.

1. Introduction

Atmospheric and oceanic motions occur on a variety

of temporal and spatial scales. These motions with dif-

ferent scales are normally interactive rather than inde-

pendent of each other. Multiscale interaction is thus an

essential process in atmospheric and oceanic sciences.

However, the complex nature of the multiscale inter-

action remains a major challenge for designing an ef-

fective method to analyze it.

Wavelet transform (WT) is one of the tools for analysis

of the multi-time-scale behavior in general in time domain.

The WT was originally invented to investigate non-

stationary processes in the field of seismology (Morlet

et al. 1982a,b) and has been used in a wide variety of fields

including applied mathematics (e.g., Daubechies 1992),

signal processing (e.g., Addison 2002), and meteorology

and geophysics (e.g., Meyers et al. 1993; Weng and Lau

1994; Lau and Weng 1995; Wang and Wang 1996). A

comprehensive review of geophysical applications was

given by Kumar and Foufoula-Georgiou (1997). A ma-

jor function of the WT is to reveal the time–frequency

localization of a signal, which enables one to depict how

a given component at a given temporal scale varies with

time.

One of the objectives of the present study is to in-

troduce into the field of geophysics, especially atmo-

spheric science, a wavelet analysis in both time and space

[(1 1 1)-dimensional] domains, called spatiotemporal

wavelet transform (STWT), or (1 1 1)-dimensional

WT. Most previous WT analyses in geophysics utilized

one-dimensional (1D) WT in the time domain and the

STWT is virtually unknown. The STWT technique was
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originally designed to extract wave motion information

from moving objects (e.g., Antoine et al. 2004). In this

study we will show that the STWT can describe time–space

variation of a given signal and thereby provide a powerful

tool to document the multiscale behavior of a signal.

Another objective of this study is to apply the STWT

to the equatorial convection and to examine multiscale

structure and behavior of the Madden–Julian oscillation

(MJO) (Madden and Julian 1971, 1972). The MJO is one

of the most prominent phenomena in tropical and climate

dynamics. Although the MJO is an equatorial trapped

disturbance, it has huge impacts on other phenomena

such as the Asian summer monsoon (e.g., Yasunari 1979;

Sikka and Gadgil 1980), tropical cyclone formation

and rapid intensification (e.g., Bessafi and Wheeler

2006; Frank and Roundy 2006; Wang and Zhou 2008),

and tropical–extratropical interaction (e.g., Nitta 1987;

Kawamura et al. 1996; Ding and Wang 2007). As shown

by Nakazawa (1988), the MJO itself has a clear multiscale

structure. In his conceptual model, a MJO that moves

slowly eastward comprises several super cloud clusters

(SCCs) moving eastward at faster speeds (10–15 m s21),

with each SCC comprising a number of cloud clusters

moving westward. The SCC has been identified as es-

sentially the moist (convectively coupled) Kelvin waves

(e.g., Takayabu and Murakami 1991), while westward

propagating clusters were considered as inertio-gravity

waves (e.g., Takayabu et al. 1996). In observations and

theories, the structure and slow propagation of the MJO

differs from the moist Kelvin waves (e.g., Wang 1988; Rui

and Wang 1990; Wang and Rui 1990; Hendon and Salby

1994; Wheeler and Kiladis 1999). Due to the vanishing

Coriolis force at the equator, the atmospheric and oce-

anic waves propagate in zonal directions (Matsuno 1966),

providing an excellent case for examining signals in a

time–longitude section along the equator with the use of

the STWT.

Given the multiscale behavior of the MJO, it has been

speculated that understanding of the multiscale inter-

action is a key to advance our understanding of the

MJO dynamics (e.g., Majda and Biello 2004; Wang 2005;

Moncrieff et al. 2007; Miura et al. 2007). The large-scale

MJO may modulate the amplitude and change the prop-

erties (e.g., frequency, structure, and wavelength) of the

small-scale component. The small-scale component, in

turn, could feed back to the MJO by transporting heat,

momentum, and moisture (e.g., Houze 2004; Moncrieff

et al. 2007) and consequently modulate the amplitude

and the properties of the MJO. Recent observational

and theoretical studies have made significant progress

in documentation and understanding of the MJO dy-

namics in terms of scale interaction. Straub and Kiladis

(2003a) studied the relationship between the phase of

MJO and the activity of the Kelvin waves using 22-yr

outgoing longwave radiation (OLR) data during boreal

summer. Roundy (2008) examined the behavior of Kelvin

waves with reference to the phase of the MJO. With a

theoretical model, the interaction between the large-scale

component and the embedded small scales has been

demonstrated to play a critical role in understanding

behavior of the MJO (Majda and Biello 2004; Majda

et al. 2007). Despite this progress, study of the nonlinear

interaction among convectively coupled equatorial waves

remains a great challenge.

This paper consists of two parts. The first part (sec-

tions 2 through 4) is devoted to introducing the STWT to

the field of geophysics, including the mathematical de-

scription of the theoretical development (section 2) and

applied aspects (section 3) of the STWT, as well as

demonstration of its application with an ideal example

(section 4). Those readers who are primarily interested

in the methodology may focus on these three sections. In

the second part of the paper (sections 5 through 8) the

STWT is applied to study the multiscale structures of the

Nakazawa MJO case (section 5), the differences and

relationships between the MJO and moist Kelvin waves

(section 6), the modulation of the westward propagating

inertio-gravity (WIG) waves by the MJO and Kelvin

waves (section 7), and the possible feedback of the WIG

waves onto the MJO and Kelvin waves (section 8). A

summary is presented in the last section.

2. The spatiotemporal wavelet transform

Since the spatiotemporal wavelet transform (STWT)

is unfamiliar to most people in the field of geophysics, we

briefly document the STWT and define some useful

parameters in this section. The concept of the method is

of course not novel, but this section provides a mathe-

matical basis for the STWT so that one can fully un-

derstand how it is derived and on what it is based.

a. Definition

The STWT can be obtained by extending the 1D WT

by introducing a speed tuning parameter c as follows

(e.g., Bouyoucef and Murenzi 1995):

W(b, t; a, c) 5

ð‘

�‘

dx

ð‘

�‘

dt f (x, t)c
b,t;a,c
* (x, t), (1)

where W(b, t; a, c) is STWT, (x, t) the space–time po-

sition, f(x, t) a space–time signal (real in most practical

applications, but can be complex in the following dis-

cussion), and c*b,t;a,c the analyzing wavelet with a spa-

tiotemporal scale parameter a . 0 and a translation

parameter (b, t) 2 R2; c*b,t;a,c designates the complex

conjugate of cb,t;a,c. It is clear that the STWT retains the
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basic concept of WT; that is, the WT is defined by the

inner products of a signal f with the wavelet. The ana-

lyzing wavelet in STWT can be expressed by means of

a mother wavelet c as

c
b,t;a,c
* (x, t) 5

1

a
c*

x� b

ac1/2
,

t � t

ac�1/2

� �
. (2)

As in the 1D counterpart, the basic properties of the

wavelet such as dilation and displacement are deter-

mined by a and (b, t). In addition, c gives a phase speed

in a Hovmöller diagram. In practical application, the

STWT is computed in the Fourier space instead of phys-

ical space (1) as

W(b, t; a, c) 5 a

ð‘

�‘

dk

ð‘

�‘

dv f̂ (k, v)ĉ*(ac1/2k, ac�1/2v)ei(kb1vt), (3)

where the caret represents the Fourier transform and k

and v are respectively zonal wavenumber and temporal

frequency.

b. Reconstruction and spatiotemporal filtering

Supposing we employ the continuous WT, the orig-

inal signal can be reconstructed by means of the ‘‘res-

olution of the identity’’ formula (proof can be found in

appendix A) as

f (x, t) 5
1

C
d

ð‘

0

da

a2

ð‘

0

dc

c
W(x, t; a, c), (4)

as long as the admissibility condition (A5) holds. This

reconstruction formula can be used not only to check the

program but also as a filter to extract a specific compo-

nent of interest. The filtered field f9 can be expressed as

f 9(x, t) 5
1

C
d

ðð
D

da

a2

dc

c
W(x, t; a, c), (5)

where f 9 is constructed over a subset D of the domain:

D 5 f(a, c) 2 R2g. In practical applications, however,

sometimes it would be more useful to define the in-

tegration domain T �f(k, v)2R2g in the corresponding

Fourier zonal wavenumber–frequency space first. Then

the domain D can be identified from the domain as D 5

(aM, cM)(T ), with the aid of a relationship between

wavelet scales and Fourier wavelengths. Finally, f9 can

be obtained by the use of (5). For instance, in the case of

the spatiotemporal Morlet function to be introduced

later, the relationship between wavelet scales and Fourier

wavelengths is given by (C4) and (C5). We shall follow

this procedure as a spatiotemporal filter in section 4.

c. Energy conservation and wavelet scalograms
(spectra)

One of the most important features of the WT is en-

ergy conservation. As in the 1D counterpart, conserva-

tion of total energy is retained in the STWT. The

conservation of energy can be easily obtained as follows

(proof can be found in appendix B):

1

C
c

ð‘

0

da

a3

ð‘

0

dc

c

ð‘

�‘

db

ð‘

�‘

dt W(b, t;a, c)
�� ��2

5

ð‘

�‘

dx

ð‘

�‘

dt f (x, t)
�� ��2, (6)

where Cc is also a constant parameter depending only

on c (B3). We can define the wavelet energy density

function (also known as the scalogram), which repre-

sents the contribution to the signal energy at a given

location (b, t), scale a, and speed c as

P
w

(b, t; a, c) 5 W(b, t; a, c)
�� ��2. (7)

Therefore, the relative contribution to the total energy

by the given component defined by the domain D be-

comes

E9 5

ðð
D

da

a3

dc

c

ð‘

�‘

db

ð‘

�‘

dtP
w

(b, t; a, c)

,ð‘

�‘

dx

ð‘

�‘

dt f (x, t)
�� ��2. (8)

Also we can define the global wavelet scalogram to

represent the global spectrum feature of the STWT as an

average scalogram as follows:

P
w

(a, c) 5

ðb2

b1

db

ð t2

t1

dtP
w

(b, t; a, c). (9)

Similarly, we can define the local wavelet scalogram,

which is designed to represent the energy of a given

component at a given location (b, t). Temporal and/or

horizontal variations of the local wavelet scalogram

thus depict how a given component varies with time

and/or space—in other words, how a given component is
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modulated by another component if careful examination

is made. Considering the conservation of energy, the

local wavelet scalogram in given ranges of scale and

phase speed can be written as

P
w

(b, t) 5
1

C
c

ð ð
D

dc

c

da

a3
P

w
(b, t; a, c). (10)

d. Selection of the STWT mother function

In this study, we chose the spatiotemporal Morlet func-

tion, one of the most popular selections, as the directional

mother function:

c(x, t) 5 ei(k90x1v90t)e�1/2(x21t2); (11)

consequently in the Fourier space

ĉ(k, v) 5 ĉ*(k, v) 5 e�1/2(k�k90)2

e�1/2(v�v90)2

, (12)

where jk90j 5 6 and v90 5 6 to ensure the admissibility

condition since the equivalent condition ĉ*(0) 5 0 ap-

proximately holds in this case. Since v90 . 0, only posi-

tive v90 values are analyzed, and positive or negative k90
parameters are used to analyze positive or negative k

values, that is, westward or eastward propagating pat-

terns, respectively. Note that the results to be shown

later are not sensitive to the selection of a different rea-

sonable directional mother function. Moreover, selecting

the ST Morlet function as a mother function is a rea-

sonable extension of the Fourier analysis to localize a

signal because the ST Morlet wavelet has a plane wave

form in both space and time localized with a Gaussian

envelope in both directions. The analyzing wavelet (2)

therefore is able to express a localized signal that has

a wave form characterized by different spatiotemporal

scales and phase speeds.

3. Application issues

a. Consideration of statistical significance level in
STWT

Here we consider how to assess the statistical signifi-

cance level in STWT, which is an important aspect to

identify significant signals. Since we focus on the in-

troduction and application of STWT in the field of at-

mospheric science, we avoid complex and complete

derivation based on a theoretical framework. Instead,

we try to develop a reasonable framework based on the

previous findings, but the essence of the framework is

correct.

Torrence and Compo (1998) developed a method to

assess the statistical significance level in the 1D WT on

the basis of Monte Carlo simulations. They showed that

the local wavelet power spectrum jW(a, b)j2/s2 has a x2
2

distribution

W(b; a)
�� ��2

s2
0

1

2
P

k
x2

2, (13)

where s2 is the signal variance, Pk is the mean spectrum

of the background noise at the frequency k, and the 0
indicates ‘‘is distributed as.’’ This relationship was re-

cently confirmed in a theoretical framework by Ge (2007),

especially in the case of Morlet function as the mother

function.

Since the wavelet power spectrum in the spatiotem-

poral case is also defined by the square of WT as in the

1D case, it is natural to think that its distribution follows

a x2
2 distribution just as in the 1D counterpart, namely

P
w

(b, t; a, c)

s2
0

1

2
P

k
x2

2. (14)

Then the problem reduces to the estimation of the back-

ground spectrum and the degree of freedom to assess the

statistical level of STWT. It may need substantial effort

to develop a way to estimate the background spectrum

in the spatiotemporal case based on a theoretical frame-

work. Unfortunately, such a method does not seem to

exist so far. However, there is a hint in the estimation of

the background spectrum for the zonal wavenumber–

frequency power spectrum developed by Wheeler and

Kiladis (1999). Their background power spectrum is ob-

tained by smoothing the raw spectrum by taking a 1–2–1

average1 in both wavenumber and frequency many times.

This provides a very simple but practical way to estimate

the background power spectrum. Using the similarities

between the zonal wavenumber–frequency power spec-

trum and the STWT (since they are both expected to

follow a x2 distribution), the background power spec-

trum is obtained in the same way as Wheeler and Kiladis

(1999).

b. Discretization of STWT and treatment of data

Since the real data is neither continuous nor infinite,

careful treatments should be made to compute WT nu-

merically, including how to discretize the STWT and

how to treat edge effects.

There are two ways to develop a discretized frame-

work for computing the STWT numerically. One is the

1 The 1–2–1 average is a three-point average with 1/4–1/2–1/4

weight.
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discretized continuous WT, which does not comprise

orthonormal functions and thus has much redundancy.

The other is the discrete WT, which is basically designed

to constitute an orthonormal basis and thus has no re-

dundancy. Although the discrete WT needs less compu-

tational resources owing to its nonredundancy feature,

we employ the discretized continuous WT because of

the good character of the quality of reconstruction and

the stability with respect to perturbation by noise (Antoine

et al. 2004). As in Torrence and Compo (1998), scale

a is discretized as a 5 a
0
2 jdj , j 5 0, 1, . . . , J 2 Z, and a0,

dj 2 R in which a0 is the smallest resolvable scale. Let

dx and dt be the sampling interval in x and t, and Nx and

Nt be the number of samples in x and t. From the re-

lationship between wavelet scales and Fourier wave-

lengths (C4), it is apparent that a reasonable selection

would be a
0

5 (2p)�1 ffiffiffiffiffiffiffiffiffiffiffiffiffi
k9

M
v9

M

p ffiffiffiffiffiffiffiffiffi
dxdt
p

and J 5 d j�1

(log
2

ffiffiffiffiffiffiffiffiffiffiffiffi
NxNt
p

� 1) to cover all resolvable scales of the

dataset. Similarly the speed tuning parameter is dis-

cretized as c 5 c02qdq, q 5 0, 1, . . . , Q2Z, c0, dq2R. Also

from (C5), one would take c0 5 2dxk9M(Ntdtv9M)21 and

Q 5 dq�1 (log2NxNt � 2). Note again that the STWT is

computed in the Fourier space using (3) by means of

the fast Fourier transform.

Another issue—the consideration of the edge effects—

is simply handled by ‘‘padding’’ enough zeros to a power

of 2 at the end of the data in both directions so that the

end of the data is not polluted from the other end of

the data. This is one of the popular techniques even in

wavelet analysis (Strang and Nguyen 1996). Of course,

excluding information from the analysis, for example, to

judge the global wavelet scalogram based on the cone of

influence consideration (e.g., Torrence and Compo 1998)

tends to be more conservative. However, it is not ap-

propriate in this case because the MJO component can-

not be resolved due to the limitation of the longitudinal

extent of the data.

c. Graphical representation of the wavelet power
spectrum

We finish this section by considering how to display

the wavelet power spectrum. With the STWT, the in-

formation about energy distribution is obtained at each

grid point (b, t) as a function of (a, c) as in the scalogram

(7). There are thus two parameters (a, c) to examine the

energy distribution at a given space and time (b, t) or the

overall energy distribution as a global wavelet scalogram

(9). From its definition, it is natural to display its power

spectrum in terms of those parameters. For instance, a is

taken as the y axis and c as the x axis. It is the natural

representation of the wavelet scalogram and may be used

for a wide variety of applications in general. In contrast,

a representation in zonal wavenumber–frequency space

is more convenient when dealing with signals in the

tropics since we have a known equatorial wave theory

that shows the dispersion relation of equatorial waves as a

function of zonal wavenumber and frequency (Matsuno

1966). In fact, a substantial part of tropical convection

is related to the equatorial waves (e.g., Hayashi 1982;

Takayabu 1994; Pires et al. 1997; Wheeler and Kiladis

1999), the so-called convectively coupled equatorial waves

(Kiladis et al. 2009).

Since this study has two purposes—providing an in-

troduction to the STWT and discussing its application to

the multiscale structure of MJO—we will provide the

two types of graphical representations mentioned above

in some cases. In representations, the relationship be-

tween (a, c) and a pair of zonal wavenumber and fre-

quency (appendix C) is used to relate them.

4. Analysis of an ideal signal

To illustrate the application of STWT, we consider an

ideal signal, f(x, t), which comprises five harmonic prop-

agating waves with different wavenumber and frequency,

and their amplitudes vary with longitude:

f (x, t) 5 (0.5 1 sink
0
x)[2 cos(k

1
x 1 v

1
t)

1 0.5 cos(k
2
x� v

2
t) 1 0.5 cos(k

3
x� v

3
t)

1 0.5 cos(k
4
x� v

4
t) 1 0.5 cos(k

5
x� v

5
t)],

(15)

where the zonal wavenumbers k0 5 1, k1 5 2, k2 5 10,

k3 5 20, k4 5 40, and k5 5 80 and the corresponding

periods (Tn 5 2p/vn) T1 5 45, T2 5 15, T3 5 5, T4 5 2,

and T5 5 1. The time–longitude diagram of the ideal

signal (15) is shown in Fig. 1a. While this is an ideal

signal, the selection of both zonal wavenumber and pe-

riod was based on the observational evidence that the

tropical disturbance may consist of the MJO, quasi-

biweekly oscillation (e.g., Chen and Chen 1993), syn-

optic scale (e.g., Reed and Recker 1971), quasi-two-day

mode (e.g., Takayabu et al. 1996), and diurnal cycle

(e.g., Kikuchi and Wang 2008). The longitudinal varia-

tions of the amplitude mimic the modulation of the cli-

matological sea surface temperature (SST) variation (warm

pool and cold tongue) on equatorial convective activity.

Because this signal has neither trend nor noise and is

completely periodic in time and space, some techniques

such as zero-padding, tapering, and normalization by

background spectrum were not employed in computing

the power spectrum.

Figure 2 shows the natural representation of the global

wavelet scalogram (9). Concentrations of energy are found

where they are expected from (15). One of the merits of
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this representation lies in the readiness to identify the

propagation direction by analyzing separately with both

signs of k90, phase speed, wavelength, and period of all the

components of a given signal.

The representation of the global wavelet scalogram

in zonal wavenumber–frequency space (Fig. 3a) can be

conveniently compared to the result obtained from the

conventional Fourier-based zonal wavenumber–frequency

power spectrum (e.g., Hayashi 1982) (Fig. 3b): both pro-

vide anticipated energy concentrations at the corre-

sponding components of the signal. However, the power

distribution in the STWT shows a slightly diffusive fea-

ture, which is expected from the definition of the STWT

in spectral space (3). The diffusiveness, however, does

not matter much and in some cases it could be desirable

since it is considered to have a larger number of effective

degrees of freedom (EDOFs) owing to the process of

smoothing the spectrum (3). In conclusion, the global

wavelet scalogram yields features consistent with the

conventional wavenumber–frequency spectrum, so we

can be sure that the overall spectrum characteristics are

the same no matter which method is used.

5. Multiscale structure of MJO: Nakazawa’s case
revisited

In the following sections, we examine the case that

was first studied by Nakazawa (1988) as a real example

of multiscale structure of the MJO. The data that we use

are the same as in Nakazawa (1988), which are the Geo-

stationary Meteorological Satellite (GMS) infrared data

with horizontal resolution of 0.258 latitude 3 0.258 lon-

gitude and a temporal resolution of 3 h. The data mea-

sures the temperature at the top of the clouds and thus

well reflects deep convective activity in the tropics. The

data cover the entire western Pacific and eastern Indian

Oceans (608S–608N, 808E–1608W). Due to the limited

data coverage, zonal wavenumber 3 is the largest resolv-

able scale. The data period that we analyzed runs from

1 May through the end of July 1980. Since a few data

values are missing, a linear interpolation in time was

used to complete the time series so that a Fourier trans-

form can be applied. Specific values of several parameters

used in the STWT calculation, discussed in section 3, are

summarized in Table 1.

a. STWT global wavelet energy spectrum (global
scalogram)

First, we show the STWT global wavelet scalogram

(an integrated wavelet power spectrum) in Fig. 4, which

synthesizes the equatorial wave activity associated with

the Nakazawa case. Similar to Wheeler and Kiladis’s

(1999) analysis, the data were decomposed into equatorial

symmetric and antisymmetric component in accordance

FIG. 1. Time–longitude section of an ideal signal represented by

Eq. (15). Positive values are contoured and negative values are

shaded; the contour interval is unit.

FIG. 2. Natural representation of global wavelet scalogram (av-

eraged over the entire region) of the ideal signal. The spectrum is

normalized by a3c. The lines that go down from the left to the right

in the region of westward propagating signals correspond to best

projected period (day); those that go up correspond to the best

projected zonal wavenumber based on Eqs. (C4) and (C5). Con-

tour interval is 0.01.
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with the equatorial wave theory (Matsuno 1966). The most

noticeable feature is a heavy concentration of energy at

the planetary scale (wavelength 5000 to 14 000 km) in

the eastward propagating signals of the symmetric com-

ponent (Fig. 4a). Its eastward propagating speed has a

wide range from ;2 to 20 m s21. Based on the previous

findings, they comprise two different components, the

slow eastward propagating MJO (;8 m s21) and the fast

eastward propagating signal (10;20 m s21) correspond-

ing to moist Kelvin waves (Takayabu and Murakami

1991). In addition, the Kelvin wave component also has

small spatiotemporal scale up to 2000 km and a non-

dispersive feature (the phase speed is independent of the

zonal or temporal scale). Energy concentrations are also

found in the region of westward propagating signals in

the symmetric component. The largest organized signal

is related to n 5 1 Rossby waves (labeled R), which has

a zonal wavenumber of ;6 (;7000 km) and westward

phase speed of ;7 m s21, similar to the convectively

coupled Rossby wave (Kiladis and Wheeler 1995). Note

that n stands for the meridional mode number of equa-

torially trapped waves (Matsuno 1966). Another notable

signal is located at small scales with zonal wavelength

,5000 km and period ,3 days (labeled WIG), having

a phase speed of about 15–30 m s21, which is associated

with n 5 1 westward propagating inertio-gravity waves

(Matsuno 1966). Between the signals of the Rossby

and the WIG waves, there is another signal with period

;4 days, which may be classified as a tropical depression

(TD)-type disturbance (e.g., Takayabu and Nitta 1993).

In contrast, there are only a few signals found in the

antisymmetric component (Fig. 4b). The most prominent

signal exists at the planetary scale in the region of east-

ward propagating signals. It has a very fast eastward

phase speed of up to 50 m s21 and is anticipated to be

the n 5 0 eastward propagating inertio-gravity (EIG)

wave (Wheeler et al. 2000). Another signal can be found

in the region of westward propagating signals. It has a

period ;5 days and is also expected to be a TD-type

disturbance (Wheeler and Kiladis 1999).

b. Comparison of the STWT power spectrum and the
Fourier-based zonal wavenumber–frequency
spectrum analysis

We have demonstrated how the STWT works in real

data analysis and have shown that it is able to detect the

variety of convective coupled equatorial wave signals. In

light of the theoretical dispersion diagram of Matsuno

(1966), a more convenient way to represent the equa-

torial waves is in zonal wavenumber–frequency space.

Figure 5a shows the STWT global scalogram in zonal

wavenumber–frequency space, which is compared with

the Fourier-based zonal wavenumber–frequency power

spectrum developed by Wheeler and Kiladis (1999)

(Fig. 5b).

As expected, use of the zonal wavenumber–frequency

diagram makes it easier to relate the signals to various

types of equatorial waves as it can be directly compared

with the Matsuno (1966) dispersion diagram (Fig. 5a).

The MJO, Kelvin waves, n 5 1 WIG waves, n 5 1 Rossby

waves, and TD-type disturbances are easily identified in

the symmetric component and n 5 0 EIG waves and

TD-type disturbances in the antisymmetric component.

The characteristics of those waves reflect equatorial Kelvin

waves with zonal wavelengths ;3000 km and periods

5;25 days, WIG waves with wavelengths 1000;5000 km

FIG. 3. Analysis of the ideal signal: (a) global spatiotemporal wavelet scalogram represented in zonal

wavenumber–frequency space and (b) Fourier-based zonal wavenumber–frequency power spectrum. The wavelet

scalogram is normalized by a3c. Contour interval is 0.01.

TABLE 1. Parameters of STWT calculation: Nx9 and Nt9 are the

numbers of samples in x and t after zero–padding.

Name

a0 dj J c0 dq Q Nx9 Nt9

Value 1.677 0.4 21 2.29 3 1024 0.45 35 210 211
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and periods of 0.5;3 days, and mixed Rossby–gravity

(MRG) and EIG waves with wavelengths 3000;

40 000 km and periods of 1.5;10 days. In addition, the

MJO signal, which does not fall in any dispersion curves

of the equatorial waves at low zonal wavenumber and

low frequency, is characterized by zonal wavelength

;5000 km and period 25;90 days.

As a comparison, Fig. 5b shows the Wheeler and

Kiladis (1999) zonal wavenumber–frequency power spec-

trum derived from the Fourier transform. The methodol-

ogy used to derive the diagram strictly follows Wheeler

and Kiladis (1999). Note that we also taper the data to

both ends in zonal direction because of the nonperiodic

nature of the data. Obviously, the STWT and Fourier-

based zonal wavenumber–frequency analysis yield sim-

ilar wavenumber–frequency power spectra. However,

the appearance of the STWT power spectrum is much

smoother than the Wheeler and Kiladis spectrum: this is

expected from the discussions in section 4 because the

global wavelet scalogram has a larger number of EDOFs

compared with the zonal wavenumber–frequency anal-

ysis. The large EDOF is a good property to detect sys-

tematic and significant signals, especially with short-record

data. This smoothed feature of the wavelet spectrum is

also consistent with the study of 1D WT by Torrence and

Compo (1998). In the end, we can conclude that the

global wavelet scalogram yields a quite consistent spec-

trum with that obtained from the zonal wavenumber–

frequency analysis, and the STWT has potential advantage

of detecting significant signals owing to its diffusive nature,

especially for short-record data. Moreover, the consid-

eration of the statistical level made in section 3a seems

to work reasonably well.

c. Multiscale structure of the MJO

The multiscale structure of the tropical convection as-

sociated with Nakazawa’s MJO case is examined in this

subsection. To begin, we classify disturbances into sev-

eral components using (5) on the basis of the spectral

features of the global wavelet scalogram of STWT (Fig. 5)

so that we can examine how a given component is re-

lated to the other components. The components that we

extracted are the MJO, Kelvin, WIG, equatorial Rossby

waves, and MRG and EIG waves. As shown in Fig. 5,

the areas of each subdomain D never overlap. With this

‘‘filtering’’ about 40% of variance, which includes back-

ground noise, can be explained by the sum of each mode

(Table 2). Note that the variance contribution of each

mode can be obtained by use of (8).

Figure 6 shows a suite of Hovmöller diagrams of GMS

infrared data averaged between 08 and 58N for using the

original data by subtraction of the May–July mean and

linear trend (Fig. 6a) and using STWT filtering for each

type of disturbance. At first glance, in Fig. 6a one may

notice an active convective period starting from late May

and ending in mid-July. During that period Nakazawa

(1988) identified four super cloud clusters, labeled ‘‘A’’

to ‘‘D’’ in Figs. 6a. Figures 6b–f show the five compo-

nents of the decomposed convective activity during the

3-month period; they together reveal the multiscale

FIG. 4. Natural representation of global wavelet scalogram (108S–108N, 808E–1608W) normalized by the back-

ground spectrum as a function of zonal phase speed (abscissa) and scale (ordinate): phase speed labeled in (top) 8 h21

and (bottom) m s21 on the equator. The background spectrum is computed by taking a 1–2–1 average 10 times in both

abscissa and ordinate directions. Lines going down from the left to right in the region of westward propagating signals

correspond to the best projected period (day); those going up correspond to the best projected zonal wavelength (km)

based on Eqs. (C4) and (C5).
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structure of the MJO. It is evident that most westward

propagating systems seen in Fig. 6a are the WIG waves

(Fig. 6b). The four SCCs identified by Nakazawa in Fig. 6a

are associated with convectively coupled equatorial Kel-

vin waves (Fig. 6c). The MJO component (Fig. 6d) rep-

resents a slow eastward propagating component that has

slower phase speed compared with the Kelvin waves.

The westward propagating equatorial Rossby and MRG

waves and the eastward propagating EIG waves are

mainly seen in the western Pacific (Figs. 6e and 6f) and

do not appear to be major players interacting with either

MJO or Kelvin waves: thus they are ignored in the fol-

lowing discussions.

6. Differences and relationships between the moist
Kelvin wave and MJO

a. Different meridional structure of the Kelvin wave
and MJO

Before moving on to study the relationships among dif-

ferent components, we examine the horizontal structures

of the Kelvin wave and MJO to ensure that they are

reasonably separated. It is well known that they have

different horizontal structures in terms of convection

and circulation (e.g., Hendon and Salby 1994; Straub

and Kiladis 2003b). Figure 7 shows a composite hori-

zontal structure of filtered infrared data for each com-

ponent. The composite is an average of collected data

along the phase lines of the Kelvin wave and MJO de-

fined in Figs. 6c and 6d.

As expected, they show different structures clearly.

The Kelvin wave has a monopole structure with maxi-

mum amplitude in the Northern Hemisphere at ;2.58N

(Fig. 7a). Similar deviation of the Kelvin-wave-related

convection from the equator during boreal summer has

been found in the previous observational studies (e.g.,

FIG. 5. Zonal wavenumber–frequency power spectrum for the (top) equatorial symmetric and (bottom) anti-

symmetric components of infrared data signals in the equatorial region between 108S and 108N in the GMS domain

(808E–1608W). The power spectrum was computed by means of (a) spatiotemporal wavelet transform and (b)

conventional space–time Fourier transform. The power spectrum was normalized by the background spectrum

obtained as in Wheeler and Kiladis (1999). For reference, the values of 1.1, 1.3, and 1.5 meet the 90% significance

level with effective degrees of freedom 340, 40, and 15, respectively. Each curve is a dispersion curve obtained from

an equatorial beta plane with equivalent scale height of 5, 15, and 50 m.

TABLE 2. Ratio of variance of each component to total variance.

Wave component

WIG Kelvin MJO Rossby MRG Total

Ratio (%) 16 8 4 4 6 39
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Straub and Kiladis 2002, 2003b). This northward de-

viation is likely due to the northward shift of warm SST

and the corresponding boundary layer moist static en-

ergy, as documented by Wang and Xie (1997).

On the other hand, MJO has a northwest–southeast-

tilted convection anomaly in the Northern Hemisphere.

This structure appears to be similar to the composite

structure of OLR by Seiki and Takayabu (2007) in their

western Pacific case derived with long-term data. They

studied the behavior of westerly wind bursts and made

their composite based on the bursts. In their figure, at

day 0 (corresponding to the phase that this study shows)

a meridional elongated convective anomaly emerges, ac-

companying a coupled Kelvin–Rossby wave response at

the surface (Wang and Rui 1990).

It is therefore plausible to think that the MJO and

Kelvin waves are reasonably separable because they have

different phase speeds and different horizontal structures

FIG. 6. Hovmöller diagram of GMS IR (K) averaged between 08 and 58N of (a) the original data with the May–July mean removed and

(b)–(f) its filtered components: (b) WIG waves, (c) Kelvin waves, (d) the MJO, (e) Rossby waves, and (f) MRG and EIG waves. Labels

‘‘A’’ to ‘‘D’’ in (a) and (d) are the same as the labels used in Fig. 1 of Nakazawa (1988), indicating the four super cloud clusters. White lines

in (c) and (d) are phase lines along with the Kelvin wave and MJO, respectively, drawn with reference to their amplitudes, which will be

used in the composite later (e.g., Fig. 7). The contour lines of the MJO at 25 W m22 are superimposed by thick solid curves for reference.
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of convection. In addition, it is expected that they have

different accompanying circulation structures as well.

b. Relationship between the MJO and moist Kelvin
waves

As seen in Fig. 6 and the discussion above, the con-

vective activity associated with the moist Kelvin wave

and with the MJO seems to be well separated. The moist

Kelvin wave component has a faster phase speed of

;10–20 m s21 compared with the slow phase speed of

;2–8 m s21 for the MJO (Fig. 4a). Four SCCs labeled

‘‘A’’ to ‘‘D’’ are clearly related to the moist Kelvin wave

component (Fig. 6c).

Nakazawa (1988) postulated that the SCCs (or the

Kelvin wave components) are embedded in a convec-

tively active region of the MJO, and the MJO was vi-

sualized as an intangible envelope of convective region

moving eastward at a slower phase speed than the SCCs.

However, we would like to offer a somewhat different

view based on the STWT analysis. The results in Fig. 6

suggest that the MJO itself may be a substantial, orga-

nized convective system rather than an intangible en-

velope of an eastward-moving convectively active region.

In fact, there are organized convective systems in asso-

ciation with the MJO component. While the moist Kelvin

wave and MJO sometimes coexist, an obvious example

of the MJO that does not involve Kelvin wave is seen in

early July along the white color line in Fig. 6d. Note that

the corresponding eastward phase speed is approximately

2 m s21 in this case, which is a little slower than the typ-

ical phase speed of the MJO of ;5 m s21 (e.g., Hendon

and Liebmann 1994).

Supposing that the MJO and Kelvin waves are dif-

ferent ‘‘animals,’’ do they relate to each other? In a

statistical sense, Straub and Kiladis (2003a) found that

the relationship between the MJO (which they called

the boreal summer intraseasonal oscillation) and Kelvin

wave activity varies with the MJO phase. When an en-

hanced convective region associated with the MJO lies

in the equatorial eastern Indian Ocean, the enhanced

Kelvin wave activity collocates with the MJO but, when

the enhanced convective region shifts to the Maritime

Continent or western North Pacific, the enhanced Kel-

vin wave activity exists to the east of the enhanced con-

vective region.

Figure 8 shows a Hovmöller diagram of a local wavelet

scalogram anomaly of the Kelvin wave component,

which corresponds to the variability of the Kelvin wave

activity, together with the enhanced convective region

of the MJO. When an enhanced convective region as-

sociated with the MJO is located in the Indian Ocean

(around late May), an enhanced Kelvin wave activity

somewhat collocates. However, excitement of Kelvin

waves does not seem to occur exclusively in the active

convective region of the MJO; rather, it seems to occur

constantly in the active period of convection in the

eastern Indian Ocean from late May to late June. When

the enhanced convective region of the MJO is located

over the Maritime Continent around early June, the

Kelvin wave activity (local wavelet scalogram) is well

enhanced (more than one standard deviation) to the east

in the western Pacific, consistent with the results of

Straub and Kiladis (2003a).

What we would like to emphasize here is that the

STWT provides a convenient and intuitive way to esti-

mate the energy of a given disturbance represented by

the local wavelet scalogram that corresponds to a wave

packet of a given wavelet function. This estimation is

mathematically well structured, and we need no concern

to go though some complicated treatment to estimate

the wave packet of a given component such as by ap-

plying a bandpass filter (Matthews and Kiladis 1999) or

taking a lead–lag composite (Straub and Kiladis 2003a)

to a square root of a given disturbance. In addition, the

STWT gives a better opportunity to examine how the

characteristics of a Kelvin wave, such as phase speed,

are modified by the MJO. The more detailed analyses

discussed above provide insight into some aspects of

FIG. 7. Horizontal structures of the composite of infrared anomaly for the (a) Kelvin wave and (b) MJO com-

ponents. Composite is constructed along the phase line shown in Figs. 6c and 6d, respectively. The x axis is relative

longitude with reference to each phase line. Contour interval is 3 K; negative values are shaded.
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interaction between Kelvin waves and MJO and under-

standing the complex behavior of Kelvin waves (e.g.,

Roundy 2008).

7. Modulation of WIG waves by the MJO and
moist Kelvin waves

In this section, additional examples are shown to dem-

onstrate how the STWT can be conveniently used to re-

veal relationships between the WIG and Kelvin waves

and between the WIG waves and the MJO.

a. Modulation of WIG wave activity (energy)

Figure 9 shows the Hovmöller diagrams of the WIG

wave activity in terms of a local wavelet scalogram (10)

along with the active convective regions of Kelvin waves

and the MJO. From Figs. 9a and 9b, it is evident that the

WIG wave component is strongly modulated by both

Kelvin waves and the MJO; that is, within the active

convective area of either the Kelvin wave or MJO, the

activity of WIG waves is enhanced (amplitude is around

one standard deviation). This confirms the results of

Nakazawa (1988), who showed that the actual convec-

tive system develops in the form of westward-moving

cloud clusters. The WIG wave component accounts for

a large portion of the variance of ;16% (Table 2) and

has been identified as the theoretical counterpart of

a cloud cluster (Takayabu 1994).

To provide a more robust feature of how WIG wave

activity is modulated by Kelvin waves and the MJO, we

show a composite of local wavelet scalograms of WIG

wave components along the Kelvin wave and the MJO

in Fig. 10. The procedure of making the composite is the

same as in Fig. 7. It is interesting to note that the hori-

zontal patterns of local wavelet scalograms of WIG

waves associated with the Kelvin wave and MJO are

much different. The local wavelet scalogram within the

Kelvin wave is concentrated in the center of the con-

vective area (Fig. 10a). In contrast, the local wavelet

scalogram has a large anomaly to the east of the con-

vective center within the MJO (Fig. 10b). This feature

indicates that the MJO is preconditioned by active

WIGs to the east of the major convective area, while the

moist Kelvin waves do not. This result is consistent with

the previous studies, which found that the MJO has a

preconditioning stage to the east of the major convective

area (Maloney and Hartmann 1998; Kiladis et al. 2005)

that consists of different cloud types—stratocumulus and

congestus clouds (Johnson et al. 1999; Kikuchi and

Takayabu 2004)—and the Kelvin waves do not have this

preconditioning stage (e.g., Straub and Kiladis 2003b).

b. Modulation of WIG waves propagation and
wavelength

Figure 11 shows a typical case of how convection de-

velops in association with Kelvin waves and the MJO.

Figure 11a shows the same case analyzed in Nakazawa

(1988). As expected, our analysis yields an internal struc-

ture similar to that found by Nakazawa—that is, there are

westward-moving clusters with zonal wavelengths of a

couple of or several thousand kilometers and their life-

time is 1;2.5 days. The mature convections move east-

ward by switching from one westward-moving cluster to

the next. The WIG waves in the MJO also have similar

FIG. 8. Hovmöller diagram of local wavelet scalogram anomaly

(K2) averaged between 08 and 58N that corresponds to the Kelvin

wave component defined in Fig. 5. The anomaly is defined as de-

viation from the May–July mean at each point and the linear trend

is also removed. Positive (negative) values are shaded (contoured).

Thick solid lines indicate contour lines at 25 K for MJO. The lower

panel shows the standard deviation of the local wavelet scalogram

at each longitude.
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organized structure, while the zonal wavelength of WIG

waves seems somewhat shorter (Fig. 11b).

To examine in more detail how the characteristics of

embedded WIG waves are different between Kelvin

waves and the MJO, we take advantage of the STWT’s

unique capability of detecting the local zonal wavenumber

and frequency of a nonstationary wave. Figure 12 shows

the temporal variations of the most predominant local

zonal wavenumber and frequency of the embedded WIG

waves in the Kelvin wave and MJO along with those of

filtered infrared data. In both cases, westward propa-

gating disturbances are enhanced in the active convec-

tion region of the Kelvin wave and MJO (Figs. 12a and

12b), while westward propagating disturbances appear

FIG. 9. As in Fig. 8 but for WIG waves. Thick solid lines indicate contour lines at 25 K of infrared data for the

(a) Kelvin waves and (b) MJO component.

FIG. 10. As in Fig. 7 but for local wavelet scalogram of WIG waves anomaly. Contour interval is 15 K2. Positive

values are shaded. Given that x axis is relative longitude with reference to each phase line, the convective center of

each component is located at 08 in the longitudinal direction.
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more continuously within the Kelvin wave than within

the MJO. The corresponding evolution of the WIG

waves is seen in the predominant local zonal wave-

number and frequency in both cases (Figs. 12c–f). For

both cases, there are two components of energy con-

centration in terms of local zonal wavenumber and fre-

quency but where the energy concentration tends to

occur is different between the Kelvin wave and the

MJO. The concentration of energy is seen around wave-

numbers 10 and 40 and frequency between 0.4 and 0.8

and greater than 1 in the Kelvin wave. In contrast, the

energy concentration occurs around wavenumbers 18

and 30 and frequency less than 1 and greater than 1.2 in

the MJO.

The suggested differences of WIG waves in terms of

zonal wavenumber and frequency embedded within the

Kelvin wave and the MJO is confirmed by the composite

power spectrum during the same period (Fig. 13). In

Fig. 13, one can see that the most prominent energy

concentration is located in the region outlined by the

thick black curves in both the Kelvin wave and MJO. In

addition, as this component is thought to play an im-

portant role in upscale feedback (to be shown later), we

will focus on this component. This energy concentration

region suggests that WIG waves within the Kelvin wave

tend to have zonal wavelength of 3000;5000 km and

periods ;2 days, while those within MJO tend to have

zonal wavelength 2000;3000 km and period ;1.1 days.

Thus, the WIG waves embedded in the Kelvin waves and

MJO have a similar phase speed of about 15–30 m s21.

We will call these WIG waves as the 1–2.5 days WIG

waves for simplicity.

FIG. 11. Hovmöller diagram of infrared data between (a) the equator and 108N from 0000 UTC 31 May to 0000 UTC 2 Jun and (b) 58S

and 58N from 0000 UTC 4 Jul to 0000 UTC 6 Jul. Values less than 225 K are shaded; contour interval is 50 K. Dashed lines indicate

the phase of low-frequency WIG waves drawn based on the Hovmöller diagram of that component (not shown), and thick arrows

indicate the phases of the major body of organized convection in association with the (a) Kelvin wave and (b) MJO components that

correspond to the phase line in Figs. 6c and 6d.
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One notable difference between the Kelvin wave and

MJO is the different properties of the embedded WIG

waves. What causes this difference? Since the scales be-

tween the WIG waves and Kelvin waves or MJO are well

separated, the large-scale circulation produced by Kelvin

waves or the MJO would act like part of the background

field to WIG waves. Theoretical works suggest that any

equatorial waves are more or less modulated by the

presence of meridional or vertical shears (e.g., Wang and

Xie 1996). Given that the moist Kelvin wave and MJO

are expected to have different large-scale circulations (see

the discussion in section 6a), the convectively active re-

gion in association with an MJO component is expected to

have stronger meridional and vertical shears due to the

existence of Rossby wave response (e.g., Kiladis et al.

2005) than with the Kelvin wave component (e.g., Straub

and Kiladis 2003b). It is therefore conceivable that either

the joint meridional and vertical shear or one of them is

responsible for making the difference. Further theoretical

study will be necessary to elucidate the concrete processes.

FIG. 12. Close examination of the behavior of WIG waves within the (left) Kelvin wave and (right) MJO. (top)

Hovmöller diagram of infrared data. (middle), (bottom) Temporal variation of most significant spectrum peaks of

WIG waves as a function of (middle) zonal wavenumber and (bottom) frequency averaged between the equator and

108N. Note that the abscissa and the ordinate in Hovmöller diagram are reversed from earlier figures. (a),(b) Thick

lines indicate the phase lines of the Kelvin wave and MJO, respectively, which correspond to the phase lines defined

in Fig. 6. Thin lines are contour level of 25 W m22 of the Kelvin and MJO components. Dashed line representing the

Kelvin wave component of 25 W m22 is superposed in (b). (c)–(f) No symmetric and antisymmetric separation is

made to compute the power spectrum. The power spectrum is normalized by the background spectrum of the global

wavelet scalogram. Note that the value of the normalized wavelet spectrum of 6.7 passes a significance test against

background spectrum at 99% with an EDOF of 6.
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8. Possible upscale feedback from WIG waves to
the MJO and Kelvin waves

In this section we examine whether the collective ac-

tivity of the 1–2.5-day WIG waves is able to affect the

behavior of Kelvin waves and the MJO.

a. Relationship between convective bursts
and the 1–2.5-day WIG wave component

To explain why we think the 1–2.5-day WIG waves

are especially important in affecting the behavior of

Kelvin wave and MJO, in Fig. 14 we show the Hovmöller

diagrams of raw infrared data (contours) along with the

path of the 1–2.5-day WIG waves (shades). Note that

the 1–2.5-day WIG waves embedded in the Kelvin

wave and MJO indeed have different behavior as sug-

gested by the STWT power spectrum (Fig. 13): the

1–2.5-day WIG waves in the Kelvin wave have longer

wavelengths (3000;5000 km) and periods of about

2 days, whereas those in the MJO have shorter wave-

lengths (2000;3000 km) and periods of around 1 day.

In both the Kelvin wave and MJO components, the

bursts of convection (as shown by the contours) ap-

pear to occur when the phase lines of the Kelvin wave

(or MJO) and the 1–2.5-day WIG waves intersect. This

result implies that the interaction between WIG waves

and low-frequency Kelvin waves or the MJO may be

instrumental in understanding the convective bursts as-

sociated with the low-frequency MJO and Kelvin waves.

Thus, the WIG waves are not only modulated by low-

frequency waves but also possibly play a role in sustain-

ing the convective bursts associated with low-frequency

disturbances.

b. A possible feedback of the embedded WIGs on
MJO and Kelvin waves

Precipitation usually occurs in a mesoscale convective

system with a lifetime of 2–3 days at most. One of the

major roles of the WIG waves is supplying convective

heating to their regulators (e.g., Haertel et al. 2008): the

MJO and Kelvin waves. The collective effect would

modify the structure of the Kelvin wave and MJO. An-

other major role that we suggest is the potential impact

of the WIG waves on propagation speeds of the Kelvin

wave and MJO.

Based on the results of Fig. 14, a schematic summary is

presented in Fig. 15 along with the following discussion.

From the considerations in the previous subsection, the

1–2.5-day WIG waves may play an important role in

switching on the major convective region activity. Be-

cause the WIG waves embedded in the MJO have shorter

wavelengths, the MJO should have more cloud clusters

than Kelvin waves in a given period of time. In fact,

more cloud cluster events take place in the MJO case

than in the Kelvin wave case during the same period of

time (Fig. 14). In other words, the MJO intersects with

1–2.5-day WIG waves more frequently than the Kelvin

wave does. Since the release of latent heat or interaction

with heating is one of the primary mechanisms that can

slow down the phase speed of the moist Kelvin wave

(Lau and Peng 1987; Wang 1988) or coupled Kelvin–

Rossby wave packet–MJO type disturbance (Wang and

Rui 1990), it is plausible that more frequent occurrence

of the WIG waves (cloud clusters) would result in more

latent heat release, thereby slowing down the propaga-

tion of the large-scale circulation associated with the

MJO and moist Kelvin waves. In summary, an accurate

FIG. 13. Composite power spectrum of WIG waves with reference to the (a) Kelvin wave and (b) MJO averaged

between the equator and 108N. No separation between symmetric and antisymmetric is made. The thin line outlines

the region of the WIG waves; the thick line indicates the region of the lower-frequency component of WIG waves.

Note that the value of the normalized wavelet spectrum of 6.7 passes a significance test against the background

spectrum at 99% with an effective degrees of freedom (EDOF) of 6.
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documentation of the multiscale structure of both the

MJO and Kelvin waves may be one of the key aspects

toward a comprehensive understanding of the different

slow phase speeds of the MJO and moist Kelvin waves.

9. Summary

a. Advantages and limitations of the STWT

It is shown that the STWT has the capability to display

time–frequency localization; this enables us to study the

behavior of nonstationary waves and multiscale behavior

of tropical convection. The zonal wavenumber–frequency

analysis based on the Fourier transform is a useful ‘‘spa-

tiotemporal filtering’’ tool to isolate different disturbances,

but it is difficult to examine multiscale interaction owing

to its inability to deal with nonstationarity of the waves.

The STWT is more useful in this regard. Figures 12 and

13 are good examples to show the local energy distri-

bution as a function of space and time. Given that the

global wavelet scalogram (integrated wavelet scalogram)

yields quite consistent features with the Fourier-based

power spectrum, there is little doubt that the local energy

distribution gives a reasonable snapshot or slice of the

power spectrum. In addition, the global wavelet scalo-

gram facilitates detection of systematic significant sig-

nals from the short-term data due to its diffusive feature.

Because of its reconstruction capability, the STWT also

provides a natural spatiotemporal filter.

However, the STWT is computationally more time

consuming. It is clear from (3) that the Fourier trans-

form in both time and space is required to calculate the

STWT for the given scale and speed tuning parameter.

This alone requires computational resources compara-

ble to the conventional zonal wavenumber–frequency

analysis based on two-dimensional Fourier analysis. Thus,

computation of the global wavelet scalogram requires

multiple times to cover the whole scales and speed tun-

ing parameters. The computational time depends on how

fine a scale interval and speed tuning parameter one

takes. In this study, for instance, about 750 (;21 3 35)

pairs of (a, c) (Table 1) for both positive and negative k0

requires about 1500 times longer computational time in

STWT than in the conventional method. It is therefore

FIG. 14. Hovmöller diagram of lower-frequency components (1–2.5-day period) of WIG waves (shades) within

(a) Kelvin waves averaged between 08 and 108N and (b) the MJO averaged between 58S and 58N. Low infrared values

(less than 250 W m22) of nonfiltered data are superposed as contour lines with contour interval 10 W m22. The

reference phase lines are shown by thick lines correspond to those in Fig. 6.
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helpful to develop a discrete WT that has less redundancy

and consequently requires less computational time while

retaining some preferable features that the continuous

WT has, such as the shift equivariant WT (e.g., Fournier

2000).

b. Scale interaction associated with the MJO

The ability of the STWT to reveal time–frequency lo-

calization greatly facilitates study of multiscale behavior

and possibly the two-way scale interaction. The activity

of the WIG waves is strongly modulated by both the

Kelvin wave and MJO components. Specifically, the

WIG waves tend to coincide with the most enhanced

convective area of the Kelvin wave, whereas they are

primarily enhanced to the east of the most convective

center of the MJO. Another difference, which is an in-

teresting new finding due to the advantage of the STWT,

is the dissimilar behaviors of WIG waves embedded in

the Kelvin wave and MJO. The low-frequency compo-

nent (1–2.5-day period) of WIG waves has larger zonal

wavelength and longer period in the Kelvin wave than in

the MJO. A possible upscale feedback was discussed in

section 8.

The results of the present analysis suggest that con-

vectively coupled Kelvin waves and the MJO may be

viewed as separate systems. Although they often coexist,

their structures and propagation speeds are different.

On the other hand, they are related: the Kelvin wave

tends to be stronger to the east of the MJO when the

enhanced convection associated with the MJO is located

over the Maritime Continent. This feature is consistent

with the previous statistical analysis results obtained by

Straub and Kiladis (2003a). The relationship between

Kelvin waves and the MJO requires further examination

with long-term data in order to address some important

questions, such as how MJO interacts with the Kelvin

waves.

This study shows how the STWT method works when

examining the interactions among convectively coupled

equatorial waves, but what we have done is limited. Fur-

ther studies are needed to obtain more convincing con-

clusions; in particular, more cases should be examined in

the future. In addition, the Rossby and MRG waves

should be taken into account in order to make the dis-

cussion more complete.
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APPENDIX A

Proof of the Resolution of the Identity
(Reconstruction Feature)

In the present study, the continuous STWT was de-

veloped in a way similar to Torrence and Compo (1998).

Since the continuous WT is redundant, we can choose an

alternative function to obtain a reconstruction formula

rather than use the wavelet function itself. One of the

easiest ways is to take a delta function (d) as in Farge

(1992) or Torrence and Compo (1998). Consider the fol-

lowing integral:

I
1

5

ð‘

0

da

a2

ð‘

0

dc

c

ð‘

�‘

db

ð‘

�‘

dtW(b, t; a, c)hd
b,t

, gi,

(A1)

FIG. 15. Schematic diagram summarizing the multiscale structure

of (left) Kelvin waves and (right) the MJO. Dashed arrows indicate

WIGs; and solid arrows indicate phase lines associated with (left)

Kelvin waves and (right) the MJO. Circles represent cloud clusters.

Characteristic wavelength and period for WIG waves and phase

speed for all components are also shown.
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where h f , gi 5
Ð ‘

�‘
dx
Ð ‘

�‘
dt f (x, t)g*(x, t) 5

Ð ‘

�‘
dkÐ ‘

�‘
dvf̂ (k, v)ĝ*(k, v) represents the inner product of

two dimensional functions: f and g. Here hdb,t, gi can be

represented in Fourier space as follows:

hd
b,t

, gi5 1

2p

ð‘

�‘

dk

ð‘

�‘

dvĝ*(k, v)e�i(kb1vt). (A2)

Thus, with the aid of (3) one can obtain

I
1

5 2p

ð‘

0

da

a

ð‘

0

dc

c

ð‘

�‘

dk

ð‘

�‘

dv f̂ (k, v)ĝ*(k, v)ĉ*(ac1/2k, ac�1/2v). (A3)

By making a change of variables a and c for fixed k and v

such that k9 5 ac1/2k and v9 5 ac21/2v, one finally obtains

I 5 C
d
h f , gi, (A4)

where

C
d

5 2p

ð‘

0

dk

kj j

ð‘

0

dv

vj j ĉ*(k, v) , ‘. (A5)

Considered as an operator on the signal f, one can

see that the linear functionals
Ð ‘

0 da/a2
Ð ‘

0 dc/c
Ð ‘

�‘
dbÐ ‘

�‘
dtW(b, t; a, c)hd

b,t
, i and Cdh f, 2i accomplish the

same operation. With this in mind, one can obtain the

reconstruction equation (4) in the end. It is now also

clear why the admissibility condition is necessary.

APPENDIX B

Proof of Energy Conservation

Similar to appendix A, consider the following in-

tegration:

I
2

5

ð‘

0

da

a3

ð‘

0

dc

c

ð‘

�‘

db

ð‘

�‘

dt W(b, t; a, c)
�� ��. (B1)

With the aid of (3), one obtains

I
2

5 (2p)2

ð‘

0

da

a

ð‘

0

dc

c

ð‘

�‘

db

ð‘

�‘

dt f̂ (k, v)
��� ���2 ĉ*(ac1/2k, ac�1/2v)

��� ���2. (B2)

With the same change of variables as used in appendix

A, one can finally obtain I2 5 Cch f, f i, where

C
c

5 (2p)2

ð‘

0

dk

kj j

ð‘

0

dv

vj j ĉ*(k, v)
��� ���2. (B3)

APPENDIX C

Wavelet Scales and Fourier Wavelengths

Here we consider the relationship between wavelet

scales and Fourier wavelengths so that we can relate

results obtained from wavelet analysis to the Fourier

framework that has been widely used. The consideration

made here is quite similar to Meyers et al. (1993) except

for (1 1 1) 2 D. As with Meyers et al. (1993), we con-

sider the wavelet of a plane wave f(x, t) 5 ei(kx1vt). Then

the STWT becomes

W(b, t; a, c) 5 2paĉ*(ac1/2k, ac�1/2v)ei(k1b1v1t). (C1)

Thus, the wavelet power spectrum becomes

W(a, c)j j2 5 (2pa)2
ĉ*(ac1/2k, ac�1/2v)
��� ���2. (C2)

Using (12),

W(a, c)j j2 5 (2pa)2 exp[�(ac1/2k � k9
0
)2

� (ac�1/2v � v9
0
)2], (C3)

so ›jW(a, c)j2/›a 5 0 and ›jW(a, c)j2/›c 5 0 give pairs of

(a, c) in which the wavelet power spectrum has a local

maximum. Ignoring unrealistic solutions, one gets the

following relationship:

a
M

5
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k9

M
v9

M

kv

r
. 0 (C4)

and

c
M

5
k9

M

k

v

v9
M

. 0 (C5)

in which k9M 5 (k90 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k92

0 1 2
q

) sgnk90 and v9M 5 v90 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v92

0 1 2
q

. Note that wavelength is 2p/k and period is 2p/l.
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