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Abstract
The rapid decline of Arctic sea ice, including sea ice area (SIA) retreat and sea ice thinning, is a
striking manifestation of global climate change. Analysis of 40 CMIP6 models reveals a very large
spread in both model simulations of the September SIA and thickness and the timing of a summer
ice-free Arctic Ocean. The existing SIA-based evaluation metrics are deficient due to observational
uncertainty, prominent internal variability, and indirect Arctic response to global forcing. Given
the critical roles of sea ice thickness (SIT) in determining Arctic ice variation throughout the
seasonal cycle and the April SIT bridging the winter freezing and summer melting processes, we
propose two SIT-based metrics, the April mean SIT and summer SIA response to April SIT, to
assess climate models’ capability to reproduce the historical change of the Arctic sea ice area. The
selected 11 good models reduce the uncertainty in the projected first ice-free Arctic by 70% relative
to 11 poor models. The chosen models’ ensemble mean projects the first ice-free year in 2049
(2043) under the shared socio-economic pathways (SSP)2-4.5 (SSP5-8.5) scenario with one
standard deviation of the inter-model spread of 12.0 (8.9) years.

1. Introduction

The rapid reduction of Arctic sea ice since the end
of the 20th century has drawn much attention as an
indicator of local and global climate. The change of
Arctic sea ice would affect the mid-high latitude cli-
mate (Wu et al 2009, Tang et al 2013, Mori et al 2014,
Vihma 2014, Gu et al 2018, Chripko et al 2021), eco-
nomic activity (Ho 2010, Harsem et al 2011, Guy and
Lasserre 2016), and ecosystems (Arrigo 2014, Post
et al 2013). Since an ice-free summer is the most rep-
resentative symbol of a warming Arctic, how soon
the summer Arctic will become ice-free is always a
keen societal concern, as the ice-free Arctic may have
remarkable impacts on the Arctic environment, mar-
ine ecosystem, and maritime activities. Understand-
ing the observed change of Arctic sea ice and predict-
ing the ongoing evolution toward a seasonally ice-free

Arctic Ocean has been a grand challenge for climate
science.

September sea ice area (SIA) shows an accelerated
retreat (about−1.7million km2 decade−1) from1998
to 2007, as assessed from the modern satellite pass-
ive microwave data record (Comiso et al 2008). The
SIA here is defined by the sum of the pixel area multi-
plied by the sea ice concentration (SIC) in each pixel
over all the sea ice grids with SIC greater than 15%.
The sea ice thickness (SIT) and sea ice volume (SIV)
also show an accelerated loss (Lindsay and Schweiger
2015), especially for the multi-year and perennial
ice (Kwok 2018). The summer season is extended,
dominated by an earlier melting onset and delayed
autumn freeze-up (Stroeve et al 2014). However, after
2008, the September SIA has shown a near-zero trend
with a shallow mean state (3.9 million km2) (Swart
et al 2015). This trend has not changed in the past six
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years. A robust decadal variation has occurred over
the past three decades, posing considerable uncer-
tainties for projecting anthropogenically forced Arc-
tic SIA changes. However, the reason for decadal vari-
ation remains unresolved.

Coupled global climate models are the primary
objective tools to investigate the underlying mech-
anisms of sea ice response and provide future pro-
jections based on physical laws. Thus, the abil-
ity of climate models to simulate the observed
changes in Arctic sea ice has become a central
measurement of models’ performance in Arctic-
focused climate-model intercomparisons (Notz and
Community 2020). In 2019, model projections from
CMIP6 (the sixth phase of Coupled Model Intercom-
parison Project) (Eyring et al 2016) became available.
Sea Ice Model Intercomparison Project in CMIP6
designed a specific set of diagnostics that allowed
for detailed analyses of ice-related processes and
process-based evaluations of sea ice simulations in the
participatingmodels (Notz et al 2016). However, sub-
stantial uncertainty persists in these models’ simu-
lated sea-ice loss rate. Most models fail to simulate an
evolution broadly in accord with observations for SIA
and volume (Notz and Community 2020). Research
has indicated that model errors and internally gener-
ated climate variability may be the dominant factors
contributing to uncertainties in those coupledmodels
(Melia et al 2015, Swart et al 2015).

We have examined 40 CMIP6 models’ projec-
tions of the ice-free Arctic. These models are lis-
ted in table S1. The ice-free Arctic is commonly
defined as the Arctic September SIA being less than
1.0 million km2 (Snape and Forster 2014, Notz and
Community 2020).While the CMIP6models provide
a more realistic simulation of Arctic sea ice, the inter-
model spread in the projected ice-free Arctic years
remains as large as in CMIP5 models (Notz and
Community 2020), ranging from 2014 to far beyond
2100 under themediumemission (SSP2-4.5) scenario
(Wang et al 2021). This notorious uncertainty makes
the all-model ensemblemean less meaningful. There-
fore, selecting realistic models to create a reliable pro-
jection with reduced uncertainty remains a frontline
challenge.

The existing primary approaches for model selec-
tion are based on the models’ ability to repro-
duce the observed September SIA-based climatology,
linear trend, and its response to global warming
(table S2). This work first reviews these current and
widely used evaluation metrics and their perform-
ances (section 3). Given the essential role of SIT in
determining Arctic ice variability in both the melt-
ing and freezing seasons, we propose thickness-based
evaluation metrics to assess the CMIP6 model’s qual-
ity (section 4). In contrast to the previous efforts,
our unique approach stresses the critical role of SIT
in driving long-term sea ice loss. We discuss the
role of the thickness-constrained model selection in

reducing the simulation and projection uncertainties.
Section 5 presents the conclusion and discussion.

2. Data andmethod

SIC is commonly used to measure the amount of
ice distribution. There are several observational data
available. We primarily rely on the passive microwave
satellite data record from 1979 to the present, which
provides consistent estimates of SIC data from sev-
eral sensors. The most referenced dataset comes from
the National Snow and Ice Data Center (NSIDC)
(Comiso 2017) andHadley Centre observations data-
sets (Rayner 2003). Due to the satellite orbit inclin-
ation, there is a central Arctic hole in the NSIDC
data. The hole is patched using the northernmost lat-
itude’s average value to keep the data’s consistency.
Here we use both datasets to reduce the uncertainty
in observation. The SIT derives from Pan-arctic Ice-
Ocean Model and Assimilation System, which blends
satellite-observed data, such as SIC, intomodel calcu-
lations to estimate SIT. This dataset agrees reasonably
well with the submarine observation of ice thickness,
and the bias is within 9% along the 1993 submarine
track in the Arctic (Zhang andRothrock 2003). All sea
ice data are interpolated into the same grid with 1◦

resolution. Then, the monthly SIA is calculated based
on sea ice concentration.

The 2 m near-surface air temperature is also used
to diagnose the sea ice’s sensitivity to global warm-
ing. To reduce the uncertainty, we used the ensemble
mean of two reanalysis datasets: the fifth genera-
tion European Centre for Medium-range Weather
Forecasts reanalysis data (ERA-5) with 1◦ resolution
(Hersbach et al 2020) and the National Centers for
Environmental Prediction (NCEP-II) datasets with
2.5◦ resolution (Kanamitsu et al 2002). The period
of 1979–2014 is chosen as the evaluation period since
it overlaps with the satellite observation period, and
2014 is the last year of the models’ historical simula-
tion period.

This study analyzes 40 models that provide sea ice
simulation for various scenarios (table S1). Most of
them provide historical simulations and future pro-
jections under the SSP2-4.5 and SSP5-8.5 scenarios,
representing a medium and high radiative forcing
of 4.5 and 8.5 W m−2 in 2100 relative to the pre-
industrial levels (O’Neill et al 2016). Among these 40
models, most models provide more than one real-
ization. We used as many realizations as possible to
diminish the bias from the different initial conditions.
The model information and realization number are
shown in table S1. Since models have different grid
configurations, we first interpolate the SIC and thick-
ness from model grids to a 1.0 × 1.0 degree stand-
ard latitude/longitude grid (same with observation)
before calculating the sea ice area. In this way, model
results were compared consistently.
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It is crucial to choose an appropriate region and
season for study due to the complex spatial-temporal
variations of sea ice. Here we focus on the Arctic
Ocean north of 70◦N to exclude the interference from
the Atlantic Ocean. We define the freezing season as
four calendar months from December to March and
the primary melt season as three calendar months
from June to August.

3. Previous sea ice area-based
observational evaluations

3.1. The climatological mean September SIA
Climatological September SIA or SIC measures the
average sea ice amount in the peak melt season and is
widely used for evaluation of the CMIP3 and CMIP5
models (Wang and Overland 2009, 2012, Massonnet
et al 2012, Stroeve et al 2012, Liu et al 2013, Huang
et al 2017). However, the average September SIA from
1979 to 2014 is 5.36 and 4.73 million km2 in the
NSIDC and Hadley datasets. This observed uncer-
tainty is evenmore significant than some inter-model
spreads. Supplementary figure 1 shows two groups of
the best tenmodels selected based on these two differ-
ent observational datasets. Eight out of tenmodels are
different. The projected ensemble mean ice-free year
by the top ten models is 2053 and 2067, respectively,
under the SSP2-4.5 scenario. Furthermore, the inter-
model spread is not reduced and even increased in
the future projection. Thus, the observational uncer-
tainty in September SIA argues against its application
for model evaluations.

3.2. The linear trend of the September SIA
The linear trend of September SIA is another widely
used quantity to measure the mean area reduc-
tion rate of sea ice in the calibration period. While
this constraint avoids the observational uncertain-
ties, it highly depends on the choice of the reference
period. The Arctic SIA trend is superimposed on large
decadal variability, making it difficult to determine
the actual trend using a limited length of observa-
tion. To illustrate the sensitivity of the trend to differ-
ent evaluation periods, we examined three reference
stages 1979–2000 (the CMIP3 period), 1979–2007
(the CMIP5 period), and 1979–2014 (the CMIP6
period) (supplementary figure 2). The average trends
for the three reference periods vary from 0.38 to
0.72million km2 decade−1. The top tenmodels selec-
ted using the three trends projected an ice-free year
ranging from2041 to 2082. Therefore, the linear trend
of September SIA cannot be used in the model evalu-
ation due to the decadal variation since 1979.

3.3. The response of Arctic SIA to global warming
forcing
Notz and Community (2020) evaluated the CMIP6
models using September SIA sensitivity to global
warming, namely, the September SIA reduction for

a given amount of global warming (Gregory et al
2002, Mahlstein and Knutti 2012, Stroeve and Notz
2015), or a given amount of accumulative anthropo-
genic CO2 emission (Herrington and Zickfeld 2014,
Notz and Stroeve 2016). The sensitivity was estimated
with the regression of September SIA to the global
annualmean 2m air temperature.Most CMIP6mod-
els (34 out of 40) underestimate the observed sens-
itivity (supplementary figure 3(a)). The inter-model
spread for the ten selected models, defined by the
average standard deviation of September SIA from
1979 to 2014, is 1.37 million km2, only slightly smal-
ler than all model spreads (1.87). Thus, the inter-
model uncertainty is not significantly reduced. The
ensemble mean of the ten models overestimates the
observed downward trend. Therefore, by 2039, the
projected September SIA will be about one million
km2 (supplementary figure 3(b)). Supposing we use
global annual mean CO2 as the proxy, 25 out of 40
CMIP6 models underestimate the observed sensit-
ivity. The simulated inter-model spread for the ten
selected models is 0.97 million km2, significantly
reduced compared to all model spread. However, the
ensemble mean of the ten models overestimates the
mean September SIA and projects ice-free year ran-
ging from 2024 to 2065 with one standard deviation
of 16 years. The selected good models still show sig-
nificant uncertainties.

These constraints measure the models’ fidelity
in reproducing the local Arctic SIA’s response to
global external forcing. However, the Arctic regional
response is driven by atmospheric circulation changes
under the global forcing. The heterogeneous atmo-
spheric circulations make regional warming vary
from place to place under the same external global
forcing (Wang et al 2021). This constraint might be
problematic because the Arctic ice is directly affected
by local warming rather than the global mean tem-
perature rise or global anthropogenic forcing.

4. New sea ice thickness-based evaluation
metrics

4.1. Physical consideration
Previous evaluations focus on the SIA variability
in summer. However, the warming during fall and
winter significantly reduces SIV and thickness (Lind-
say and Schweiger 2015, Kwok 2018). The reduced SIT
at the end of winter could enhance summer ice loss
(Parkinson and Washington 1979, Curry et al 1995).
Therefore, we must consider the model’s ability to
reproduce the observed SIT in the evaluation.

The critical roles of SIT in Arctic ice melting
can be understood from the processes in both the
freezing and melt seasons. During the freezing sea-
son, the average climatological mean temperature is
about −20.1 ◦C, far below the sea ice freezing point
(−1.8 ◦C). Meanwhile, the temperature at the inter-
face between the seawater and the sea ice bottom

3
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Figure 1. Evaluation of Arctic sea ice simulation in each CMIP6 model by two metrics. The abscissa is the climatological mean
April sea ice thickness (SIT). The ordinate is the summer SIA reduction response rate (September-minus-May SIA) to the April
mean SIT from 1979 to 2014. The black and red dots denote observed and 40 models’ MME, respectively. The seven models
within the red circle are excellent performing models (names marked by red in the legend). The good, fair, and poor models are
marked in the legend with blue, black, and yellow ink.

keeps at the freezing point. Thus, the substantial tem-
perature gradients in the interior of ice and snow
cause continuous heat loss from the ocean to the
atmosphere, forming new sea ice at its bottom. In
this process, the near-surface air temperature domin-
ates the ice growth efficiency and further determines
the SIT at the end of winter. The April SIT precondi-
tions the summer SIA changes. As summer comes, the
average air temperature in themelt season June–July–
August (JJA) is above the freezing point (−1.8 ◦C),
leading to a broad sea ice melt in the Arctic. Since
the albedo of seawater (0.06) is much smaller than
sea ice (0.4–0.8 depending on the snow cover above),
the seawater absorbs insolation and heats (melts)
the ice laterally. The initial warming would release
more low reflective seawater, increasing absorption
of insolation and eventually induce a further sea ice
loss (Curry et al 1995, Serreze and Francis 2006).
This positive ice-albedo feedback amplifies the ini-
tial warming and sea ice retreat. Note that the lateral

melting (ice-albedo feedback) is highly subjected to
the SIT (Parkinson and Washington 1979). The thin-
ner ice would shrink faster for the same amount of
heat in the melt season, intensifying the ice-albedo
feedback and accelerating the ice area retreat. Thus,
the SIT thinning plays a critical role in summer
ice melting. In summary, Arctic SIT is crucial in
determining Arctic ice melting throughout the sea-
sonal cycle.

4.2. Sea ice thickness-based evaluationmetrics
We argue that the April SIT is a critical quantity to be
evaluated because it serves as an initial condition in
the ice melt season. A reliable model must correctly
reproduce it. Here we use the climatological mean
April SIT from 1979 to 2014 as the first evaluation
quantity (the abscissa in figure 1). In April, the SIT
reaches its maximum value in the annual cycle, and
the entire Arctic is covered by sea ice (SIC is close to
100% in most individual grids). The observed mean
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Figure 2. Time series (1979–2014) of the simulated September SIA for seven excellent models (a), eight good models (b), ten fair
models (c), and 15 poor models (d) under historical experiment. The thick black curve is the observation. The thick red curve is
the models’ multi-model ensemble (MME) mean for each group. The ‘MME RMSE’ denotes the MME’s root mean square error
(RMSE) against observation. The ‘uncertainty’ is defined by the average root mean square error between the MME and each
model (dashed curve), representing the mean inter-model spread in each group. Five-year running mean has been applied to the
data.

thickness is 2.41 m (black dot). The April SIT evalu-
ates how the models simulate the sea ice growth pro-
cess in the freezing season.

We propose that the summer SIA response to
April SIT is another quantity to be evaluated since
the SIT significantly regulates the summer ice area
reduction (or lateral melting). This quantity meas-
ures the response of summer SIA reduction to each
year’s initial sea ice condition. The summer here
means JJA, during which more than 88% of the SIA-
loss occurs. We measure the summer SIA area vari-
ation by September-minus-May SIA for each year and
estimate the summer SIA response rate by the least
square regression between the summer SIA reduc-
tion and April Arctic SIT using historical experiment
data for 1979–2014. The regression coefficient is the
response rate used as the second evaluation quantity
(the ordinate in figure 1). The correlations between
the summer SIA reduction and April Arctic SIT are

significant at the 95% confidence level in 38 out of 40
CMIP6 models. 32 out of 40 models have a correla-
tion coefficient exceeding 0.7. The observed response
rate is−2.5 million km2 m−1. It means that for every
one-meter thinning of sea ice in April, the SIA retreats
by 2.5 million km2 in summer.

The September SIA is arguably determined by
the April SIT (initial condition) and the summer ice
melting as measured by the summer SIA response
rate. Therefore, we use these two criteria to select
crediblemodels (figure 1). Although themulti-model
ensemble (MME)mean (red dot) is close to the obser-
vation (black dot), 40 CMIP6models show enormous
deviations from their ensemble means. We divided
these models into four groups based on the relative
errors from the observations (figure 1). Seven mod-
els within the red circle are excellent performers with
less than 20% relative error. The eight models within
the blue square and outside the red circle are good

5



Environ. Res. Lett. 17 (2022) 114033 X Zhou et al

Figure 3. Time-series of the simulated (1979–2014) and projected (2015–2100) September SIA by 11 individual CMIP6 models
for the excellent and good group (a), (b) and poor group (c), (d) under the SSP2-4.5 scenario (a), (c) and SSP5-8.5 scenario
(b), (d). The thick black curve is the observation; the thick red curve is the 11 models’ multi-model ensemble mean. Five-year
running mean has been applied to the data.

models, with a relative error is less than 40%. The
ten models between the blue and black square boxes
are considered fair, with a relative error ranging from
40% to 100%. The remaining 15 models outside the
black square are poor, with a relative error exceeding
100%.

Figure 2 shows each group’s September SIA skill
in historical simulations (1979–2014). Supplement-
ary figure 4 shows the counterpart for April SIT. Here
we use two ways to measure each group’s perform-
ance. TheMME-rootmean square error (RMSE), cal-
culated by the RMSE between each group’s MME
(red curve) and observation (black curve), measures
the models’ holistic ability to reproduce the observa-
tion. The ‘Uncertainty’, which is the average RMSE
deviating from the MME for each model, depicts
each group’s inter-model spread. Reliable constraints
should select models that not only capture the obser-
vation with small MME-RMSE but also reduce the
inter-model spreads (small Uncertainty).

The results show that most individual models
in the excellent and good group can capture the
long-term decline of Arctic sea ice with an RMSE of
0.43 (0.36) million km2 (figure 2). The MME-RMSE
increases for the fair models (0.57) and poor models
(0.90). Notably, the uncertainty increases progress-
ively from the excellent model (0.44) to the poor
model (2.25). Similarly, the uncertainty in the simu-
lated April SIT also systematically increases from the
excellent models (0.19 m) to poor models (0.89 m)
(supplementary figure 4). The increase of the uncer-
tainty from the excellent to poor models is four to six
folds, suggesting the selected good models can dra-
matically reduce the simulated uncertainties.

4.3. Future projection of the first Arctic ice-free
year
Can the selected models reduce the uncertainties in
their future projection of the ice-free Arctic? Since
only 11 out of 15 excellent and goodmodels (hereafter
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Figure 4. The spatial pattern (shading) of the model projected April SIT (a) and (c) and September sea ice concentration (b) and
(d) of the multi-model ensemble mean for excellent and good models in the ice-free year under the SSP2-4.5 scenario (2049) and
SSP5-8.5 scenario (2043). The black dashed contour shows the observed April SIT and September sea ice concentrations from
2007 to 2014.

goodmodels) and 11 out of 15 poor models provided
future projection data, we compare two groups of
models that have an equal number (11) members.
One group consists of 11 good models, and the other
includes 11 poor models. The inter-model spread for
the 11 good models, defined by the average stand-
ard deviation of September SIA from 1979 to 2014,
is 0.85 million km2, which is only 30% of the 11
poormodels’ spread (2.8million km2). Therefore, the
goodmodels’ spread is less than one-third of the poor
models’ counterparts. Compared to all (22) models’
spread (2.1million km2), the 11 goodmodels reduced
the inter-model spread by 60%. The results confirm
that the selected models can significantly reduce the
uncertainty of the simulated September SIA.

Figure 3 compares the models-projected Septem-
ber SIA for 11 good models (a), (b) and 11 poor
models (c), (d) under SSP2-4.5 and SSP5-8.5 scen-
arios, respectively. The projected first ice-free year by
the good group is 2049 (2043), with one standard
deviation of the inter-model spread of 12.0 (8.9)
years, under the SSP2-4.5 (SSP5-8.5) scenario. By

contrast, the projected first ice-free year for the poor
group is 2078 (2060), 29 years later than the good
group. More importantly, the inter-model spread of
ice-free years among 11 poor models is 40.2 (34.2)
years under the SSP2-4.5 (SSP5-8.5) scenario, which
are about 3.5 times larger than the good models’
spread in predicting the ice-free Arctic. The model
selection significantly narrows the uncertainty range
of the projected ice-free Arctic summer.

In addition to the reduction of SIA, the SIT will
also decrease as more areas will be covered by first-
year ice. Figure 4 shows the April SIT and September
SIC projected by the selected good models when the
ice-free year comes (shading). The contours represent
the observed field for the present state (2007–2014).
In the year when the ice-free Arctic comes, much of
the central Arctic is covered by sea ice, less than 2.5 m
in April (figures 4(a) and (c)). The area of thick sea
ice (>2 m) will be reduced by 5.4 (5.0) million km2

under the SSP2-4.5 (SSP5-8.5) scenario. The average
Arctic April SIT is thinned by about 25% compared
to the period from 2007 to 2014. The September SIA

7
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will also be substantially reduced (figures 4(b) and
(d)). The SIC in the central Arctic would generally
be less than 50%. The SIA is reduced by 74% com-
pared to the present state (2007–2014). The highly
concentrated sea ice in the central Arctic at the present
day will break into small floes with more open water
released. Most perennial ice will disappear, and the
Arctic Ocean will reach a new equilibrium state with
the seasonal ice.

5. Conclusion and discussion

Analysis of the 40 CMIP6 models indicates that the
model simulated and projected SIA (sea ice area) and
its decline rate have enormous spreads from their
ensemble means, representing notorious uncertain-
ties in the Arctic sea ice simulation and projection.
This huge uncertainty makes the all-model ensemble
mean less meaningful. Therefore, selecting realistic
models to create a reliable projection with reduced
uncertainty is imperative.

We reviewed the performance of three existing
SIA-based evaluation metrics in selecting models and
elucidated why these metrics are inadequate. We
stress that Arctic SIT plays a critical role in determin-
ing Arctic ice melting in both freezing and melt sea-
sons. The maximum April SIT reflects winter freez-
ing processes and serves as the initial condition for
the melting season. In summer, the SIT also signi-
ficantly regulates SIA reduction. The April SIT acts
as a bridge, linking the winter freezing and summer
melting processes. Therefore, we propose two new
thickness-based quantities, the April mean SIT and
summer SIA response to April SIT, for evaluating cli-
mate models’ skills.

We have classified 40 CMIP 6 models into four
groups (excellent, good, fair, and poor) and demon-
strated that both the errors (RMSE) and uncertainties
(inter-modal spread) decrease systematically from the
excellent to poormodel groups in the simulated long-
term decline of Arctic SIA and SIT (figure 2 and sup-
plementary figure 4). The uncertainty in the simu-
lated September SIA in the excellent model group
(0.44 million km2) is reduced by about 81% com-
pared to the poor model group (2.25 million km2).
Likewise, the uncertainty in the simulatedApril SIT in
the excellent group is reduced by about 79% against
the poor group (supplementary figure 4). The model
selection using the SIT-based metrics also signific-
antly narrows the uncertainty range of the projected
ice-free Arctic summer: The 11 good models’ inter-
model spread is reduced by 70% compared to the 11
poor model groups. The projected uncertainty could
be substantially reduced by eliminating poor models
from the MME. The selected models’ ensemble mean
projects the first ice-free year in 2049 (2043) under the
SSP2-4.5 (SSP5-8.5) scenario with one standard devi-
ation of the inter-model spread of 12.0 (8.9) years.

Given the critical roles of the SIT and the notable
spread in the CMIP6 models’ simulation, we suggest
modelers pay specific attention to improving SIT sim-
ulation, including the winter thickening and summer
thinning processes.

Although the SIT-based evaluation metrics can
significantly reduce the inter-model spread, the
sources of uncertainty in the coupled climate sys-
tem models have not been fully elucidated. A bet-
ter understanding of the physical processes in the
seasonal sea ice evolution and establishing a set of
physics-based emergent constraints remain a target
for further studies. In addition, our new thickness-
based constraints only relate to the sea ice compon-
ent. The sea ice evolution is governed by local atmo-
spheric forcing (Wang et al 2021). A physics-based
constraint metric should consider the performance
of atmospheric or oceanic forcing and include their
impacts on the Arctic sea ice dynamics.
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